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• We have the QCD-based theory of B decays

• It works at the nonperturbative level
impressive (at times) agreement with experiment
gives nontrivial predictions
allows precision extraction of |Vcb| and |Vub|
makes suggestions for next generation experiments

• There are problems† which are to be clarified

Theoretical insights plus experimental data are needed

Inclusive semileptonic distributions and B→D `ν

HQ sum rules, inequalities and their saturation

†of more than simply a technical nature



Expansion in
ΛQCD

mb
requires

dynamics

Physics of the heavy quark is simple. Dynamics of light

degrees of freedom in the presence of the heavy quark

Bound-state ←→ nonperturbative effects

Can they be controlled?

QCD allows to establish a number of facts

Most informative are inclusive decays
admit local OPE

Certain dynamical predictions are quite nontrivial

More precise statements are those of most general nature, hence
independent of a possible mechanism of confinement, resulting
hadron spectrum, ...

To zeroth order do not probe the physics of the bound states
In fact, a closer scrutiny does



Lifetimes and inclusive decay widths
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No ΛQCD/mb corrections to inclusive widths
of heavy flavor hadrons

Bigi, Shifman, Uraltsev, Vainshtein 1992

Applies to all types: semileptonic, nonleptonic, b→ s+γ ,
b→ s `+`−, ...

B, Bs, Λb, ...
∆M

M
∼ Λ QCD

mb
yet

∆Γ

Γ
∼ Λ2

QCD

m2
b

MB = mb + Λ+
µ2π−µ2G
2mb

+
µ23
m2
b

+ . . .

Λ does not affect the width!

Exclusive property of QCD. Follows from the gauge nature of
QCD interaction

Exact cancellation of the bound state effects with the final state interaction



Bound state & hadronization effects are given by
local HQ operators b̄Ob

Order 1/m2
b: µ2π = 〈B| b̄ (i ~D)2b |B〉 , µ2G = 〈B|b̄ i2σGb|B〉

Order 1/m3
b: ρ3D ∝ 〈B|b̄Γb q̄Γq|B〉 , ρ3LS∝〈B|~σ ·~π× ~E|B〉

etc.

Checkpoints:

Lifetimes of Beauty Hadrons
BSUV 1992

OPE:

δτHb
∼ O

(

Λ2
QCD

m2
b

)

+ O
(

Λ3
QCD

m3
b

)

+ ...

• 1/mb : No effects

• 1/m2
b : −1

2
µ2π
m2
b
− cG

µ2G
2m2

b
mesons vs. baryons

• 1/m3
b : 〈B|b̄Γq · q̄Γ′b|B〉 B+ vs. B0 vs. Bs ...

.

Weak Annihilation Pauli Interference Weak Scattering

– – – – – – – – – – – – – –
mesons baryons

Bilić, Guberina, Trampetić 1984
Shifman, Voloshin 1985



τB−

τB0
≈ 1.05 BU 1992 1.086± 0.017 exp

∣

∣

∣

∣

τ̄Bs

τB0
−1

∣

∣

∣

∣
∼< 0.02 BU 1992 0.951± 0.038 exp

τΛb
τB0

∼> 0.9 0BU 1992 0.800± 0.050 exp

BRsl BRsl vs. ncharm

BRsl ' 10.7% seems on the lower side

Requires fresh scrutiny. Now theory must be able to calculate
more accurately both BRsl and nc separately, modulo reliability
of the b→c c̄s channel

Both problem points involve nonleptonic decay widths
Larger corrections =⇒ less clean

Semileptonic decays offer much better theoretical environment



Semileptonic decays

Practical applications: Extracting |Vcb|, |Vub|
from Γsl(B)

Need accurate values of QCD parameters
mb, mc (mb−mc), µ

2
π, µ

2
G, ρ

3
D, ...

Replace models and their attributes used early on

mb, mc, µ
2
π, ... (properly defined) can be determined

from the semileptonic (b→s+γ) decay distributions

themselves BSUV, 1993-1994

Long history: incomplete theory, eliminate mc relying on 1
mc

expansion, ...

We can do robust analysis without relying on 1/mc

expansion, or invoking unknown nonlocal correlators

Expansion in 1/mc is questionable

Nowadays is being implemented in experiment

Theoretical status

Can aim at 1% level in |Vcb| assumes technical progress
in theory

|Vub| ? – underway, 5% accuracy is realistic

An often question: How can this be true?



