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The simplest extension of the SM —

a Two Higgs Doublet Model (2HDM ):

L = LSM
gf + LH + LY ;

LSM
gf – SM interaction, gauge bosons + fermions

LH ≡ T − V – Higgs lagrangian ,

T – Higgs kinetic term, V – Higgs potential ,

LY – Yukawa interaction of fermions to scalars .

T = (Dµφ1)
†(Dµφ1) + (Dµφ2)

†(Dµφ2)

+κ(Dµφ1)
†(Dµφ2) + κ∗(Dµφ2)

†(Dµφ1) ,

V = λ1
2 (φ†1φ1)

2 + λ2
2 (φ†2φ2)

2 + λ3(φ
†
1φ1)(φ

†
2φ2)

+λ4(φ
†
1φ2)(φ

†
2φ1) + 1

2

[
λ5(φ

†
1φ2)

2 + h.c.
]

+
{[

λ6(φ
†
1φ1) + λ7(φ

†
2φ2)

]
(φ†1φ2) + h.c.

}
+M(φi)

M(φi) = −1
2

{
m2

11(φ
†
1φ1) + m2

22(φ
†
2φ2)

+
[
m2

12(φ
†
1φ2) + h.c.

]}
.

λ5−7, κ and m12 are generally complex.
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1. Overall phase freedom
LH is invariant under the global phase transfor-

mation φi → φie
−iρ0.

2. Reparameterization
invariance

in the space of Lagrangians with coordinates

λi, m2
ij, κ:

The physical reality corresponding to a particu-

lar choice of Lagrangian does not change with

the change of Lagrangian

under the global transformation

F :
(

φ1

φ2

)
= e−iρ0


 cos θ eiρ′ sin θ eiτ

− sin θ e−iτ cos θ e−iρ′




(
η1

η2

)

accompanied by compensating transformation

of λi, mij, κ and renormalization of fields ηi.

It is governed by 3 angles θ, ρ′, τ similar to Euler

angles.
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Particular case
at θ = 0:

3. Rephasing invariance
under the global rephasing transformation

φi → e−iρiφi, (i = 1,2),

ρ0 = (ρ1 + ρ2)/2, ρ = ρ2 − ρ1(≡ 2ρ′),
accompanied by transformation

λ1−4 → λ1−4 , m2
ii → m2

ii , m2
12 → m2

12eiρ

λ5 → λ5 e2iρ , λ6,7 → λ6,7 eiρ , κ → κ eiρ .

ρ – rephasing gauge parameter,

(ρ0 – overall phase parameter.)

Some choice of ρ – rephasing representation.

This invariance is extended to the description

of a whole system of scalars and fermions by

adding of similar transformations for the phases

of fermion fields and Yukawa couplings.
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The Z2 symmetry
and its violations

The 2HDM generally give a CP� at EWSB .

In the most general form of LY large FCNC effects

become possible.

Experiment: CP� and FCNC effects are weak.

⇓
The natural construction of 2HDM should

start with the lagrangian having additional sym-

metry which forbids a CP� and FCNC effects.
⇓

That is Z2 symmetry under independent trans-

formations for both fields

φ1 → −φ1, φ2 → φ2,

φ1 → φ1, φ2 → −φ2, ,

which forbids (φ1, φ2) mixing.

This symmetry can be weakly broken to open

door for weak CP� and FCNC effects.
Z2 conserving case: m12 = λ6 = λ7 = κ = 0.

Soft violation of Z2: dim. 2 operator with m12

(retained unmixed φi fields at small distances).

Hard violation of Z2: + dim. 4 operators

with λ6, λ7, κ – looks unnatural

since (φ1, φ2) mixing retains at small distances.
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Hard violation of Z2

1) The (φ1, φ2) mixing retains at small distances
– very unnatural .

