XVIIIth International Workshop High Energy Physics and Quantum Field Theory, St.Petersburg

LHCb status and physics goals

Olivier Leroy, on behalf of the LHCb collaboration

CPPM (IN2P3-CNRS et Université de la Méditerranée), Marseille, France

- 1. Introduction and physics motivations
- 2. Subsystem status
- 3. Physics potential
- 4. Conclusion

June 17-23, 2004

Introduction, physics motivations

- LHCb is a dedicated *B physics precision* experiment at LHC to study CP violation and rare decays
- Standard Model CP violation described by single complex phase in the unitarity CKM matrix
- LHCb precision \Rightarrow 2 Unitarity Triangles
- b meson sector is a place where theoretical predictions can be precisely compared with experimental results
- We will over constrain the Unitarity Triangles and search for new physics

LHCb experimental challenge

- To over constrain the Unitarity Triangles, need to reconstruct many final states:
 - Robust and efficient trigger, even for non-leptonic decays
 - High track reconstruction efficiency
 - Excellent proper time resolution (xs)
 - π/K separation

LHC environment

- + LHC: pp collisions at \sqrt{s} = 14 TeV
- ◆ Bunches cross at 40 MHz
 → separated by 25 ns
- ★ $\sigma_{\text{inelastic}}$ = 80 mb L=10³⁴cm⁻²s⁻¹ → ≫ 1 pp collision/crossing
- ◆ Choose to run at ~ 2 × 10³² cm⁻²s⁻¹ → dominated by single interactions
- Makes it simpler to identify B decays from their vertex structure (and reduces radiation dose)
- ◆ Beams are defocused locally
 → maintain optimal luminosity even when ATLAS and CMS run at 10³⁴
- ◆ σ_{bb}⁻ = 500 μb
- LHC = Most copious b-hadrons production source: 10¹² bb / year at LHCb
- + Produced B_d , B^+ , B_s , B_c , Λ_b , Σ_b , Ξ_b , ...

B production

- +B hadrons are mostly produced in the forward direction (along the beam)
- +Choose a forward spectrometer 10-300 mrad
- Both b and b in the acceptance: important for tagging the production state of the B hadron

Typical B event in LHCb

- Need to measure proper time of B decay: t = mL / pc hence decay length L (typically ~ 9 mm in LHCb) and momentum p from decay products (which have ~ 1-100 GeV)
- Also need to tag production state of B: whether it was B or B Use charge of lepton or kaon from decay of the other b hadron

Forward spectrometer (running in pp collider mode) Inner acceptance 10 mrad from conical beryllium beam pipe

Vertex Locator (VELO) around the interaction region Precise track parameter measurements + level-0 trigger pile-up system Silicon strip detector with ~ 30 μ m impact-parameter resolution

Tracking system and dipole magnet to measure angles and momenta $\delta p/p \sim 0.4$ %, mass resolution ~ 14 MeV (for $B_s \rightarrow D_s K$) Magnetic field regularly reversed to reduce experimental systematics

Two **RICH** detectors for charged hadron identification Provide > $3\sigma \pi$ -K separation for 3 < p < 80 GeV

Calorimeter system to identify electrons, hadrons and neutrals Important for the level-0 trigger

Muon system crucial for level-0 trigger and offline muon identification Efficiency ~ 95% for pion misidentification rate < 2.5%

Status of the sub detectors

Magnet

- Warm Al conductor
- ♦ 4 Tm integrated field
- Weight = 1500 tons
- ◆ 4.2 MW

- Assembly of yoke completed
- Move magnet into final position (July 04)
- Field map measurements (2004-2005)

Vertex Locator

Prototype of the secondary vacuum box and RF foil

Mechanics structure well-advanced

Beam test at CERN June'04: silicon sensor equipped with 16 frond-end chips

Performance of the tracking system

Particle Identification with RICH

LHCb has to identified charged hadrons over a large momentum range:

