# Heavy Quark Expansion in Beauty: 

## Achievents and Perspective

Nikolai Uraltsev

$$
\begin{gathered}
\text { INFN, Sezione di Milano, Italy } \\
\text { and } \\
\text { PNPI Gatchina, St. Petersburg, Russia } \\
\text { and } \\
\text { Department of Physics, University of Notre Dame }
\end{gathered}
$$

- We have the QCD-based theory of $B$ decays
- It works at the nonperturbative level impressive (at times) agreement with experiment gives nontrivial predictions allows precision extraction of $\left|V_{c b}\right|$ and $\left|V_{u b}\right|$ makes suggestions for next generation experiments

There are problems ${ }^{\dagger}$ which are to be clarified Theoretical insights plus experimental data are needed

Inclusive semileptonic distributions and $B \rightarrow D \ell \nu$
HQ sum rules, inequalities and their saturation

[^0]
# Expansion in $\frac{\Lambda_{\mathrm{QCD}}}{m_{b}}$ requires dynamics 

Physics of the heavy quark is simple. Dynamics of light degrees of freedom in the presence of the heavy quark

Bound-state $\longleftrightarrow$ nonperturbative effects
Can they be controlled?

QCD allows to establish a number of facts

Most informative are inclusive decays
Certain dynamical predictions are quite nontrivial

More precise statements are those of most general nature, hence independent of a possible mechanism of confinement, resulting hadron spectrum, ...
To zeroth order do not probe the physics of the bound states In fact, a closer scrutiny does

## $\underline{\text { Lifetimes and inclusive decay widths }}$



Quark level:
$\Gamma=\frac{G_{F}^{2} m_{b}^{5}}{192 \pi^{3}} \cdot z\left(m_{c}, m_{b}\right) \cdot N_{c} \cdot\left(1-\frac{\alpha_{s}}{\pi} \ldots\right) \cdot \ldots \cdot\left\{\begin{array}{l}\left|V_{c b}\right|^{2} \\ \left|V_{u b}\right|^{2}\end{array}\right\}$
No $\Lambda_{\mathrm{QCD}} / m_{b}$ corrections to inclusive widths of heavy flavor hadrons

Bigi, Shifman, Uraltsev, Vainshtein 1992
Applies to all types: semileptonic, nonleptonic, $b \rightarrow s+\gamma$,

$$
b \rightarrow s \ell^{+} \ell^{-}, \ldots
$$

$$
\begin{gathered}
B, B_{s}, \Lambda_{b}, \ldots \quad \frac{\Delta M}{M} \sim \frac{\Lambda_{\mathrm{QCD}}}{m_{b}} \quad \text { yet } \quad \frac{\Delta \Gamma}{\Gamma} \sim \frac{\Lambda_{\mathrm{QCD}}^{2}}{m_{b}^{2}} \\
M_{B}=m_{b}+\bar{\Lambda}+\frac{\mu_{\pi}^{2}-\mu_{G}^{2}}{2 m_{b}}+\frac{\mu_{3}^{2}}{m_{b}^{2}}+\ldots
\end{gathered}
$$

$\bar{\Lambda}$ does not affect the width!

Exclusive property of QCD. Follows from the gauge nature of
QCD interaction
Exact cancellation of the bound state effects with the final state interaction

Bound state \& hadronization effects are given by local HQ operators $\bar{b} O b$

Order $1 / m_{b}^{2}: \quad \mu_{\pi}^{2}=\langle B| \bar{b}(i \vec{D})^{2} b|B\rangle, \quad \mu_{G}^{2}=\langle B| \bar{b} \frac{\bar{i}}{2} \sigma G b|B\rangle$
Order $1 / m_{b}^{3}: \quad \rho_{D}^{3} \propto\langle B| \bar{b} \Gamma b \bar{q} \Gamma q|B\rangle, \quad \rho_{L S}^{3} \propto\langle B| \vec{\sigma} \cdot \vec{\pi} \times \vec{E}|B\rangle$
etc.

## Checkpoints:

## Lifetimes of Beauty Hadrons

BSUV 1992
OPE:

$$
\delta \tau_{H_{b}} \sim \mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}^{2}}{m_{b}^{2}}\right)+\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}^{3}}{m_{b}^{3}}\right)+\ldots
$$

- $1 / m_{b}$ : No effects
- $1 / m_{b}^{2}:-\frac{1}{2} \frac{\mu_{\pi}^{2}}{m_{b}^{2}}-c_{G} \frac{\mu_{G}^{2}}{2 m_{b}^{2}} \quad$ mesons vs. baryons
- $1 / m_{b}^{3}: \quad\langle B| \bar{b} \Gamma q \cdot \bar{q} \Gamma^{\prime} b|B\rangle \quad B^{+}$vs. $B^{0}$ vs. $B_{s} \cdots$

Weak Annihilation Pauli Interference Weak Scattering

$$
\begin{array}{rllll}
\frac{\tau_{B^{-}}}{\tau_{B^{0}}} & \approx 1.05 & \text { BU } 1992 & 1.086 \pm 0.017 & \exp \\
\left\lvert\, \frac{\bar{\tau}_{B_{s}}}{\tau_{B^{0}}}-1\right.
\end{array} \lesssim \lesssim 0.02 \quad \text { BU } 1992 \quad 0.951 \pm 0.038 \quad \begin{aligned}
& \exp \\
& \frac{\tau_{\Lambda_{b}}}{\tau_{B^{0}}} \\
& \\
& \gtrsim 0.9
\end{aligned}
$$

$\mathrm{BR}_{\mathrm{sl}}$ vs. $n_{\text {charm }}$
$\mathrm{BR}_{\text {sl }} \simeq 10.7 \%$ seems on the lower side

Requires fresh scrutiny. Now theory must be able to calculate more accurately both $\mathrm{BR}_{\mathrm{sl}}$ and $n_{c}$ separately, modulo reliability of the $b \rightarrow c \bar{c} s$ channel

Both problem points involve nonleptonic decay widths Larger corrections $\Longrightarrow$ less clean

Semileptonic decays offer much better theoretical environment

## Semileptonic decays

Practical applications: Extracting $\left|V_{c b}\right|,\left|V_{u b}\right|$
from $\quad \Gamma_{\mathrm{sl}}(B)$
Need accurate values of QCD parameters $m_{b}, m_{c}\left(m_{b}-m_{c}\right), \mu_{\pi}^{2}, \mu_{G}^{2}, \rho_{D}^{3}, \ldots$ Replace models and their attributes used early on
$m_{b}, m_{c}, \mu_{\pi}^{2}, \ldots$ (properly defined) can be determined from the semileptonic $(b \longrightarrow s+\gamma)$ decay distributions themselves

BSUV, 1993-1994

Long history: incomplete theory, eliminate $m_{c}$ relying on $\frac{1}{m_{c}}$ expansion, ...
We can do robust analysis without relying on $1 / m_{c}$ expansion, or invoking unknown nonlocal correlators

Expansion in $1 / m_{c}$ is questionable
Nowadays is being implemented in experiment

## Theoretical status

Can aim at $1 \%$ level in $\left|V_{c b}\right|$ assumes technical progress
in theory
$\left|V_{u b}\right| ?$ - underway, $5 \%$ accuracy is realistic
An often question: How can this be true?

## Perturbative corrections? ...




With the IR piece cut off according to Wilson we can work for precision!

Corrections in the scheme with the hard cutoff, $\mu=1 \mathrm{GeV}$. Within pole-type approaches the correction is 4-6 times larger and strongly decreases at larger $E_{\text {cut }}^{\ell}$


Now $_{2004}$ all pure perturbative corrections have been calculated N.U.; M. Trott

- Problem for theory with $\left\langle M_{X}^{2}\right\rangle$ vs. $E_{\text {cut }}^{\ell}$ ?


Robust OPE approach à la Wilson, $\mu=1 \mathrm{GeV}$ :


OPE seems to work even where may be expected to break down

Second mass moment $\left\langle\left[M_{X}^{2}-\left\langle M_{X}^{2}\right\rangle\right]^{2}\right\rangle$ :


Good agreement where the right theory is used

## Present stage:

Have an accurate and reliable determination of many HQ parameters from experiment

Extracting $\left|V_{c b}\right|$ from $\Gamma_{\mathrm{sl}}(B)$ has good accuracy and solid grounds

Have precision checks of the OPE at the nonperturbative level

I think the most impressive is good consistency between $\left\langle M_{X}^{2}\right\rangle$ and $\left\langle E_{\ell}\right\rangle$ : A sensitive check of the nonperturbative sum rule for $M_{B}-m_{b}$


Surprise: SL decays at BaBar yielded accurate $m_{b}$ itself...

The combination $m_{b}-0.74 m_{c}$ is determined with only 17 MeV error bar!