2) The mixed kinetic terms (with κ, κ∗) can be
removed by the nonunitary transformation:

(φ ′1 , φ ′2) →


√
κ∗φ1 +

√
κφ2

2
√
|κ|(1 + |κ|)

±
√
κ∗φ1 −

√
κφ2

2
√
|κ|(1− |κ|)


 . ¨

Starting from the case κ = 0, λ6,7 6= 0, the
renormalization of quadratically divergent, non-
diagonal two-point functions leads to κ 6= 0 ⇒
λ6, λ7, κ are running ⇒ all of these terms should
be included in Lagrangian on the same foot-
ing ⇒ the treatment of the hard violation of Z2
symmetry without κ terms (as in most of papers
considering this ”most general 2HDM potential”)
is inconsistent.

**************************
The diagonalization ¨ destroy relatively simple
relations for the masses of the Higgs bosons,
usually written.

**************************
We present relations for a case of hard violation
of Z2 symmetry at κ = 0 keeping in mind that
the loop corrections can change results signifi-
cantly.
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Hidden Z2 symmetry
with its soft violation:

Reparameterization transformation
F(Lsoftly broken Z2 symmetry)

⇓
the potential with λ6, λ7 6= 0, mixed kinetic

term κ = 0 —

Lagrangian of hidden Z2 symmetry with
possible soft violation (hidZ2s)

This case mimic the case of hard violation of Z2
symmetry but with constraints. ⇒ Total num-
ber of parameters of general potential is 14 (ex-
cept κ). Total number of independent param-
eters in hidZ2s is 13: 10 in the initial potential +
θ, ρ′, τ . ⇓
The case with hard Z2 symmetry contains 1 ad-
ditional parameter in potential as compare hidZ2s
+ 2 parameters Reκ, Imκ ⇒ κ cannot be elim-
inated.
Transformation to the observable Higgs fields hi,
etc. gives terms like λ6,7 in the obtained poten-
tial. The correlations between quartic couplings
in the case of soft Z2 symmetry (or in its hidden
form) prevent running mixing between fields φi
at small distances.
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The minimum of the potential
defines the v.e.v.’s 〈φi〉 via

∂V
∂φi

(φ1 = 〈φ1〉, φ2 = 〈φ2〉) = 0

with 〈φ1〉 = 1√
2

(
0
v1

)
, 〈φ2〉 = 1√

2




0

v2eiξ


 ;

v1 = v cosβ , v2 = v sinβ , β ∈ (0, π/2).

The SM constraint v =
(
GF

√
2

)−1/2
= 246 GeV.
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At the rephasing transformation ξ → ξ − ρ

⇓
Rephasing invariant quantities

λ1−4 = λ1−4, λ5 ≡ λ5e2iξ, λ6,7 ≡ λ6eiξ,

κ ≡ κeiξ, m2
12 ≡ m2

12eiξ .

λ345 = λ3 + λ4 + Re(λ5), λ67 =
v1

v2
λ6 +

v2

v1
λ7,

λ̃67 =
1

2

(
v1

v2
λ6 −

v2

v1
λ7

)
,

The minimum condition

allow to express m2
ii via λi, vj and parameter

ν = Re(m2
12)/(2v1v2),

gives no limitation for quantity ν,

imaginary part δ = Im(m2
12)/(2v1v2) is expressed

via Im(λ5−7):

m2
12 = 2v1v2(ν + iδ) ,

δ = Im
(

0︸︷︷︸
Z2 sym

+λ5/2︸ ︷︷ ︸
soft

+λ67/2︸ ︷︷ ︸
hard

)
.
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We mainly use zero rephasing gauge – rephas-

ing representation with ξ = 0.
Starting from arbitrary set λi, mij, one should

derive vi and v.e.v. phase ξ, and then come to

rephasing invariant (overlined) parameters:

V =
λ1

2

[
(φ†1φ1)−

v2
1

2

]2

+
λ2

2

[
(φ†2φ2)−

v2
2

2

]2

+λ3(φ
†
1φ1)(φ

†
2φ2) + λ4(φ

†
1φ2)(φ

†
2φ1)

+
1

2

[
λ5(φ

†
1φ2)

2 + h.c.
]

+
{[

λ6(φ
†
1φ1) + λ7(φ

†
2φ2)

]
(φ†1φ2) + h.c.