- High momentum hadrons in two-body B decays
- + Low momentum K for B flavour tagging (identify K from $b \rightarrow c \rightarrow s$)

 \Rightarrow RICH system divided into 2 detectors

QFTHEP'04 - LHCb status and physics goals

RICH detectors

RICH detectors

RICH2 super structure completed

Exit/entrance windows completed

Hybrid Photodiodes ordered

Test beam: $e-\pi$ separation

Typical event in the RICH1 photon detectors

Performance of RICH detectors

 $B_s \rightarrow K^+K^-$

Olivier Leroy

Calorimeters

+ Preshower

+Pb converter sandwiched between two scintillator planes with 16k scintillating pads

+Production ongoing

+ECAL

- *"Shashlik" type modules 2mm Pb/ 4mm scintillator
- +Readout via WLS fibres
- **◆**σE/E =10%/√E + 1.5%
- +100% delivered

Calorimeters system crucial for level-0 trigger: read in less than 25 ns!

Major Russian

contribution from

ITEP, IHEP, INR

+HCAL

- +4mm scintillator/ 16mm iron
- Readout via WLS fibres
- **◆**σE/E =75%/√E + 10%
- +60% delivered
- \rightarrow Installation of ECAL/HCAL nov. 2004

Crem A Param At Param At Param At Param CPPPM

Wiring machine at PNPI

Inner chambers of station M3

Muon stations

- Production of the ~1446 MWPC on the way (~5% ready)
- Major Russian contribution
- Muon identification efficiency ~94%
 (3% pion misidentification)

Chariot of muon filter at CERN

Trigger

Trigger hardware well advanced Example: Muon trigger test system

Physics potential

Monte Carlo simulation

+Physics potential is estimated using Monte Carlo simulation

+Generation of pp collisions using Pythia 6.2

- Hard QCD processes, single and double diffraction
- Multiple parton interactions tuned to reproduce track mulitplicities observed at SPS and Tevatron energies

+Full Geant3.2 simulation

 Detector response based on test-beam data (resolution, efficiency, noise, cross-talk)

+Offline reconstruction

Full pattern recognition (track finding, RICH reconstruction)

+"Data challenge"

- 2003: 67M events, among which 10M bb events (~4 minutes of data taking !)
- 2004: 5 times more bb events (next slide)

Data Challenge 2004

Events simulation, reconstruction and analysis in a distributed way (Grid)

Flavour tagging

Knowledge of flavour at birth is essential for the majority of \mathscr{P} measurements

tagging strategy:

- > opposite side lepton tag ($b \rightarrow I$)
- > opposite side kaon tag ($b \rightarrow c \rightarrow s$)
- > same side kaon tag (for B_s)
- opposite B vertex charge tagging

sources for wrong tags: B- \overline{B} mixing (opposite side) b \rightarrow c \rightarrow / (lepton tag) ...

Combining tags	ε tag [%]	ω tag [%]	$\epsilon eff = \epsilon_{tag} (1 - 2 \omega_{tag})^2 [\%]$
$B_d \rightarrow \pi^* \pi^-$	42	35	4
$B_s \rightarrow K^*K^-$	50	33	6