Running mass is an observable and has no intrinsic limitation on precision

Theoretical expectation:

$$
m_{b}(1 \mathrm{GeV})=(4.57 \pm 0.06) \mathrm{GeV}
$$

Voloshin 1995-1996 Melnikov, Yelkhovsky

Hoang 1998-1999
Beneke, Signer

$e^{+} e^{-} \rightarrow \Upsilon(1 S, 2 S, 3 S, 4 S, 5 S)$
moments of $\sigma\left(e^{+} e^{-} \rightarrow b \bar{b}\right)$
$\mu_{\pi}^{2}, \mu_{G}^{2}$ - primary nonperturbative values in the HQE

$$
\begin{gathered}
\mu_{G}^{2}=\frac{1}{2 M_{B}}\langle B| \vec{b} \frac{i}{2} g_{s} \sigma_{\mu \nu} G^{\mu \nu} b|B\rangle \longleftrightarrow\langle B|-g_{s} \vec{\sigma}_{b} \vec{B}_{\mathrm{chr}}(0)|B\rangle_{\mathrm{QM}} \\
\mu_{\pi}^{2}=\frac{1}{2 M_{B}}\langle B| \bar{b}(i \vec{D})^{2} b|B\rangle \longleftrightarrow \begin{array}{c}
\langle B| \vec{p}_{b}^{2}|B\rangle_{\mathrm{QM}} \\
\\
\\
\vec{p}_{b} \rightarrow \vec{\pi}_{b}=-i \vec{D}=-i \vec{\partial}-g_{s} \vec{A}
\end{array}
\end{gathered}
$$

$\mu_{G}^{2}$ determines hyperfine splitting: $\quad M_{B^{*}}-M_{B} \simeq \frac{2}{3} \frac{\mu_{G}^{2}}{m_{b}}$

$$
\mu_{G}^{2}(1 \mathrm{GeV})=0.35_{-.02}^{+.03} \mathrm{GeV}^{2}
$$

N.U. PLB 2002
$\mu_{\pi}^{2}(\mu)>\mu_{G}^{2}(\mu) \quad$ at any $\mu \quad$ rigorous inequality BSUV; Voloshin 1993-1994

Theory: $\quad \mu_{\pi}^{2} \approx(0.45 \pm 0.1) \mathrm{GeV}^{2}$

Right at the central experimental value

Darwin expectation value emerges of the right scale $0.2 \mathrm{GeV}^{3}$

- Inconsistency with $b \rightarrow s+\gamma$ moments?

Relying on relations imprecise with a high cut on $E_{\gamma}$

$$
\left\langle E_{\gamma}\right\rangle=\frac{m_{b}}{2}+\ldots \quad\left\langle\left[E_{\gamma}-\left\langle E_{\gamma}\right\rangle\right]^{2}\right\rangle=\frac{\mu_{\pi}^{2}}{12}+\ldots
$$

A good way to accurately measure HQ parameters...
Bottle neck: 'Hardness' $\mathcal{Q}$ often gets too low with the cuts
$\mathcal{Q} \simeq m_{b}-m_{c}$ for total widths, but
$\mathcal{Q}$ is below 1 GeV for $E_{\ell}>1.7 \mathrm{GeV}$
A complementary consideration suggests the expansion for $M_{X}^{2}$ loses sense for $E_{\text {cut }} \geq 1.7 \mathrm{GeV}$

Terms appear $\propto e^{-\frac{\mathcal{Q}}{\mu_{\text {hadr }}}}$
In $b \rightarrow s+\gamma$
$\mathcal{Q} \simeq M_{B}-2 E_{\min } \simeq 1.2 \mathrm{GeV}$ if the cut is at $E_{\gamma}=2 \mathrm{GeV}$


Accounting for these biases yielded a good agreement between all measurements

BELLE 2004: With $E_{\gamma}>1.8 \mathrm{GeV}$ cut biases are not that much an issue

$$
\begin{array}{cl}
\left\langle E_{\gamma}\right\rangle & =2.289 \pm 0.026_{\text {stat }} \pm 0.0034_{\text {sys }} \mathrm{GeV} \\
\left\langle\left[E_{\gamma}-\left\langle E_{\gamma}\right\rangle\right]^{2}\right\rangle & =0.0311 \pm 0.0073_{\text {stat }} \pm 0.0063_{\text {sys }} \mathrm{GeV}^{2}
\end{array}
$$

For BaBar's HQ values we would obtain

$$
\left\langle E_{\gamma}\right\rangle=2.317 \mathrm{GeV} \quad\left\langle\left[E_{\gamma}-\left\langle E_{\gamma}\right\rangle\right]^{2}\right\rangle=0.0329 \mathrm{GeV}^{2}
$$

Quite consistent!

Adding this to the BaBar data yields only minor shifts in the fit:

$$
m_{b}(1 \mathrm{GeV}) \simeq 4.58 \mathrm{GeV}, \quad \mu_{\pi}^{2}(1 \mathrm{GeV}) \simeq 0.45 \mathrm{GeV}^{2}
$$ no visible change in $\left|V_{c b}\right|$

$$
m_{b}^{\overline{\mathrm{MS}}}\left(m_{b}\right)=4.22 \pm 0.06 \mathrm{GeV}
$$

BaBar:

$$
\left|V_{c b}\right|=\left(4.139 \pm .0437_{\exp } \pm .04_{\text {ню区 }} \pm .06_{\mathrm{th}}\right) \cdot 10^{-2}
$$

The value of $\left|V_{c b}\right|$ from $B \rightarrow D^{*} \ell \nu$ rate near zero recoil is consistent within its uncertainties, at $F_{D^{*}}(0) \simeq 0.9$

## What all this means?

OPE works well, the heavy quark parameters derived from experiment are consistent with the expectation based on independent theoretical considerations

Perturbative corrections have been calculated and are expectedly well behaved in the proper Wilsonian approach. No obstacles for precision calculations of truly inclusive short-distance observables

Need calculation of the perturbative corrections to the Wilson coefficients of power-suppressed operators ( $\mu_{\pi}^{2}, \mu_{G}^{2}, \rho_{D}^{3}$ )

This becomes a limiting factor

Kinetic value $\mu_{\pi}^{2}$ emerges as theoretically expected Does the precise value matter? It appears that

$$
\mu_{\pi}^{2}-\mu_{G}^{2} \ll \mu_{\pi}^{2} \quad \text { Interesting regime }
$$

Need to recall Heavy Quark Sum Rules

Recent development: D'Orsay sum rules Le Yaouanc et al.

Discard spin of heavy quark - then $B, B^{*}$ are spin- $\frac{1}{2}$ hadrons $P$-waves would be $j=\frac{1}{2}$ or $j=\frac{3}{2}$ :

$$
\begin{gathered}
\frac{1}{2} \times 1=\frac{1}{2} \oplus \frac{3}{2} \\
j-\text { spin of "light cloud" }
\end{gathered}
$$

Two $P$-wave families: $\begin{aligned} P_{1 / 2}^{(n)} & \longleftrightarrow \varepsilon_{1 / 2}^{(n)}, \tau_{1 / 2}^{(n)} \\ & P_{3 / 2}^{(m)} \longleftrightarrow \varepsilon_{3 / 2}^{(m)}, \quad \tau_{3 / 2}^{(m)}\end{aligned}$

## Sum Rules in the HQ Limit

$$
\begin{array}{rlrlr}
\varrho^{2}-\frac{1}{4} & =2 \sum_{m}\left|\tau_{3 / 2}^{(m)}\right|^{2}+\sum_{n}\left|\tau_{1 / 2}^{(n)}\right|^{2} & \text { Dj } & 1990 \\
\frac{1}{2} & =2 \sum_{m}\left|\tau_{3 / 2}^{(m)}\right|^{2}-2 \sum_{n}\left|\tau_{1 / 2}^{(n)}\right|^{2} & \text { N.U. } & 2000 \\
\frac{\bar{\Lambda}}{2} & =2 \sum_{m} \epsilon_{m}\left|\tau_{3 / 2}^{(m)}\right|^{2}+\sum_{n} \epsilon_{n}\left|\tau_{1 / 2}^{(n)}\right|^{2} & \text { Voloshin } & 1992 \\
\frac{\bar{\Sigma}}{} & =2 \sum_{m} \epsilon_{m}\left|\tau_{3 / 2}^{(m)}\right|^{2}-2 \sum_{n} \epsilon_{n}\left|\tau_{1 / 2}^{(n)}\right|^{2} & \text { N.U. } & 2000 \\
\frac{\text { RULE }}{} & \text { Le Yaouanc et al. } 2000 \\
\frac{\mu_{\pi}^{2}}{3} & =2 \sum_{m} \epsilon_{m}^{2}\left|\tau_{3 / 2}^{(m)}\right|^{2}+\sum_{n} \epsilon_{n}^{2}\left|\tau_{1 / 2}^{(n)}\right|^{2} & \text { SUV } & 1994 \\
\frac{\mu_{G}^{2}}{3} & =2 \sum_{m} \epsilon_{m}^{2}\left|\tau_{3 / 2}^{(m)}\right|^{2}-2 \sum_{n} \epsilon_{n}^{2}\left|\tau_{1 / 2}^{(n)}\right|^{2} & \text { BU } & 1997 \\
\frac{\rho_{D}^{3}}{3} & =2 \sum_{m} \epsilon_{m}^{3}\left|\tau_{3 / 2}^{(m)}\right|^{2}+\sum_{n} \epsilon_{n}^{3}\left|\tau_{1 / 2}^{(n)}\right|^{2} & \text { Chow, Pirjol } & 1994 \\
-\frac{\rho_{L S}^{3}}{3} & =2 \sum_{m} \epsilon_{m}^{3}\left|\tau_{3 / 2}^{(m)}\right|^{2}-2 \sum_{n} \epsilon_{n}^{3}\left|\tau_{1 / 2}^{(n)}\right|^{2} & \text { BLU } & 1997
\end{array}
$$