}

−1

2

(
λ345 + Reλ67

)
[v2

2(φ
†
1φ1) + v2

1(φ
†
2φ2)]

−v1v2 Re[λ6(φ
†
1φ1) + λ7(φ

†
2φ2)]

+ν(v2φ1 − v1φ2)
†(v2φ1 − v1φ2)

+2δ · v1v2Im(φ†1φ2).

Mass term here is written via v1, v2 and λ’s plus

a single free dimensionless parameter ν. The

mentioned relation

Im(m2
12) = Im(λ5 + λ67)v1v2

⇒ constraint for potential

in this representation
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The standard decomposition of the fields φi in

terms of physical fields (in zero rephasing gauge):

φi =




ϕ+
i

1√
2
(vi + ηi + iχi)


 (i = 1,2).

Goldstone boson fields

G0 = cosβ χ1 + sinβ χ2,

G± = cosβ ϕ±1 + sinβ ϕ±2 .

*********************************

Charged Higgs boson fields

H± = sinβ ϕ±1 + cosβ ϕ±2 with

M2
H± = v2

[
ν − 1

2
Re(λ4 + λ5 + λ67)

]
.
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Neutral Higgs sector. By definition ηi are

standard C– and P– even (scalar) fields while

A = − sinβ χ1 + cosβ χ2 is C–odd (in the in-

teractions with fermions it behaves as P– odd

particle - a pseudoscalar). The mass-squared

matrix M in the η1, η2, A basis is

M =




M11 M12 M13
M12 M22 M23
M13 M23 M33


 , with

M11 =
[
c2β λ1 + s2β ν + s2βRe(λ67/2 + 2λ̃67)

]
v2,

M22 =
[
s2β λ2 + c2β ν + c2βRe(λ67/2− 2λ̃67)

]
v2,

M12 = −
(
ν − λ345 −

3

2
Reλ67

)
cβsβv2,

M13 = −
(
δ + Imλ̃67

)
sβv2,

M23 = −
(
δ − Imλ̃67

)
cβv2,

M33 =
[
ν −Re(λ5 −

1

2
λ67)

]
v2 ≡ M2

A,

cβ = cosβ, sβ = sinβ.

MA is CP–odd Higgs boson mass in the CP con-

serving case.
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The masses squared of the physical neutral states

hi – eigenvalues of the matrix M, the Higgs

eigenstates hi have no definite CP parity since

they are mixtures of fields ηi and A with oppo-

site CP parities (provided by M13 and M23):



h1
h2
h3


 = R




η1
η2
A


 with RMRT = diag(M2

1 , M2
2 , M2

3) .

The diagonalizing matrix

R = R3R2R1 ≡



R11 R12 R13
R21 R22 R23
R31 R32 R33




R1 =




c1 s1 0
−s1 c1 0
0 0 1


 , R2 =




c2 0 s2
0 1 0
−s2 0 c2


 ,

R3 =



1 0 0
0 c3 s3
0 −s3 c3


 .

(Ri are rotation matrices, αi are Euler angles,

ci = cosαi, si = sinαi).

13



Starting point:

Diagonalization of scalar (12) sector




h
−H
A


 = R1




η1
η2
A


 with

R1MRT
1 = M1 ≡




M2
h 0 M ′

13
0 M2

H M ′
23

M ′
13 M ′

23 M2
A


 ,

M ′
13 = c1M13 + s1M23, M ′

23 = −s1M13 + c1M23.

************************

If CP conserves (at M13 = M23 = 0), h1 = h,

h2 = −H, h3 = A. So, notations customary for

CP conserving case:

α = α1 − π/2 , α ∈ (−π/2, π/2) .