Efficiencies, event yields and B_{bb}/S ratios

	Det.	Rec.	Sel.	Trig.	Tot.	Vis.	Annual	B/S
	eff.	eff.	eff.	eff.	eff.	BR	signal	from
	(%)	(%)	(%)	(%)	(%)	(10^{-6})	yield	bb bkg.
$\mathrm{B}^{0} ightarrow \pi^{+} \pi^{-}$	12.2	91.6	18.3	33.6	0.69	4.8	26k	< 0.7
$B_s \rightarrow K^+ K^-$	12.0	92.5	28.6	36.7	0.99	18.5	37 k	0.3
$B_s \rightarrow D_s^- \pi^+$	5.4	80.6	25.0	31.1	0.34	120.	80k	0.3
$B_s \rightarrow D_s^{-+} K^{+-}$	5.4	82.0	20.6	29.5	0.27	10.	5.4 k	< 1.0
$B^0 \rightarrow D^{\sim 0}(K\pi)K^{*0}$	5.3	81.8	22.9	35.4	0.35	1.2	3.4 k	< 0.5
$B^0 \rightarrow J/\psi(\mu\mu) K^0_{S}$	6.5	66.5	53.5	60.5	1.39	20.	216 k	0.8
$B^0 \rightarrow J/\psi(ee) K^0_{S}$	5.8	60.8	17.7	26.5	0.16	20.	26k	1.0
$B_s \rightarrow J/\psi(\mu\mu) \phi$	7.6	82.5	41.6	64.0	1.67	31.	100k	< 0.3
$B_s \rightarrow J/\psi(ee) \phi$	6.7	76.5	22.0	28.0	0.32	31.	20k	0.7
$B^0 \rightarrow \rho \pi$	6.0	65.5	2.0	36.0	0.03	20.	4.4 k	< 7.1
$B^0 \rightarrow K^{*0} \gamma$	9.5	86.8	5.0	37.8	0.16	29.	35k	< 0.7
$B_s \rightarrow \phi \gamma$	9.7	86.3	7.6	34.3	0.22	21.	9.3 k	< 2.4

+ few more channels in TDR

Nominal year = 10^{12} bb pairs produced (10^7 s at L= 2×10^{32} cm⁻²s⁻¹ with σ_{bb} =500 µb) Yields include factor 2 from CP-conjugated decays Branching ratios from PDG or SM predictions

B_s oscillation frequency: Δm_s

\boldsymbol{B}_{s} mixing phase $\boldsymbol{\varphi}_{s}$

- ◆CP asymmetry arises from interference of _____ B_s → J/ψ φ and B_s → B_s → J/ψ φ → measures the phase of B_s mixing, φ_s
- + B_s counterpart of the golden mode $B^0 \rightarrow J/\psi K_S$
- +Reconstruct $J/\psi \rightarrow \mu^+\mu^-$ or e^+e^- , $\phi \rightarrow K^+K^-$
- Final state is admixture of CP-even and odd contributions
 - \rightarrow angular analysis of decay products required
- +In Standard Model, $\phi_s \sim -2\chi \sim 0.04$

+If
$$\Delta m_s = 20 \text{ ps}^{-1}$$
:

 $\sigma(sin(\phi_s)) = 0.06$

1. Angle γ from $B_s \rightarrow D_s^{-+}K^{+-}$

2. Angle γ from B⁰ $\rightarrow \pi^+\pi^-$ and B_s $\rightarrow K^+K^-$

+b→u processes, with large b →d(s) penguin contributions
 +Measure time-dependent CP asymmetries in B⁰→π⁺π⁻ and B_s→K⁺K⁻ decays:

$$A_{CP}(t) = A_{dir} \cos(\Delta m t) + A_{mix} \sin(\Delta m t)$$

+Method proposed by R. Fleischer:

SM predictions:

$$\begin{aligned} \mathcal{A}_{dir} \left(\mathsf{B}^{0} \rightarrow \pi^{+} \pi^{-} \right) &= \mathsf{f}_{1} (d, \ \mathcal{G}, \ \gamma) \\ \mathcal{A}_{mix} \left(\mathsf{B}^{0} \rightarrow \pi^{+} \pi^{-} \right) &= \mathsf{f}_{2} (d, \ \mathcal{G}, \ \gamma, \phi_{d}) \\ \mathcal{A}_{dir} \left(\mathsf{B}_{s} \rightarrow \mathsf{K}^{+} \mathsf{K}^{-} \right) &= \mathsf{f}_{3} (d', \ \mathcal{G}, \gamma) \\ \mathcal{A}_{mix} \left(\mathsf{B}_{s} \rightarrow \mathsf{K}^{+} \mathsf{K}^{-} \right) &= \mathsf{f}_{4} (d', \ \mathcal{G}, \gamma, \phi_{s}) \end{aligned}$$