Second and Fourth sum rules are superconvergent

$$
\begin{aligned}
\epsilon_{k}= & M_{k}-M_{B} \\
\langle B(v)| \bar{b} \gamma_{0} b|B(0)\rangle & =1-\varrho^{2} \frac{\vec{v}^{2}}{2}+\mathcal{O}\left(\vec{v}^{4}\right) \\
\left\langle P^{(1 / 2)}\left(v_{2}\right)\right| \bar{b} \gamma_{\mu} \gamma_{5} b\left|B\left(v_{1}\right)\right\rangle & =-\tau_{1 / 2}\left(v_{1}-v_{2}\right)_{\mu} \\
\left\langle P^{(3 / 2)}\left(v_{2}\right)\right| \bar{b} \gamma_{\mu} \gamma_{5} b\left|B\left(v_{1}\right)\right\rangle & =-\frac{1}{\sqrt{2}} i \tau_{3 / 2} \epsilon_{\mu \alpha \beta \gamma} \varepsilon^{* \alpha} v_{2}^{\beta} v_{1}^{\gamma} \\
\text { spin of light cloud is } & \begin{cases}\frac{1}{2} & \text { in } P^{(1 / 2)} \\
\frac{3}{2} & \text { in } P^{(3 / 2)}\end{cases}
\end{aligned}
$$

## Sum rules yield strict inequalities

$$
\begin{aligned}
\varrho^{2}>\frac{3}{4}, \quad \bar{\Lambda}>2 \bar{\Sigma}, \quad \mu_{\pi}^{2}>\mu_{G}^{2}, \quad & \rho_{D}^{3}>-\rho_{L S}^{3} \\
& \\
& \rho_{D}^{3}>\left|\rho_{L S}^{3}\right| / 2
\end{aligned}
$$

## Likewise

$\mu_{\pi}^{2} \geq \frac{3 \bar{\Lambda}^{2}}{4 \varrho^{2}-1}, \quad \rho_{D}^{3} \geq \frac{3}{8} \frac{\bar{\Lambda}^{3}}{\left(\varrho^{2}-\frac{1}{4}\right)^{2}}, \quad \rho_{D}^{3} \geq \frac{\left(\mu_{\pi}^{2}\right)^{3 / 2}}{\sqrt{3\left(\varrho^{2}-\frac{1}{4}\right)}}$
Similarly for $W_{-}$moments $-\bar{\Lambda}-2 \bar{\Sigma}, \mu_{\pi}^{2}-\mu_{G}^{2}, \ldots$

Maximal physical information - advantage of 'kinetic' mass and other definitions based on the SV sum rules

Good example: bound $\varrho^{2}>\frac{3}{4}$
N.U. 2000

Assuming the spin sum rule is saturated at $\mu=1 \mathrm{GeV}$ we have

$$
\mu_{\pi}^{2}-\mu_{G}^{2}=3 \tilde{\varepsilon}^{2} \cdot\left(\varrho^{2}-\frac{3}{4}\right)
$$

Quite a constraint:
$\left(\varrho^{2}-\frac{3}{4}\right)=\frac{\mu_{\pi}^{2}-\mu_{G}^{2}}{3 \tilde{\varepsilon}^{2}} \lesssim 0.2(0.3)$
at $\mu_{\pi}^{2}=0.43(0.5) \mathrm{GeV}^{2}$ since $\tilde{\varepsilon}>0.4 \mathrm{GeV}$
$\varrho^{2}$ is probed in experiment
important for $V_{c b}$ radically affects $B \rightarrow D^{*}$
extrapolation to zero recoil
Recent UKQCD lattice is quite compatible with the prediction:

$$
\varrho^{2}=0.83_{-.11-.01}^{+.15+.24} \quad \text { hep-lat/0202029 }
$$

Another application, to $B \rightarrow D \ell \nu$ : expanding in $\mu_{\pi}^{2}-\mu_{G}^{2}$

$$
\begin{aligned}
& \frac{M_{B}+M_{D}}{2 \sqrt{M_{B} M_{D}}} f_{+}(0)=1.04 \pm 0.01 \pm 0.01 \\
& \quad \mu_{\pi}^{2} \simeq \mu_{G}^{2} \text { is a special point for } B \text { and } D \text { mesons! }
\end{aligned}
$$

At $\mu_{\pi}^{2}=\mu_{G}^{2}$ there is a functional relation $\quad \vec{\sigma} \vec{\pi}|B\rangle=0$

$$
\mu_{\pi}^{2}-\mu_{G}^{2}=\left\langle\left(\vec{\sigma}_{Q} \vec{\pi}_{Q}\right)^{2}\right\rangle_{B}=\left\langle 2 m_{Q} \mathcal{H}_{1 / m_{Q}}\right\rangle
$$

reminiscent to a BPS state

Ultrarelativistic light cloud - antipode to NR quark models

## $\underline{B \rightarrow D \ell \nu \quad \text { near zero recoil }}$

$\left\langle D\left(p_{2}\right)\right| \bar{c} \gamma_{\nu} b\left|B\left(p_{1}\right)\right\rangle=f_{+}\left(p_{1}+p_{2}\right)_{\nu}+f_{-}\left(p_{1}-p_{2}\right)_{\nu}$

$$
f_{ \pm} \equiv f_{ \pm}\left(\vec{q}^{2}\right)
$$

One amplitude $J_{0}=\left(M_{B}+M_{D}\right) f_{+}(0)+\left(M_{B}-M_{D}\right) f_{-}(0)$ at $\vec{q}=0$

HQ limit: $\quad f_{+}=\frac{M_{B}+M_{D}}{2 \sqrt{M_{B} M_{D}}}, \quad f_{-}=-\frac{M_{B}-M_{D}}{M_{B}+M_{D}} f_{+}$
$\frac{J_{0}}{2 \sqrt{M_{B} M_{D}}}=1-a_{2}\left(\frac{1}{m_{c}}-\frac{1}{m_{b}}\right)^{2}-a_{3}\left(\frac{1}{m_{c}}-\frac{1}{m_{b}}\right)^{2}\left(\frac{1}{m_{c}}+\frac{1}{m_{b}}\right)+\ldots$
Corrections are well under control and small

Any amplitude with massless leptons depends, however solely on $f_{+}$, while only the combination of $f_{+}$and $f_{-}$has no $1 / m$ corrections
$F_{+} \equiv \frac{2 \sqrt{M_{B} M_{D}}}{M_{B}+M_{D}} f_{+} \quad$ has $1 / m_{Q} \begin{array}{r}\text { corrections since } \vec{J} \\ \text { has such a term... }\end{array}$

Good news: we know it!

$$
F_{+}=1+\left(\frac{\bar{\Lambda}}{2}-\bar{\Sigma}\right)\left(\frac{1}{m_{c}}-\frac{1}{m_{b}}\right) \frac{M_{B}-M_{D}}{M_{B}+M_{D}}-\mathcal{O}\left(\frac{1}{m_{Q}^{2}}\right)
$$

Thanks to inclusive decays and exact sum rules we know $\frac{\bar{\Lambda}}{2}-\bar{\Sigma}$ (positive, but very small $\propto \frac{\mu_{\pi}^{2}-\mu_{G}^{2}}{3 \mu_{\text {had }}}$ )

Moreover, we know all power corrections are small

$$
\frac{2 \sqrt{M_{B} M_{D}}}{M_{B}+M_{D}} f_{+}(0)=1.04 \pm 0.01 \pm 0.01
$$ All orders in $1 / m$ in 'BPS', to $1 / m^{2} \cdot 1 / \mathrm{BPS}^{2}, \alpha_{s}^{1}$

This formfactor is known better than for

$$
\text { 'gold-plated' } B \rightarrow D^{*}
$$

Perturbative renormalization:

This can be done in the Wilsonian approach


- $\varrho^{2}=\frac{3}{4}$
inclusive hadronic moments can tell us about the slope of the $B \rightarrow D^{(*)}$ formfactor!