H = cosα η1 + sinα η2 , h = − sinα η1 + cosα η2 ,

M2
h,H = (M11 + M22 ∓N ) /2,

N =
√

(M11 −M22)
2 + 4M2

12 ,

sin 2α =
2M12

M2
H −M2

h

⇒ sin 2α

sin 2β
=

v2(λ345 − ν)

M2
H −M2

h

,

M ′
13 = −v2[δ cos(β + α)− Imλ̃67 cos(β − α)] ,

M ′
23 = v2[δ sin(β + α)− Imλ̃67 sin(β − α)] .

14



Complete diagonalization




h1
h2
h3


 = R3R2




h
−H
A


 with

RMRT = R3R2M1RT
2RT

3 =




M2
1

M2
2

M2
3




The angles α2 and α3 describe mixing of CP –

even states h, H with CP –odd state A.

Mass sum rule

M2
1+M2

2+M2
3 = M2

h+M2
H+M2

A = M11+M22+M33
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Special cases

• If δ = 0 and Imλ̃67 = 0, CP symmetry does not

violated, h, H and A are physical Higgs bosons

and α2 = α3 = 0.

**********************

• If |M ′
13/(M2

A −M2
h)| ¿ 1 ⇒

α2 ≈ 0 ⇒ h1 ≈ h ( practically CP –even),

h2, h3 generally have no definite CP parity

tan2α3 ≈
2M ′

23

M2
A −M2

H

.

**********************

• If |M ′
23/(M2

A −M2
H)| ¿ 1 ⇒

α3 ≈ 0 ⇒ h2 ≈ −H ( practically CP –even),

h1, h3 generally have no definite CP parity

tan2α2 ≈
2M ′

13

M2
A −M2

h

.

**********************

• Case of weak CP violation joins 2 above cases.

**********************

• Intensive coupling regime Mh ≈ MH ≈ MA.

⇒ CP violating mixing of fields is naturally strong,

spacing between Mi is increased due to this mix-

ing.
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Relative couplings of Higgs boson hi:

χi
a

def
= gi

a/gSM
a , a = q, `, V (= Z, W )

**********************

Couplings to gauge bosons

χ
(i)
V = cosβ Ri1 +sinβ Ri2, i = 1−3, V = W, Z

with sum rule followed from the unitarity of

transformation matrix R (Gunion et al.)

3∑

i=1

(χ(i)
V )2 = 1 .

In particular, for the case with weak violation of

CP symmetry approximately

χ
(1)
V = sin(β − α), χ

(2)
V = − cos(β − α),

χ
(3)
V = −s2 sin(β − α) + s3 cos(β − α).
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Yukawa interaction

General Yukawa Lagrangian

−LY = Q̄L[(Γ1φ1 + Γ2φ2)dR

+(∆1φ̃1 + ∆2φ̃2)uR] + h.c.

+ lepton terms

Γ and ∆ — 3–dimensional in the family space

matrices with generally complex coefficients.

If they are non diagonal in family index, the

FCNC appears.
To have only soft violation of Z2 symme-

try (to keep separate fields φi at small dis-

tances), each right-handed fermion should

couple to only one field, either φ1 or φ2.

Otherwise, e.g. in Model III, hard violation of

Z2 symmetry appears via one–loop corrections.

The case Γ2 = ∆2 = 0 – Model I,

the case Γ2 = ∆1 = 0 – Model II.
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Model II

−LII
Y =

∑
k=1,2,3

gdkQ̄Lkφ1dRk +
∑

k=1,2,3
gukQ̄Lkφ̃2uRk

+
∑

k=1,2,3
g`k¯̀Lkφ1`Rk + h.c.

For the physical Higgs fields it result in (for two-

component spinors)

χ
(i)
u =

1

sinβ
[Ri2 − i cosβ Ri3],

χ
(i)
d =

1

cosβ
[Ri1 − i sinβ Ri3].