- Assuming U-spin flavour symmetry (interchange of d and s quarks):
 d = d' and g = g
- 4 measurements (CP asymmetries) and 3 unknowns (γ , d and ϑ) \rightarrow can solve for γ

 $d \exp(i\vartheta) =$ function of tree and penguin amplitudes in $B^0 \rightarrow \pi^+\pi^$ $d'\exp(i\vartheta) =$ function of tree and penguin amplitudes in $B_s \rightarrow K^+K^-$

2. Angle γ from B⁰ $\rightarrow \pi^+\pi^-$ and B_s $\rightarrow K^+K^-$ (cont.)

+Extract mistags from $B^0 \rightarrow K^+\pi^-$ and $B_s \rightarrow \pi^+K^-$ +Use expected LHCb precision on ϕ_d and ϕ_s

3. Angle γ from $B^0 \rightarrow \overline{D}{}^0 K^{*0}$ and $B^0 \rightarrow D^0 K^{*0}$

Interference between 2 tree diagrams due to D⁰ mixing
Application of Gronau-Wyler method to D⁰K^{*0} (Dunietz):

Measure six rates (following three + CP-conjugates):

- 1) $B^0 \rightarrow \overline{D^0}(K^+\pi^-)K^{\star_0}$, 2) $B^0 \rightarrow D_{CP}(K^+K^-)K^{\star_0}$, 3) $B^0 \rightarrow D^0(K^-\pi^+)K^{\star_0}$
- No proper time measurement or tagging required

$$\sigma(\gamma) = 7-8 \text{ deg} \qquad 55 < \gamma < 105 \text{ deg} \\ -20 < \Delta < 20 \text{ deg}$$

No theoretical uncertainties sensitive to new phase in D⁰ mixing

Conclusions

- LHCb is dedicated to the study of B physics, with a devoted trigger, excellent vertex and momentum resolution, and particle identification
- Construction of the experiment is progressing well It will be ready for first LHC collisions in 2007
- LHCb will give unprecedented statistics for B decays, including access to the B_s meson, unavailable to the B factories
- \bullet B_s-B_s oscillations will be measured precisely
 - > 5σ for Δm_s up to 68 ps⁻¹ σ (Δm_s) ~ 0.01 ps⁻¹ } in one year
- + Many measurements of rare decays and CP asymmetries will be performed
 - $\begin{array}{c} \sigma \ (\sin 2\beta) \sim 0.02 \\ \sigma \ (\sin 2\chi) \sim 0.06 \\ \sigma \ (\gamma) \leq 10^{\circ} \end{array} \end{array} \hspace{0.2cm} \left. \begin{array}{c} \text{in one year} \end{array} \right.$
- ◆ CP angles determined via channels with different sensitivity to new physics
 → detailed test of the CKM description of the quark sector

LHCb offers an excellent opportunity to spot New Physics signals beyond Standard Model very soon at LHC !

Many thanks to my LHCb colleagues in particular Tatsuya Nakada, Olivier Schneider, Roger Forty

and many thanks to the organizers of QFTHEP'04

Backup slides

Systematic Effects

<u>Possible sources of systematic uncertainty in CP measurement:</u>

- + Asymmetry in $b-\overline{b}$ production rate
- + Charge dependent detector efficiencies...
 - can bias tagging efficiencies
 - can fake CP asymmetries
- + CP asymmetries in background process

Experimental handles:

- + Use of control samples:
 - Calibrate b-b production rate
 - Determine tagging dilution from the data:
 e.g. B_s->D_sπ for B_s->D_sK, B->Kπ for B->ππ, B->J/ψK* for B->J/ψK_s, etc
- Reversible B field in alternate runs
- + Charge dependent efficiencies cancel in most B/B asymmetries
- + Study CP asymmetry of backgrounds in B mass "sidebands"
- Perform simultaneous fits for specific background signals:
 e.g. B_s->D_sπ in B_s->D_sK , B_s->Kπ & B_s->KK, ...