No power corrections to $M=m_{Q}+\bar{\Lambda}$ for the ground state
$M_{B}-M_{D}=m_{b}-m_{c}$ to all orders in $1 / m_{Q}$
For $B \rightarrow D$ amplitude
$f_{-}\left(q^{2}\right)=-\frac{M_{B}-M_{D}}{M_{B}+M_{D}} f_{+}\left(q^{2}\right)$ to any order in $1 / m_{Q}$
Zero recoil $B \rightarrow D$ amplitude: $\quad \delta_{1 / m^{k}}=0$ regardless of mass ratio

- In $B \rightarrow D$ at zero recoil

$$
f_{+}=\frac{M_{B}+M_{D}}{2 \sqrt{M_{B} M_{D}}} \quad \text { to all orders in } 1 / m_{Q}
$$

At arbitrary velocity power corrections in $B \rightarrow D$ vanish

$$
f_{+}(q)^{2}=\frac{M_{B}+M_{D}}{2 \sqrt{M_{B} M_{D}}} \xi\left(\frac{M_{B}^{2}+M_{D}^{2}-q^{2}}{2 M_{B} M_{D}}\right)
$$

## Decay rate directly gives the IW function

Experiment: $\quad B \rightarrow D$ slope much closer to $\varrho^{2} \simeq 1$ Corrections to the shape of the $B \rightarrow D^{*}$ formfactor are way too significant

## Quantifying Corrections to 'BPS'

How significant are corrections to 'BPS' relations in actual QCD?

The deviation parameter: Dimensionful parameter is $\alpha=\|(\vec{\sigma} \vec{\pi})|B\rangle \| \equiv \sqrt{\mu_{\pi}^{2}-\mu_{G}^{2}} \quad$ The dimensionless one is
$\beta=\| \pi_{0}^{-1}(\vec{\sigma} \vec{\pi})|B\rangle \| \equiv \sqrt{3\left(\varrho^{2}-\frac{3}{4}\right)}=3\left(\sum_{n}\left|\tau_{1 / 2}^{(n)}\right|^{2}\right)^{\frac{1}{2}}$
Numerically $\beta$ is not a too small number, similar in size to generic $1 / m_{c}$ expansion parameter $\quad \beta^{2}$ should be good

We can count together powers of $1 / m_{c}$ and $\beta$ to judge the real quality of the HQ relations

At which order in $\beta$ the ' BPS ' relations can be violated to all orders in $1 / m_{Q}$ ?
N.U. 2003

Absence of corrections to $M_{D}=m_{c}+\bar{\Lambda}$, $M_{B}-M_{D}=m_{b}-m_{c}$ holds up to $\beta^{2}$

Zero recoil $B \rightarrow D$ amplitude is unity up to $\beta^{2}$
At arbitrary velocity relation between $f_{+}$and $f_{-}$ in $B \rightarrow D$ holds only to the leading order

$$
f_{-}\left(q^{2}\right)=-\frac{M_{B}-M_{D}}{M_{B}+M_{D}} f_{+}\left(q^{2}\right)+\mathcal{O}(\beta)
$$

At arbitrary velocity the relations between $f_{ \pm}$in $B \rightarrow D$ and the IW function may receive corrections $\alpha \beta^{1}$

- $f_{+}$near zero recoil receives only second order corrections in $\beta$ to any order in $1 / m_{Q}$ :

$$
f_{+}\left(\left(M_{B}-M_{D}\right)^{2}\right)=\frac{M_{B}+M_{D}}{2 \sqrt{M_{B} M_{D}}}+\mathcal{O}\left(\beta^{2}\right)
$$

Analogue of the Ademollo-Gatto theorem for the 'BPS' expansion
the same applies to $f_{-}$
Must be quite accurate, $f_{-} / f_{+}$can be checked in $B \rightarrow D \tau \nu_{\tau}$

If this can be measured, nothing else exclusive may be required for $\left|V_{c b}\right|$

Are all skies blue in SL decays? Not quite...

$$
\text { A } \quad " \frac{1}{2}>\frac{3}{2} " \text { puzzle }
$$

Primary knowledge about heavy quark parameters comes from the Heavy Quark Sum Rules + the known size of $\mu_{G}^{2}$
Sum rules explain why $B^{*}$ is heavier than $B$; they set the scale of $\bar{\Lambda}=M_{B}-m_{b}, \quad \mu_{\pi}^{2}, \ldots$
Two classes: first for $\varrho^{2}, \bar{\Lambda}, \mu_{\pi}^{2}, \rho_{D}^{3} \ldots$ These are saturated by both $\frac{3}{2}$ and $\frac{1}{2} P$-wave heavy quark states

Second are 'spin' sum rules for $\varrho^{2}-\frac{3}{4}, \bar{\Lambda}-2 \bar{\Sigma}$, $\mu_{\pi}^{2}-\mu_{G}^{2}, \ldots$ These include only $\frac{1}{2}$ states

Spin sum rules strongly suggest that $\frac{3}{2} P$-wave states must dominate over $\frac{1}{2}$ states. This automatically happens in all quark models respecting QCD and Lorentz covariance Orsay quark models

Experiment: $\frac{3}{2}$ charm $P$-wave states are narrow and well identified, $\left\{D_{1}, D_{2}^{*}\right\}$. They seem to contribute too little, $\left|\tau_{3 / 2}\right|^{2} \approx 0.15$
Wide $\frac{1}{2}$ states $\left\{D_{0}^{*}, D_{1}^{*}\right\}$ are more abundant and might saturate the spin-singlet sum rules, but in aggregate they should be subdominant to $\frac{3}{2}$ states!

Average $P$-wave excitation mass gap

$$
\bar{\epsilon}_{P} \simeq \frac{2 \mu_{\pi}^{2}}{3 \bar{\Lambda}} \approx 0.45 \mathrm{GeV} \quad \sqrt{\frac{\mu_{\pi}^{2}}{3\left(\varrho^{2}-\frac{1}{4}\right)}} \approx 0.45 \mathrm{GeV}
$$

Typical $\tau^{2}$

$$
\bar{\tau}^{2} \simeq \frac{1}{3}\left(\varrho^{2}-\frac{1}{4}\right) \simeq 0.25 \quad \frac{\bar{\Lambda}}{6 \bar{\epsilon}_{P}} \approx 0.25
$$

and $\tau_{1 / 2}^{2} \ll \tau_{3 / 2}^{2}$ from the spin sum rules

The most natural solution of all HQSRs:
$\frac{3}{2}$ states at $\epsilon_{\frac{3}{2}} \approx 450 \mathrm{MeV}$ and $\tau_{\frac{3}{2}}^{2} \approx 0.3$ while

$$
\tau_{\frac{1}{2}}{ }^{2} \approx 0.07 \div 0.12 \text { with } \epsilon_{\frac{1}{2}} \approx 300 \div 500 \mathrm{MeV}
$$

Possible resolutions:

## Contribution of the excited $P$-wave states ...

Charm is too light to apply this classification itself, valid only for heavy quarks; extraction of $\tau$ 's is not justified Need a good physical reason to invert the hierarchy

Too light $c$ quark... An insight from lattices?
Resolution of this controversy is an important task, probably needs both theory ideas and more experimental data

## Conclusions:

The dynamic OPE has finally undergone and passed critical precisions checks at the nonperturbative level in semileptonic and radiative decays

Experiments find consistent heavy quark parameters from quite different measurements
$\left|V_{c b}\right|$ extraction has high accuracy and is based on reliable theory

Similar robust results are anticipated soon for $\left|V_{u b}\right|$
Inclusive studies yield crucial info for HQ physics, even for exclusive amplitudes Formerly viewed as antipodes

Power corrections to HQ symmetry are very significant in charm. There is a subset of relations which are stable, they are limited to the ground-state pseudoscalar $B$ and $D$ mesons, but exclude spin symmetry for charm

The scale of nonperturbative effects $\gtrsim \sqrt{\mu_{\pi}^{2}} \simeq 0.7 \mathrm{GeV}$ they look small for 'BPS'-protected corrections where

$$
\sqrt{\mu_{\pi}^{2}-\mu_{G}^{2}} \simeq 0.3 \mathrm{GeV} \approx m_{q}^{\text {constit }}
$$

Experiment must verify the kinetic expectation value with higher accuracy and fidelity, extract more reliably $\rho_{D}^{3}$ in inclusive decays

Perturbative corrections to Wilson coefficients of powersuppressed operators are needed
$B \rightarrow D$ decays can be reliable theory-wise
If $\mu_{\pi}^{2} \lesssim 0.45 \mathrm{GeV}^{2}$ is firmly established then
$\mathcal{F}_{+}(0) \simeq 1.04$ is an accurate prediction for $B \rightarrow D$
A number of nontrivial consequences of this regime
Slope $\varrho^{2}$ is close to 1-
$B \rightarrow D^{(*)} \tau \nu$ and $B \rightarrow X_{c} \tau \nu \quad$ offer a number of
interesting possibilities

Recent success of the QCD-based dynamic theory of nonperturbative physics in heavy quarks also raises new problems