For the interaction of the charged Higgs bosons

with fermions, independent on details of the

Higgs potential, one has for 4-component spinors

LH−tb = Mt

v
√

2
cotβ b̄(1 + γ5)H−t

+
Mb

v
√

2
tanβ b̄(1− γ5)H−t + h.c.
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Pattern relation and sum rules
based on the unitarity of the mixing matrix R.

• The pattern relation among the basic rela-

tive couplings of each neutral Higgs particle hi

(GKO):

(χ(i)
u + χ

(i)
d )χ(i)

V = 1 + χ
(i)
u χ

(i)
d , (pr)

Besides,

tan2 β =
(χ(i)

V − χ
(i)
d )†

χ
(i)
u − χ

(i)
V

=
1− |χ(i)

d |2

|χ(i)
u |2 − 1

.

• A horizontal sum rule for each neutral Higgs

boson hi (Gunion et al)

|χ(i)
u |2 sin2 β + |χ(i)

d |2 cos2 β = 1. (hsr)

• A vertical sum rule for each basic relative cou-

pling χj to all three neutral Higgs bosons hi (Gu-

nion et al):

3∑

i=1

(χ(i)
j )2 = 1 (j = V, d, u). (vsr)

For couplings to gauge bosons this sum rule

takes place independently on a particular form

of the Yukawa interaction.
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The consequences for some cases

with possible CP violation everywhere

(i) χ
(2)
V ≈ ±1 ⇒χ

(1)
V ≈ χ

(3)
V ≈ 0 independently on

the form of Yukawa sector ⇐ vsr.

(ii) χ
(2)
V ≈ ±1 ⇒(1∓ χ

(2)
d )(1∓ χ

(2)
d ) ≈ 0 ⇐ pr.

(iii) χ
(2)
V ≈ ±1 ⇒χ

(1)
u χ

(1)
d , χ

(3)
u χ

(3)
d ≈ −1⇐ pr, vsr.

(iv) The couplings to fermions are generally com-

plex χ
(2)
u,d ≈ ±1 ⇒χ

(1)
u,d ≈ ±(∓)iχ(3)

u,d ⇐ vsr.

(v) χ
(i)
u ≈ ±1 ⇒χ

(i)
d ≈ ±(∓)1 ⇐ hsr.

(vi) |χ(i)
u,d| À 1 ⇒χ

(i)
d,u ≈ 0 ⇐ hsr.

*****************************

In the CP conserving case

χ
(φ)
H± ≡ −vghH+H−

2M2
H±

=


1− M2

φ

2M2
H±


 χ

(φ)
V +

M2
φ − νv2

2M2
H±

(χ(φ)
u + χ

(φ)
d ).
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Constraints for parame-
ters of Higgs potential

were written only in the case of soft violation of

Z2 symmetry without CP violation. We extend

these results to the case with CP violation.

• Positivity (vacuum stability) constraints.

The potential must be positive at large quasi–

classical values of fields |φi| for an arbitrary di-

rection in the (φ1, φ2) plane:

λ1 > 0, λ2 > 0, λ3 +
√

λ1λ2 > 0,

λ3 + λ4 − |λ5|+
√

λ1λ2 > 0.

• Minimum constraints — conditions ensuring

that the condition for vacuum is a local mini-

mum for all directions in (φ1, φ2) space, except

the Goldstone modes (the physical fields provide

the basis in the coset).
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• Unitarity constraints. The quartic terms of

Higgs potential lead, in the tree approximation,

to a s–wave Higgs-Higgs and WLWL and WLH,

etc. scattering amplitudes for different elastic

channels. These amplitudes should not over-

come unitary limit for partial wave. The ear-

lier constraints for the case without CP violation

(Akeroyd et al.) – with real λ5 extends to the

case with CP violation by the change λ5 → |λ5|(IFG,

Ivanov).

These constraints give bounds for the Higgs-

boson masses which strongly depend on the quad-

ratic mass parameter ν.

Large ν ⇒ all MH, MA, MH± are large (decou-

pling limit).