Comparison to other experiments

- ◆Enormous production rate at LHCb: ~ 10¹² bb pairs per year
 → much higher statistics than the current B factories
 But more background from non-b events → challenging trigger
 and high energy → more primary tracks, tagging more difficult
- ◆Expect ~ 200,000 reconstructed B⁰ → J/ψ K_s events/year cf current B-factory samples of ~ 2000 events → precision on sin 2β ~ 0.02 in one year for LHCb (similar to expected world average precision in 2007)
- ◆Expect ~ 26,000 reconstructed $B^0 \rightarrow \pi^+\pi^-$ events/year *cf* ~ 1000 from B-factory by 2007
- +But in addition, *all* b-hadron species are produced: B^0 , B^+ , B_s , B_c , Λ_b ...
- B_s meson : not produced at B factories
 Only competition before LHC is from CDF+D0 (lower statistics, poorer ID)
- +ATLAS and CMS will only have lepton trigger, poor hadron identification Direct competition will come from BTeV, expected at the Tevatron \geq 2009

$b \rightarrow s$ penguins annual yield

Process type	Decay channel	Annual untagged yield		
		(presented in TRD)		
gluonic b→s penguin	B _s →φφ	1.2k		
gluonic b \rightarrow s penguin + b \rightarrow u tree	$B^{0} \rightarrow K^{+}\pi^{-}$	135k		
gluonic b \rightarrow s penguin + b \rightarrow u tree	$B_s \rightarrow K^+ K^-$	37k		
electroweak b→s penguin	B ⁰ →K ^{*0} γ	35k		
electroweak b→s penguin	$B_s \rightarrow \phi \gamma$	9.3k		
electroweak b \rightarrow s penguin + box	$B^{0} \rightarrow K^{*0} \mu^{+} \mu^{-}$	4.4k		

Rare decays: $B_s \rightarrow \mu^+\mu^-$

- ◆Flavour-changing neutral current strongly suppressed in Standard Model B(B_s → µ⁺µ⁻) ~ 4 × 10⁻⁹
- New physics contributions could increase this significantly
 - \rightarrow excellent place to look for them
- Expect ~ 16 signal events/year for the Standard Mode/branching ratio
 - ~ 40 background events/year (mostly from b $\rightarrow \mu^-$, b $\rightarrow \mu^+$) \rightarrow ~ 4 σ significance after three years

✦Here ATLAS and CMS are competitive, due to their higher luminosity LHCb will also study many other rare decays: B⁰ → K^{*}γ, K^{*}μ⁺μ⁻...

$b \rightarrow s$ penguin decays

- ◆One of the most interesting results from B factories is for $B^0 \rightarrow \phi K_S$
- ◆ Standard Model asymmetry = sin 2β (within ~10% theoretical uncertainty) = 0.736 ± 0.049 from B⁰ → J/ψ K_S

Measured values:

+0.45 \pm 0.43 \pm 0.07 (BaBar) consistent with the Standard Model $-0.96 \pm 0.50 \pm 0.10$ (Belle) inconsistent with the Standard Model

- +Expect to reconstruct ~ 1000 $B^0 \rightarrow \phi~K_S$ signal events/year in LHCb
- +However, if new physics does show up in $B^0 \rightarrow \phi K_S$ it is important to also examine other $b \rightarrow s$ penguin decays:

 $\mathsf{B}_{\mathsf{s}} \to \phi \phi, \, \mathsf{K}\mathsf{K}, \, \phi \gamma, \, \dots$

LHCb will also reconstruct large samples of all of these modes

CP asymmetry: $\textbf{B}_{s} \rightarrow \textbf{J}/\psi~\phi$

- $\bigstar B_s$ counterpart of the golden mode $B^0 \to J/\psi \; K_S$
- CP asymmetry arises from interference of
 - $B_s \rightarrow J/\psi \phi$ and $B_s \rightarrow B_s^- \rightarrow J/\psi \phi$
 - \rightarrow measures the phase of B_{s} mixing