Saturation of the HQ SV sum rules must be understood

$$
\text { A " } \frac{1}{2}>\frac{3}{2} " \text { puzzle }
$$



## Digression on $m_{Q} \rightarrow 0$

No power corrections to HQ relations at all? $M_{D}=m_{c}+\bar{\Lambda}$ exactly? What if $m_{Q} \ll \Lambda_{\mathrm{QCD}}$ when it is like a $K$ meson? No, BPS relations would not apply to light mesons even in a ‘BPS' world

BPS cannot be exact in QCD - it may be a property of soft dynamics below 1 GeV . The corrections would blow up at $m_{Q}$ below some hadronic scale

Power expansion is asymptotic. Even if all power terms vanish, there are exponential terms

$$
e^{-\frac{2 m^{2}}{\mu_{\mathrm{hadr}}}}
$$

for instance due to spectral density of $-\pi_{0}$ at values exceeding $2 m_{Q}$ Whatever close we are to BPS corrections are of order 1 below $\mu_{\text {hadr }}$

## Two obvious mechanisms:

Chiral symmetry breaking - $\langle\bar{Q} Q\rangle \neq 0$ below some mass a formal solution - even if exact - may not be the actual one on the true vacuum

Usual QM level crossing


$$
\begin{gathered}
\mu_{\pi}^{2}>\mu_{G}^{2} \\
\mu_{\pi}^{2} \longleftrightarrow\left\langle\vec{p}_{b}^{2}\right\rangle_{B} \quad \mu_{G}^{2} \longleftrightarrow\left|\vec{B}_{\mathrm{chr}}(0)\right| \\
\vec{P}_{b} \rightarrow \vec{\pi}=-i \vec{D}=-i \vec{\partial}-\vec{A} \quad\left[P_{j}, P_{k}\right]=0 \\
{\left[\pi_{j}, \pi_{k}\right]=i G_{j k}=-i \epsilon_{j k l} B^{l}} \\
\sim \\
{\left[\pi_{j}, \pi_{k}\right] \neq 0 \quad \Longrightarrow \quad \text { an uncertainty relation }}
\end{gathered}
$$

## All components of momentum cannot be small

simultaneously

The Landau precession of a charged particle in the magnetic field


## $B \rightarrow D^{*}+\ell \bar{\nu}$ at zero recoil

$\mathrm{d} w\left(B \rightarrow D^{*}+\ell \bar{\nu}\right) \sim G_{F}^{2} \cdot\left|V_{c b}\right|^{2} \cdot|\vec{p}| \cdot\left|F_{B \rightarrow D^{*}}(\vec{p})\right|^{2}$

$F_{B \rightarrow D^{*}}$ is determined by bound state dynamics If $\vec{p}=0 \quad\left(\vec{p}_{e}=-\vec{p}_{\bar{\nu}}\right)$
almost nothing has changed!
$F_{\mathrm{n} / \mathrm{p}}(0)=1+\frac{0}{m_{c, b}}+\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}^{2}}{m_{c, b}^{2}}\right)+\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}^{3}}{m_{c, b}^{3}}\right)+\ldots$
$1 / m_{b, c}$ effects are absent
1986 Voloshin, Shifman 1990 Luke

Important to estimate $\delta_{1 / m^{2}}$
Before May 1994: $\quad \delta_{1 / m^{2}} \simeq-0.02$

$-\delta_{\mathrm{n} / \mathrm{p}}>\frac{M_{B^{*}}^{2}-M_{B}^{2}}{8 m_{c}^{2}} \simeq-0.04 \quad$ rigorous bound on $F(0)$
$F(0) \simeq 0.9 \quad$ actual estimate

FNAL, lattice:
$F(0) \simeq 0.88 \quad$ order $1 / m_{Q}^{2}$ $F(0) \simeq 0.91 \quad$ order $1 / m_{Q}^{3}$
higher orders in $1 / m_{c}$ ?

$$
\begin{equation*}
F(1)=0.913_{-0.017}^{+0.024} \pm 0.016_{-0.014-0.016-0.014}^{+0.003+0.000+0.006} \tag{?}
\end{equation*}
$$

Significant part of the correction is added theoretically rather than directly emerged from the lattice simulation


Question to experiment and fits:
What is the value for $F(1) \cdot\left|V_{c b}\right|$ with the constraint $\hat{\varrho}^{2}<1.2$ ?

## Numerical estimates of $F_{D^{*}}$



$$
2 \bar{\delta}_{1 / m^{2}}(\bar{\mu})
$$

$\xi_{A}^{\frac{1}{2}}(\mu)$ is the short-distance renormalization factor $0.97 \pm 0.01$
$\sum_{f \neq D^{*}}^{\epsilon<\mu}\left|F_{B \rightarrow f}\right|^{2}=\chi\left[\frac{\mu_{G}^{2}}{3 m_{c}^{2}}+\frac{\mu_{\pi}^{2}-\mu_{G}^{2}}{4}\left(\frac{1}{m_{c}^{2}}+\frac{1}{m_{b}^{2}}+\frac{2}{3 m_{c} m_{b}}\right)+\mathcal{O}\left(\frac{1}{m^{3}}\right)\right]$
$\chi$ describes the wf overlap deficit guess: $0<\chi \leq 1 \quad$ SUV 1994
$F_{D^{*}} \simeq \xi_{A}^{\frac{1}{2}}-(1+\chi)\left[\frac{\mu_{G}^{2}}{6 m_{c}^{2}}+\frac{\mu_{\pi}^{2}-\mu_{G}^{2}}{8}\left(\frac{1}{m_{c}^{2}}+\frac{1}{m_{b}^{2}}+\frac{2}{3 m_{c} m_{b}}\right)+\Delta_{\frac{1}{m^{3}}}\right]$

$$
\text { if } \chi=0.5 \pm 0.5 \quad \mu \approx 0.8 \mathrm{GeV}
$$

$F_{D^{*}} \simeq 0.89-0.015 \frac{\mu_{\pi}^{2}-0.4 \mathrm{GeV}^{2}}{0.1 \mathrm{GeV}^{2}} \pm 0.03_{\mathrm{exc}} \pm 0.01_{\mathrm{pert}}$ $1 / m_{c}^{3}$ correction is significant!
$F_{D^{*}} \lesssim 0.92 \quad$ for $\quad \chi \simeq 0$

$$
\chi^{\mathrm{pert}}=1 @ \mathcal{O}\left(\alpha_{s}^{1}\right)
$$

't Hooft model: $\quad \chi=\frac{13}{21}+\frac{5}{21} \frac{m^{2}-\beta^{2}}{\bar{\Lambda}^{2}-m^{2}+\beta^{2}}-\frac{4}{21}\left(\varrho^{2}-\frac{3}{4}\right) \simeq 0.55$
Burkardt, N.U. 2000

## $\left|V_{u b}\right|$ from $\Gamma\left(B \rightarrow X_{u} \ell \nu\right)$

Theory:

$$
\Gamma_{\mathrm{sl}}(b \rightarrow u) \text { via }\left|V_{u b}\right|^{2}
$$

Uncertainties in $\Gamma_{\mathrm{sl}}(b \rightarrow u) \longleftrightarrow\left|V_{u b}\right|^{2}$
N.U. 1999

$$
\delta_{\text {pert }}=2 \% \quad \delta_{\text {nonpert }}=3.5 \% \quad \delta_{m_{b}}=5 \%
$$

$\mathcal{O}\left(\alpha_{s}^{2}\right)$ computed
van Ritbergen

$$
\delta_{\mathrm{th}}\left|V_{u b}\right| /\left|V_{u b}\right| \approx 5 \%
$$

Experiment:

$$
\Gamma_{\mathrm{sl}}(b \rightarrow u) / \Gamma_{\mathrm{sl}}(b \rightarrow c) \approx 70 \ldots
$$

Only hard kinematic rejection is competitive
The most direct discriminator is hadronic mass $M_{X}$
$b \rightarrow c \quad M_{X}^{2} \geq M_{D}^{2} \approx 3.5 \mathrm{GeV}^{2}$
$b \rightarrow u \quad M_{X}^{2} \approx 0 \quad$ bare quarks
QCD: $\quad M_{X}^{2} \propto m_{b} \bar{\Lambda}+\frac{\alpha_{s}}{\pi} m_{b}^{2} \sim 2.5 \mathrm{GeV}^{2}$
Analysis: In $85 \%$ of $b \rightarrow u$ events $M_{X}$ is below $M_{D}$

$$
M_{X}^{2}=\left(P_{B}-q\right)^{2}=M_{B}^{2}+q^{2}-2 M_{B} q_{0}
$$

$q_{0}$ fluctuate with the 'uncertainty' $\sim \Lambda_{\mathrm{QCD}}$
Familiar from the usual quark distributions in DIS
For heavy quarks is known under the name of "Fermi motion"

## Fermi motion and consequences of its universality

 Introduced phenomenologically 20 years agoFermi Motion emerges through the OPE in QCD as a counterpart of the leading-twist distribution function, though has some peculiarities