Small ν ⇒ moderately large upper bound of

600÷ 700 GeV for MH, MA, MH±.
The correspondence between the tree-level uni-

tarity limit and realization of the Higgs field as

more or less narrow particle, as in minimal SM ,

takes place in the 2HDM only in the case when

all unitarity constraints are violated simultane-

ously. In the case when only some of these con-

straints are violated the physical picture become

more complex.
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Heavy Higgs bosons in 2HDM

Many analyses of 2HDM assume that the light-

est Higgs boson h1 is similar to the Higgs boson

of the SM , all other Higgs bosons are very

heavy (with mass ∼ M).

Usual additional hidden requirement (?!?):

The theory must have explicit decoupling prop-

erty: the mention features remain valid at M →
∞ (decoupling property).

In fact, the mentioned physical picture can be

realized in the 2HDM both with and without

decoupling property.

Two scenarios of generation of heavy
Higgs masses.
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Decoupling of heavy Higgs bosons

ν À |λi|.

⇒ M ′
13 ∼ λiv

2 ⇒ |M ′
13| ¿ M2

A − M2
h ≈ νv2 ⇒

h1 ≈ h, etc. as it was discussed earlier, β − α ≈
π/2,

M2
h = v2


c4βλ1 + s4βλ2 + 2s2βc2βλ345︸ ︷︷ ︸

soft

−2s2βc2βReλ67︸ ︷︷ ︸
hard


 ,

M2
H = v2





ν + s2βc2β(λ1 + λ2 − 2λ345)︸ ︷︷ ︸
soft

+

Re

[
2sβcβ(λ6 + λ7) +

(
−3

2
+ 4s2βc2β

)
λ67

]

︸ ︷︷ ︸
hard





,

α ≡ α1 − π
2 = β − π

2 + δα ,

δα = −sin 2β[λ345 cos 2β + c2βλ1 − s2βλ2 +O(Reλ6,7)]
ν .
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Decoupling. Lightest Higgs boson h1.

β − α ≈ π/2 ⇒ all couplings of h1 are close to

those in SM and also selfcouplings, h1h1h1 and

h1h1h1h1, are very close to the corresponding

SM couplings. Besides, h1 practically decouple

from H±, since the quantity χ
(1)
H± ∼ O(|λi|/ν).

Higgs bosons h2, h3 are almost degenerate in

masses, since

MA ≈ MH(≈ M2 ≈ M3) = v
√

ν (1 +O (|λ|/ν)) .

Besides, MH± ≈ M2 ≈ M3.

The CP violating mixing angle α3 can be large,

tan2α3 ≈
2M ′

23

M2
A −M2

H

, and

χ
(2)
u = iχ

(3)
u = − cotβ eiα3,

χ
(2)
d = iχ

(3)
d = tanβ e−iα3.

while couplings of h2, h3 to gauge bosons and

H± are small,

χ
(2)
V = cosα3δα , χ

(3)
V = sinα3δα ,

χ
(2,3)
H± ∼ O(|λi|/ν) .
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Heavy Higgs bosons without decoupling.
The option, when except one neutral h1 all other

Higgs bosons are heavy enough, can also be re-

alized in 2HDM without decoupling.

Sets of parameters of potential, satisfying uni-

tarity constraints, for light h (mass 120 GeV)

and heavy H, H±, non-decoupling case.
tanβ λ1 λ2 λ3 λ4 λ5 ν

(1) 50 1 6 5.5 -6 -6 0.24
(2) 0.02 6 1 5.5 -6 -6 0.24
(3) 1 6.25 6.25 6.25 -6 -6 0
(4) 10 4 8 4.4 -9 -0.5 0.24

+0.3i

Mh MH MA MH± s2 s3
(1) 120 600 600 600 - -
(2) 120 600 600 600 - -
(3) 120 600 600 600 - -
(4) 120 700 206 556 0.09 0.02

Lines (1-3) – the case without CP violation, (4)

– with CP violation.
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Natural set of parameters

To have CP� in the Higgs sector ⇐ Im (m2
12) 6= 0

(simultaneously Im (λ5) 6= 0). This CP� is pre-

sumably weak if

Im (m2
12) ¿ |M2

A −M2
h |, |M2

A −M2
H | .