- ◆In Standard Model expected asymmetry $\infty \sin 2\chi = very small ~ 0.04$ → sensitive probe for new physics
- ◆Reconstruct $J/\psi \rightarrow \mu^+\mu^-$ or e^+e^- , $\phi \rightarrow K^+K^-$ 120,000 signal events/year
- +Final state is admixture of CP-even and odd contributions \rightarrow angular analysis of decay products required
- ◆ Define transversity angle θ_{tr} : Likelihood is sum of CP-odd and even terms $L(t) = R_L(t) (1+\cos^2\theta_{tr})/2 + (1-R_) L_+(t) (1-\cos^2\theta_{tr})$
- +Fit for sin 2χ , R_{-} and $\Delta\Gamma_{s}/\Gamma_{s}$

 $\sigma(\sin 2\chi) \sim 0.06$, $\sigma(\Delta\Gamma_s/\Gamma_s) \sim 0.02$ in one year

CP asymmetry: $B_s \rightarrow D_s^{\pm} K^{\mp}$

+Arises from interference between two tree diagrams via B_s mixing: $B_s \rightarrow D_s^+ K^-$ and $B_s \rightarrow D_s^- K^+$

- ◆CP asymmetry measures $\gamma 2\chi$ (γ from phase of V_{ub}) χ will be determined using B_s → J/ψ φ decays → extract γ
- Very little theoretical uncertainty
 Insensitive to new physics, which is expected to appear in loops
- •Reconstruct using $D_s^- \rightarrow K^-K^+\pi^-$ 5400 signal events/year

Remaining contamination only ~ 10%

D_sp should not have CP asymmetry \rightarrow use it as a control channel eg to measure any possible asymmetry of B_{s} and B_{s}

+Allow for possible strong phase difference Δ between the two diagrams ★ Fit two time-dependent asymmetries: Phase of D_s⁺K⁻ asymmetry is Δ - (γ - 2χ) Phase of D_s⁻K⁺ asymmetry is Δ + (γ - 2χ)
→ can extract both Δ and (γ - 2χ)

Asymmetries for 5 years of simulated data $\sigma(\gamma) \sim 14^{\circ}$ in one year

CP asymmetry: $B_{(s)} \rightarrow h^+ h^-$

★ B⁰ → $\pi^+\pi^-$ originally proposed for measurement of angle $\alpha = \pi - \beta - \gamma$ But clean extraction of α is compromised by influence of penguin diagrams

◆Measure time-dependent CP asymmetries for B⁰ → $\pi^+\pi^-$ and B_s → K⁺K⁻ $A_{CP}(\dagger) = A_{dir} \cos(\Delta m \ t) + A_{mix} \sin(\Delta m \ t)$

$$\begin{array}{rcl} \mathcal{A}_{\mathrm{dir}}(\mathsf{B}^{0} \rightarrow \pi^{+}\pi^{-}) &=& f_{1}(d,\,\theta,\,\gamma) \\ \mathcal{A}_{\mathrm{mix}}(\mathsf{B}^{0} \rightarrow \pi^{+}\pi^{-}) &=& f_{2}(d,\,\theta,\,\gamma,\,\beta) \\ \mathcal{A}_{\mathrm{dir}}(\mathsf{B}_{s} \rightarrow \mathrm{K}^{+}\mathrm{K}^{-}) &=& f_{3}(d',\,\theta',\,\gamma) \\ \mathcal{A}_{\mathrm{mix}}(\mathsf{B}_{s} \rightarrow \mathrm{K}^{+}\mathrm{K}^{-}) &=& f_{4}(d',\,\theta',\,\gamma,\,\chi) \end{array}$$

 $de^{i\theta}$ = ratio of penguin and tree amplitudes in $B^0 \rightarrow \pi^+\pi^$ $d'e^{i\theta'}$ = ratio of penguin and tree amplitudes in $B_s \rightarrow K^+K^-$