BSUV 1993

Important in the quest for $\left|V_{u b}\right|$ in charmless decays $b \rightarrow u \ell \nu$ :
Distribution over $M_{\text {hadr }}^{2}$ is given by $F_{Q}(x)$
Even though we do not literally know $F_{Q}(x)$ beforehand


BU hep-ph/0202175


Application to extraction $\left|V_{u b}\right|$ from semileptonic decays: evaluation of the rejected fraction $1-\Phi(M)$ of $b \rightarrow u$ decays with $M_{X}>M$

$$
\Phi(M)=\frac{1}{\Gamma_{\mathrm{sl}}(b \rightarrow u)} \int_{0}^{M} \mathrm{~d} M_{X} \frac{\mathrm{~d} \Gamma_{\mathrm{sl}}}{\mathrm{~d} M_{X}}
$$

## Universality relations:

$$
1-\Phi_{\mathrm{sl}}(M)=\int_{0}^{\frac{M_{B}}{2}-\frac{M^{2}}{2 M_{B}}} \mathrm{~d} E_{\gamma} \phi\left(E_{\gamma}, M\right) \frac{1}{\Gamma_{b s \gamma}} \frac{\mathrm{~d} \Gamma_{b s \gamma}}{\mathrm{~d} E_{\gamma}}
$$

$$
\phi\left(E_{\gamma}, M\right)=1-\frac{2 r^{3}}{(1-y)^{3}}+\frac{r^{4}}{(1-y)^{4}}
$$

$$
y=\frac{2 E_{\gamma}}{M_{B}}, \quad r=\frac{M^{2}}{M_{B}^{2}}
$$


$1 / m_{b}$ corrections can be incorporated:
BU 2002 dangerous domain of large $q^{2}$ automatically drops out

Can aim at $5 \%$ precision in $\left|V_{u b}\right|$

Measure separately for $B^{ \pm}$and $B^{0}\left(\right.$ and $\left.\left(B_{s}\right)\right)$

Renormalization of operators, masses etc. can be done in different ways
not easy to arbitrary loop unless a particular gauge is fixed The only way suggested so far is using the SV sum rules; it defines "kinetic" mass $m_{Q}(\mu)$ :

BSUV 1996

$$
\begin{aligned}
& E(\vec{p})=m_{0}+\frac{\vec{p}^{2}}{2 m_{2}}-\frac{\vec{p}^{4}}{8 m_{4}^{3}}+\ldots \\
& \quad m_{Q}(\mu) \text { has the meaning of } m_{2}
\end{aligned}
$$

Such a running mass has no limitation on precision

$$
m_{b}(1 \mathrm{GeV})=(4.57 \pm 0.05) \mathrm{GeV}
$$

Voloshin 1995-1996 Melnikov, Yelkhovsky

Beneke, Signer 1998-1999
Hoang

$e^{+} e^{-} \rightarrow \Upsilon(1 S, 2 S, 3 S, 4 S, 5 S)$ moments of $\sigma\left(e^{+} e^{-} \rightarrow b \bar{b}\right)$

Likewise $\quad \mu_{\pi}^{2}(1 \mathrm{GeV}), \quad \mu_{G}^{2}(1 \mathrm{GeV}), \ldots$
Physical observables, renormalon-free
Can be directly measured on the lattice

## $\bar{\Lambda}=\lim _{m_{b} \rightarrow \infty} M_{B}-m_{b}$ <br> related to the value of $m_{b}$

$\bar{\Lambda} \approx 700 \mathrm{MeV}$ with the uncertainty $\pm 60 \mathrm{MeV}$ at $\mu=1 \mathrm{GeV}$
$\mu_{\pi}^{2}, \quad \mu_{G}^{2}-$ next important hadronic quantities in HQE

$$
\begin{gathered}
\mu_{G}^{2}=\frac{1}{2 M_{B}}\langle B| \vec{b} \frac{i}{2} g_{s} \sigma_{\mu \nu} G^{\mu \nu} b|B\rangle \longleftrightarrow \\
\mu_{\pi}^{2}=\frac{1}{2 M_{B}}\langle B| \bar{b}(i \vec{D})^{2} b|B\rangle
\end{gathered} \longleftrightarrow \begin{gathered}
\langle B|-g_{s} \vec{\sigma}_{b} \vec{B}_{\mathrm{chr}}(0)|B\rangle_{\mathrm{QM}} \\
\langle B| \vec{p}_{b}^{2}|B\rangle_{\mathrm{QM}} \\
\vec{p}_{b} \rightarrow \vec{\pi}_{b}=-i \vec{D}=-i \vec{\partial}-g_{s} \vec{A}
\end{gathered}
$$

Using the same accurate regularized definition for kinetic ( $\{j, k\}$ ) and chromomagnetic ( $[j, k]$ ) operators allows precision numerical evaluation
Product of covariant derivatives $\bar{Q}(x) i D_{j} P \exp i D_{k} Q(0)$ offset along $t$ direction $i t \sim 1 / \mu$

$$
M_{B^{*}}-M_{B} \simeq \frac{2 \mu_{G}^{2}}{3} \frac{m_{b}}{m_{b}} \quad \mu_{G}^{2}(1 \mathrm{GeV})=0.35_{-.02}^{+.03} \mathrm{GeV}^{2}
$$

N.U. 11/2001
$\mu_{\pi}^{2}(\mu)>\mu_{G}^{2}(\mu)$ at any $\mu \quad$ rigorous inequality BSUV, Voloshin 1993-1994

Theory: $\quad \mu_{\pi}^{2} \approx(0.45 \pm 0.1) \mathrm{GeV}^{2}$

Nonperturbative inequality for Quantum Field Theory $\mu_{\pi}^{2}-\mu_{G}^{2} \quad$ equals to an integral of a certain cross section Heavy Quark Sum Rules similar to the Adler-Weisberger sum rule for $\nu$ reactions

## Heavy Quark Limit

$m_{b}, m_{c} \rightarrow \infty-$ no corrections in $1 / m_{Q}$ survive

$$
t \leq 0 \quad t>0
$$

At $\vec{v}=0$ physics is trivial:
$\langle k| J|n\rangle=\delta_{k n}$ elastic amplitude is 1


Effects appear when $\vec{v} \neq 0$
Amplitudes $\propto \vec{v}$ - 'dipole' transitions into " $P$-wave" states
$\frac{1}{2 M_{B}}\left\langle P^{(n)}(v)\right| \bar{b} b|B\rangle=\tau^{(n)} \vec{v}$
$\frac{1}{2 M_{B}}\langle B(v)| \bar{b} b|B\rangle=F\left(\vec{v}^{2}\right)=1-\frac{\varrho^{2}}{2} \vec{v}^{2}+\ldots$
$\vec{v} \ll 1$ is a good approximation for actual $B \rightarrow X_{c}+\ell \nu$ decays
SV physics: spectrum of ' $P$-wave' states $P^{(n)}, \varepsilon^{(n)}=M_{n}-M_{B}$ values of $\tau^{(n)}$

If quarks did not have spin, $P$ 's were $L=1$ states

Discard spin of heavy quark - then $B, B^{*}$ are spin- $\frac{1}{2}$ hadrons $P$-waves would be $j=\frac{1}{2}$ or $j=\frac{3}{2}$ :

$$
\begin{gathered}
\frac{1}{2} \times 1=\frac{1}{2} \oplus \frac{3}{2} \\
j-\text { spin of "light cloud" }
\end{gathered}
$$

Two $P$-wave families: $\quad P_{1 / 2}^{(n)} \longleftrightarrow \varepsilon_{1 / 2}^{(n)}, \quad \tau_{1 / 2}^{(n)}$
$P_{3 / 2}^{(m)} \longleftrightarrow \varepsilon_{3 / 2}^{(m)}, \quad \tau_{3 / 2}^{(m)}$

In atoms $\quad \tau_{1 / 2} \simeq \tau_{3 / 2}, \quad \varepsilon_{1 / 2} \simeq \varepsilon_{3 / 2}$
Difference is a relativistic spin-orbital effect (fine splitting)

In $B$ mesons - effect of order 1 (small in $\varepsilon^{\prime} s$, but large in $\tau^{\prime} s$ )

Remarkable extension of first sum rules to $v^{4}$ and higher orders:

## D' Orsay Sum Rules

Le Yaouanc, Oliver, Raynal 10/2002
OPE for nonforward scattering amplitude

$$
\begin{gathered}
\varrho_{L}^{2}=\left.(2 L+1) \sum_{n}\left|\tau_{L+\frac{1}{2}}^{(n)}\right|^{2} \quad \varrho_{L}^{2} \equiv \frac{(-1)^{L}}{L!} \frac{\mathrm{d}^{L} \xi(w)}{(\mathrm{d} w)^{L}}\right|_{\mathrm{w}=1} \\
L \sum_{n}\left|\tau_{L+\frac{1}{2}}^{(n)}\right|^{2}-\sum_{k}\left|\tau_{L-\frac{1}{2}}^{(k)}\right|^{2}=\frac{2 L-1}{4} \sum_{n}\left|\tilde{\tau}_{(L-1)+\frac{1}{2}}^{(n)}\right|^{2}
\end{gathered}
$$