This simple form of condition is valid only for

zero rephasing gauge. In other rephasing gauges

this condition includs both Im (m2
12) and Re (m2

12).

Naturally, this condition must be formulated in-

dependently on the rephasing gauge ⇒ for the

natural set of parameters of 2HDM we require

that |m2
12| ¿ |M2

A −M2
h |, |M2

A −M2
H |, i.e.

|ν|, |λ5| ¿ |λ1−4| (natural set of parameters).

*******************************

In the decoupling case Re (m2
12) À Im (m2

12) ⇒
unnatural case.

Weak CP� in Higgs sector looks unnatural

if |m12| is large, i.e. a weak CP violation

naturally correspond to weakly broken Z2

symmetry with |ν| < |λi|.
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Different scenarios in
2HDM

The SM is verified now with high precision apart

from mechanism of EWSB .

Two opportunity for
next generation of colliders:

¥ We meet clear signals of New Physics (new

particles, strong deviations from SM in some

processes) at LHC or e+e− LC.

¥ The physical picture coincide with that ex-

pected in SM — SM –like scenario,

determined for the fixed time:

• No new particles and interactions will be dis-

covered at the Tevatron, LHC and e+e− LC

except the Higgs boson.

• The couplings squared of Higgs boson to W ,

Z and quarks coincide with those predicted in

SM within experimental precision.
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Different realizations

of the SM – like scenario.
The SM – like scenario can be realized both in

the SM and in other models. In the 2HDM it

can be realized by many ways:

obser-
type notation ved χV tanβ =

Higgs
χV ≈ Ah+ h1 ≈ h ≈ +1 ≶ 1
χu ≈ AH+ h2 ≈ −H ≈ +1

χd Ah− h1 ≈ h ≈ −1
√∣∣∣εdεu

∣∣∣ ¿ 1

AH− h2 ≈ −H ≈ −1 À 1

χV ≈ χu Bh+d h1 ≈ h ≈ +1
√

2
εV

& 10

≈ −χd BH±d h2 ≈ −H ≈ ±1

χV ≈ χd Bh±u h1 ≈ h ≈ ±1
√

εV
2 . 0.1

≈ −χu BH+u h2 ≈ −H ≈ +1
χi = gobs

i /gSM
i = ±(1− εi)

The numbers here correspond to the anticipated

accuracy of measurements at TESLA.

The decoupling case – particular case of Ah+.
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• The observed Higgs boson can be either h1 ≈
h or h2 ≈ −H. The other Higgs bosons are prac-
tically decoupled to gauge bosons and cannot be
seen at e+e− LC in the standard processes. If
its mass below 350 GeV and tanβ ¿ 1, it can
be seen in γγ → γγ process at Photon Collider
(see M. Muehlleitner, M. Spira, P. Zerwas for H

and A) (for h – if use low energy part of photon
spectrum) and in e+e− → tt̄H at 2E > 2Mt+MH• If h2,3 and H± cannot be seen at LHC and
the first stage of LC since they are heavy, one
can distinguish models via measurement of two–
photon width of observed SM – like Higgs bo-
son. (I.Ginzburg, M. Krawczyk, P. Olsen).
The two photon width is calculated via the mea-
sured at e+e− LC Higgs couplings to the matter.
For natural set of parameters of 2HDM we find:
For solutions A and Bd the deviation from SM ,
given by contributions of heavy charged Higgs
bosons, is about ∼ 10% (compare with antici-
pated 2% accuracy). For solutions Bu change of
relative sign of contributions of t–loop and W–
loop increase the observed cross section more
than twice in comparison with SM . Therefore,
measurement of two-photon width at Photon
Collider can resolve these models reliably.
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For MH± = 800 GeV the ratio of the two-photon

Higgs width to its SM value is shown in Figure.
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