Divergent - undergo renormalization...
Peculiar: only $L$-th orbital waves enter for $L$-th derivative!
For instance

$$
\begin{aligned}
& \varrho_{2}^{2} \geq \frac{5}{4} \varrho^{2} \geq \frac{15}{16} \\
& \uparrow \\
& \text { IW curvature } \\
& \text { IWslope } \\
& \varrho_{L}^{2} \geq \frac{(2 L+1)!!}{2^{2 L} L!} \varrho^{2}
\end{aligned}
$$

'Extended BPS' limit: All $\tau_{L-\frac{1}{2}}^{2} \quad$ suppressed ?!
all 'spin' inequalities are approximately saturated

$$
w \equiv v_{0}
$$

$$
\xi_{\mathrm{BPS}}(w)=\left(\frac{2}{w+1}\right)^{\frac{3}{2}} \quad \begin{aligned}
& \text { Can be directly } \\
& \text { measured in } \\
& B \rightarrow D \ell \nu
\end{aligned}
$$

$\left\langle\left(M_{X}^{2}\right)^{k}\right\rangle$ are important to scrutinize HQ parameters
Even without a cut on $E_{\ell}$ convergence for $k \geq 2$ is not great...
$\left\langle\left(M_{X}^{2}\right)^{3}\right\rangle$ seems a bit too low
Peculiarity of $M_{X}^{2}$ :

$$
\left.M_{X}^{2} \equiv\left(P_{B}-q\right)^{2}=p_{c}^{2}+\underset{-2}{2\left(M_{B}-m_{b}\right.}\right)\left(m_{\underline{b}}-\underline{q_{0}}\right)+\left(M_{B}-m_{b}\right)^{2}
$$

$\mathrm{OPE} \longrightarrow$ parton + small $1 / m_{b}^{2}$ corrections
Large corrections are traced to $\underline{2}\left(M_{B}-m_{\underline{b}}\right) E_{\underline{c}}$ rather than to

$$
p_{c}^{2}-m_{c}^{2}
$$

Cure: use the combinations of $M_{X}^{2}$ and $E_{X}$ moments, viz.
Trade $M_{X}^{2}$ for

$$
\mathcal{N}_{X}^{2}=M_{X}^{2}-2 \tilde{\Lambda} E_{x} \quad \text { with } \quad \tilde{\Lambda} \approx 650 \mathrm{MeV}
$$

Say, $\quad\left\langle\mathcal{N}_{X}^{4}\right\rangle-\left\langle\mathcal{N}_{X}^{2}\right\rangle^{2}$ :
$\left[\left\langle M_{X}^{4}\right\rangle-\left\langle M_{X}^{2}\right\rangle^{2}\right]-4 \tilde{\Lambda}\left[\left\langle M_{X}^{2} E_{X}\right\rangle-\left\langle M_{X}^{2}\right\rangle\left\langle E_{X}\right\rangle\right]+4 \tilde{\Lambda}^{2}\left[\left\langle E_{X}^{2}\right\rangle-\left\langle E_{X}\right\rangle^{2}\right]$

Q: Can you do this?

ICHEP 2002

A:
Yes, at $B$-factories
SLAC $12 / 2002$

Distribution over $\mathcal{N}_{X}^{2}$ is a counterpart of $E_{\gamma}$-distribution in $b \rightarrow s+\gamma$

Alleged problems with the OPE for inclusive decays

- $E_{\ell}$-cut dependence of $\left\langle M_{X}^{2}\right\rangle$ from BaBar 2002 I believe such a conclusion is wrong missing essentials of the OPE
- Inconsistency with $b \rightarrow s+\gamma$ moments Relying on imprecise* relations in presence of a high cut on $E_{\gamma} \quad$ hep-ph/0202175

For similar reasons global fit combining accurate and imprecise relations on equal footing, may not be too meaningful, and the conclusions may be
misleading

DELPHI: Lepton moments vs. $\left\langle M_{X}^{2}\right\rangle$ an impressive agreement, nonperturbative OPE relation for $M_{B}-m_{b} \simeq 650 \mathrm{MeV}$ is checked with a 40 MeV accuracy

## or

BaBar: $\left\langle M_{X}^{2}\right\rangle$ vs. $E_{\ell}$ unexpected dependence

Triumph or failure?

[^1]

- OPE computes not $\left\langle M_{X}^{2}-\bar{M}_{D}^{2}\right\rangle \simeq 0.4 \mathrm{GeV}^{2}$, but

$$
\left\langle M_{X}^{2}-\left(m_{c}+\bar{\Lambda}\right)^{2}\right\rangle \simeq 1.2 \mathrm{GeV}^{2}
$$

- Using proper parameters (e.g., DELPHI's) yields a twice larger slope
- Absolute th-accuracy is similar to experimental error bars even without $E_{\ell}$ cut $\pm 0.1 \mathrm{GeV}^{2} \Longleftrightarrow \delta m_{b}=20 \mathrm{MeV}$
- 'Dealing in the expressions, not necessarily in (OPE) truths' Of course $m_{b}$ is the same at all $E_{\ell}$. However, the comparison implicitly assumed that the 'theoretical bias' is likewise a constant in $E_{\ell}$. This is grossly wrong

The way the accuracy of the expansion at different cuts on $E_{\ell}$ was estimated by Falk et al., Ligeti et al. Iong ago, hep-ph/9708327, /9506201 is conceptually flawed

A closer look reveals that the expansion becomes meaningless at $E_{\text {cut }}=1.7 \mathrm{GeV}$, uncertainty reaches $100 \%$

The problem and why it is missed have been discussed. How this happens is obscured by 3-body kinematics in the SL decays with $E_{\ell}$ cut, but would be quite transparent in the different kinematic settings, or in $b \rightarrow s+\gamma$

- The behavior observed by BaBar is expected. The open question is rather if we can quantitatively utilize the measured fall off of $\left\langle M_{X}^{2}\right\rangle$ for further constraining HQ parameters


## Sum rules in Quantum Mechanics

Basic idea:

$$
\sum_{n}\langle 0| J|n\rangle\langle n| J^{\prime}|0\rangle=\langle 0| J J^{\prime}|0\rangle
$$

$\sum_{n}\left(E_{n}-E_{0}\right)\langle 0| J|n\rangle\langle n| J^{\prime}|0\rangle=\sum_{n}\langle 0| J \mathcal{H}-\mathcal{H} J|n\rangle\langle n| J^{\prime}|0\rangle=$

$$
\langle 0|[J, H] J^{\prime}|0\rangle=\frac{1}{2}\langle 0| J i \frac{\mathrm{~d} J^{\prime}}{\mathrm{d} t}-i \frac{\mathrm{~d} J}{\mathrm{~d} t} J^{\prime}|0\rangle
$$

etc.

In QFT:
$T\left(q_{0}, \vec{q}\right)=\frac{1}{2 M_{B}} \int \mathrm{~d}^{3} \vec{x} \mathrm{~d} x_{0} \mathrm{e}^{i \vec{q} \vec{x}-i q_{0} x_{0}}\langle B| i T\left\{\bar{c} \Gamma b(x), \bar{b} \Gamma^{\prime} c(0)\right\}|B\rangle$

At physical $q_{0}$ corresponding to the decay of (or scattering off) the heavy quark

$$
\frac{1}{\pi} \operatorname{Im} T\left(q_{0}, \vec{q}\right)=\sum_{f}\langle B| \bar{b} \Gamma c|f(\vec{q})\rangle\langle f(\vec{q})| \bar{c} \Gamma^{\prime} b|B\rangle \delta\left(E_{f}-\left(M_{B}-q_{0}\right)\right)
$$

$\varepsilon=M_{B}-E_{D}(\vec{q})-q_{0} \simeq m_{b}-\sqrt{m_{c}^{2}+\vec{q}^{2}}-q_{0} \quad$ excitation energy in the final state, or, in general, quark off-shellness

$\vec{q} \propto m_{Q}$

A problem with sum rules in QFT - ultraviolet divergence In QM $\sum_{n} \varepsilon_{n}^{2}\left|\tau^{(n)}\right|^{2} \propto\left\langle p^{2}\right\rangle$ converges fast, but not in QCD

dipole radiation

At $\varepsilon \gg \Lambda_{\mathrm{QCD}} \quad \sum_{m}\left|\tau_{3 / 2}^{(m)}\right|^{2} \simeq \sum_{n}\left|\tau_{1 / 2}^{(n)}\right|^{2} \simeq \frac{8}{27} \frac{\alpha_{s}^{(d)}(\varepsilon)}{\pi} \frac{\mathrm{d} \varepsilon}{\varepsilon}$ and hence

$$
\begin{array}{rlrl}
\varrho^{2}(\mu)-\frac{1}{4} & =2 \sum_{\varepsilon_{m}<\mu}\left|\tau_{3 / 2}^{(m)}\right|^{2}+\sum_{\varepsilon_{n}<\mu}\left|\tau_{1 / 2}^{(n)}\right|^{2} & \mu \frac{\mathrm{~d} \varrho^{2}}{\mathrm{~d} \mu}=\frac{8}{9} \frac{\alpha_{s}^{(d)}(\mu)}{\pi} \\
\frac{\bar{\Lambda}(\mu)}{2} & =2 \sum_{\varepsilon_{m<\mu}} \varepsilon_{m}\left|\tau_{3 / 2}^{(m)}\right|^{2}+\sum_{\varepsilon_{n<\mu}} \varepsilon_{n}\left|\tau_{1 / 2}^{(n)}\right|^{2} & \frac{\mathrm{~d} \bar{\Lambda}}{\mathrm{~d} \mu}=\frac{16}{9} \frac{\alpha_{s}^{(d)}(\mu)}{\pi} \\
\frac{\mu_{\pi}^{2}(\mu)}{3} & =2 \sum_{\varepsilon_{m<\mu}} \varepsilon_{m}^{2}\left|\tau_{3 / 2}^{(m)}\right|^{2}+\sum_{\varepsilon_{n}<\mu} \varepsilon_{n}^{2}\left|\tau_{1 / 2}^{(n)}\right|^{2} & \frac{\mathrm{~d} \mu_{\pi}^{2}}{\mathrm{~d} \mu}=\frac{8}{3} \frac{\alpha_{s}^{(d)}(\mu)}{\pi} \mu \\
\frac{\mu_{G}^{2}(\mu)}{3} & =2 \sum_{\varepsilon_{m<\mu}} \varepsilon_{m}^{2}\left|\tau_{3 / 2}^{(m)}\right|^{2}-2 \sum_{\varepsilon_{n}<\mu} \varepsilon_{n}^{2}\left|\tau_{1 / 2}^{(n)}\right|^{2} & -\mu \frac{\mathrm{d} \mu_{G}^{2}}{\mathrm{~d} \mu}=\frac{3}{2} \frac{\alpha_{s}^{(m e)}}{\pi} \mu_{G}^{2} \\
\text { etc. }
\end{array}
$$

Two exceptions: new spin sum rules

## Spin Sum Rules

N.U. 2001

$$
B \rightarrow D_{(n)}^{* *}+\ell \nu
$$

$2\left(\sum_{k}\left|\tau_{3 / 2}^{(k)}\right|^{2}-\sum_{m}\left|\tau_{1 / 2}^{(m)}\right|^{2}\right)=\frac{1}{2}=$ spin of light cloud in $B$
$2\left(\sum_{k} \epsilon_{k}\left|\tau_{3 / 2}^{(k)}\right|^{2}-\sum_{m} \epsilon_{m}\left|\tau_{1 / 2}^{(m)}\right|^{2}\right)=\bar{\sum}$

$$
\left\langle D_{s=3 / 2}^{* *}\right| J_{0}|B\rangle \sim \tau_{3 / 2} \quad\left\langle D_{s=1 / 2}^{* *}\right| J_{0}|B\rangle \sim \tau_{1 / 2}
$$

$\left\langle B^{*}(\vec{v})\right| \bar{b} i D_{j} b\left|B^{*}(0)\right\rangle=-\frac{\bar{\Lambda}}{2} v_{j}\left(\vec{\varepsilon}^{\prime *} \vec{\varepsilon}\right)-\frac{\bar{\Sigma}}{2}\left\{\varepsilon_{j}^{\prime *}(\vec{\varepsilon} \vec{v})-\left(\vec{\varepsilon}^{*} \vec{v}\right) \varepsilon_{j}\right\}+\mathcal{O}\left(\vec{v}^{2}\right)$
$\bar{\Sigma}$ determines a $\frac{1}{m}$ correction to $B \rightarrow D^{*}$ amplitude Le Yaouancet al. 2000
Sum rule for $\bar{\Sigma}$ ensures vanishing of $\frac{1}{m}$ correction to $\Gamma_{\mathrm{sl}}(B)$ in the SV limit Le Yaouanc et al. 2000-01

First sum rule leads to the exact bound $\varrho^{2}>\frac{3}{4}$ for the slope of the Isgur-Wise function

$$
\text { ( } B \rightarrow D^{(*)} \text { formfactor) }
$$

Explains why $B^{*}$ is heavier than $B$
Applied to atomic and nuclear physics: novel sum rules for spin-orbital effects in dipole transitions

Spin sum rules come from the OPE for nonforward scattering off the heavy quark $Q$


$$
\vec{q}, \vec{q}^{\prime} \propto m_{Q} \quad \vec{q} \neq \vec{q}^{\prime}
$$

Thomas precession - allows to measure spin of light degrees of freedom

$$
\begin{aligned}
& \left\langle A\left(\vec{v}^{\prime}\right)\right| J(0)|A(\vec{v})\rangle \simeq \operatorname{const}(1-a(\delta \vec{v} \vec{v})) \quad \text { spin- } 0 \text { particles } \\
& \left\langle A\left(\vec{v}^{\prime}\right)\right| J(0)|A(\vec{v})\rangle \simeq \operatorname{const}\left(\varphi^{\dagger} \varphi-\frac{1}{4} i[\delta \vec{v} \times \vec{v}] \cdot \varphi^{\dagger} \vec{\sigma} \varphi-a(\delta \vec{v} \vec{v})\right) \quad s=\frac{1}{2} \\
& \text { etc. }
\end{aligned}
$$


$\operatorname{Boost}_{(0 \rightarrow \vec{v})} \times \operatorname{Boost}_{(\vec{v} \rightarrow \vec{v}+\Delta \vec{v})}=\left\{\begin{array}{l}\operatorname{Boost}_{(0 \rightarrow \vec{v}+\Delta \vec{v})} \quad \text { Galilean mechanics } \\ \operatorname{Boost}_{(0 \rightarrow \vec{v}+\Delta \vec{v})} \times \operatorname{Rotation}\left(\frac{1}{c^{2}}[\vec{v} \times \Delta \vec{v}]\right)\end{array}\right.$
Relativistic mechanics
$t_{2}-t_{1} \ll \Lambda_{\mathrm{QCD}}^{-1} \longleftrightarrow$ sum over intermediate states - spin of bare heavy quark
$t_{2}-t_{1} \gg \Lambda_{\mathrm{QCD}}^{-1} \longleftrightarrow$ only $B^{*}$ contribution - total spin of heavy hadron

Sum over the excited states - spin of light cloud

## Theoretical status

Can go down to a \% level in $\left|V_{c b}\right|$ if relevant parameters are determined:

- $m_{b, c}(\mu), \mu_{\pi}^{2}(\mu), \mu_{G}^{2}(\mu), \ldots$ are completely defined and can (in principle) be determined from experiment with an unlimited accuracy
- Duality violation is very small in $\Gamma_{\mathrm{sl}}(B)$ BU 2001 $\alpha_{s}$ corrections to Wilson coefficients are feasible Limiting factor Know how to analyze higher power corrections bвMu 2003
$m_{b}, m_{c}, \mu_{\pi}^{2}, \ldots$ (properly defined) can be determined from the semileptonic $(b \rightarrow s+\gamma)$ decay distributions themselves

BSUV, 1993-1994
Nowadays is being implemented in a number of
experiments
New strategy: formulated at CKM 2002 @ CERN
Comprehensive approach: measure many observables to extract the 'theoretical' input parameters

We can do without relying on $1 / m_{c}$ expansion at all Expansion in $1 / m_{c}$ is questionable: $\quad \frac{1}{m_{c}^{2}}>14 \frac{1}{m_{b}^{2}}, 8 \frac{1}{\left(m_{b}-m_{c}\right)^{2}}$

If indeed $\mu_{\pi}^{2} \lesssim 0.45 \mathrm{GeV}^{2}$, i.e. $\mu_{\pi}^{2}-\mu_{G}^{2} \ll \mu_{\pi}^{2}, \mu_{G}^{2}$
BPS expansion: Expand around $\mu_{\pi}^{2}-\mu_{G}^{2}=0$ N.U. 2001

At $\mu_{\pi}^{2}=\mu_{G}^{2}$ there is a functional relation $\quad \vec{\sigma} \vec{\pi}|B\rangle=0$
Ultrarelativistic light cloud - antipode to NR quark models

Remarkable limit in many respects

Experiment suggests an intriguing nontrivial pattern

## Why proximity to 'BPS'? Lowest Landau level

In quantum mechanics of electrons: $|\vec{B}| \gg|\vec{E}| \Longrightarrow$ BPS
In $B$ mesons a priori $\vec{B} \sim \vec{E} \sim \Lambda_{\mathrm{QCD}}^{2}$, strongly fluctuates

Would imply a strong correlation between spin and momentum vanishes in nonrelativistic systems

If this is true, it is unlikely accidental
What drives it?

## Some large parameter?

What happens in the Instanton Vacuum? SUSY?

Requires further theoretical understanding


[^0]:    $\dagger$ of more than simply a technical nature

[^1]:    *Politically correct