Perturbative corrections ? ...
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With the IR piece cut off according to Wilson

we can work for precision!

pert
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Corrections in the scheme

with the hard cutoff,

µ=1GeV. Within

pole-type approaches the

correction is 4-6 times

larger and strongly

decreases at larger E`
cut

Now
2004

all pure perturbative corrections have been calculated
N.U.; M.Trott



• Problem for theory with 〈M 2
X〉 vs. E`

cut ?

Bauer et al. hep-ph/0210027

Robust OPE approach à la Wilson, µ=1GeV:

Bigi, N.U. hep-ph/0308165
Gambino, N.U. hep-ph/0401063
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OPE seems to work even where may be expected to break down



Second mass moment 〈[M 2
X−〈M2

X〉]2〉 :

Gambino, N.U. hep-ph/0401063
N.U. hep-ph/0403166
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Good agreement where the right theory is used



Present stage:

♠ Have an accurate and reliable determination of

many HQ parameters from experiment

♣ Extracting |Vcb| from Γsl(B) has good

accuracy and solid grounds

♠

Have precision checks of the OPE at the

nonperturbative level

I think the most impressive is good consistency

between 〈M2
X〉 and 〈E`〉 : A sensitive check of the

nonperturbative sum rule for MB−mb

BaBar hep-ex/0404017
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Surprise: SL decays at BaBar yielded accurate mb itself...

The combination mb−0.74mc is determined with

only 17MeV error bar!

Running mass is an observable and has no intrinsic

limitation on precision

Theoretical expectation:

mb(1GeV) = (4.57±0.06)GeV Voloshin 1995–1996

Melnikov, Yelkhovsky 1998–1999
Hoang 1998–1999

Beneke, Signer 1998–1999

e

e

γ

b

b
_

*

+

−

e+e− → Υ(1S, 2S, 3S, 4S, 5S)

moments of σ(e+e− → bb̄)



µ2
π, µ2

G
— primary nonperturbative values in the HQE

µ2G = 1
2MB
〈B| b̄ i2 gs σµνGµν b |B〉 ←→ 〈B|−gs ~σb ~Bchr(0) |B〉QM

µ2π = 1
2MB
〈B| b̄ (i ~D )2 b |B〉 ←→ 〈B| ~p 2b |B〉QM

~pb → ~πb =−i ~D =−i~∂−gs ~A

µ2G determines hyperfine splitting: MB∗−MB ' 2
3

µ2G
mb

µ2
G
(1GeV) = 0.35+.03

−.02GeV2
N.U. PLB2002

µ2
π(µ) > µ2

G
(µ) at any µ rigorous inequality

BSUV; Voloshin 1993–1994

Theory: µ2
π ≈ (0.45± 0.1)GeV2

Right at the central experimental value

Darwin expectation value emerges of the right scale 0.2GeV3



• Inconsistency with b→s+γ moments ?
Relying on relations imprecise with a high cut on Eγ

〈Eγ〉 = mb
2 + ... 〈[Eγ−〈Eγ〉]2〉 = µ2π

12 + ...

A good way to accurately measure HQ parameters...

Bottle neck: ‘Hardness’ Q often gets too low with

the cuts
Q ' mb−mc for total widths, but

Q is below 1GeV for E`>1.7GeV
A complementary consideration suggests the expansion for M 2

X loses sense

for Ecut≥1.7GeV

Terms appear ∝ e
− Q
µhadr

In b→ s+ γ Q 'MB−2Emin ' 1.2GeV
if the cut is at Eγ=2GeV
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Bigi, N.U. hep-ph/0308165

Accounting for these biases yielded a good agreement
between all measurements



BELLE 2004: With Eγ>1.8GeV cut biases are not that
much an issue

〈Eγ〉 = 2.2890± 0.026stat0± 0.0034sys GeV

〈[Eγ−〈Eγ〉]2〉 = 0.0311± 0.0073stat ± 0.0063sys GeV2

For BaBar’s HQ values we would obtain

〈Eγ〉 = 2.317GeV 〈[Eγ−〈Eγ〉]2〉 = 0.0329GeV2

Quite consistent!

Adding this to the BaBar data yields only minor shifts in the fit:

mb(1GeV) ' 4.58GeV, µ2π(1GeV) ' 0.45GeV2

no visible change in |Vcb|

mMS

b (mb) = 4.22± 0.06GeV

BaBar:

|Vcb| = (4.139± .0437exp± .04 HQE± .06th) ·10−2

The value of |Vcb| from B→D∗ `ν rate near zero recoil is

consistent within its uncertainties, at FD∗(0)'0.9



What all this means?

OPE works well, the heavy quark parameters derived from
experiment are consistent with the expectation based on
independent theoretical considerations

Perturbative corrections have been calculated and are expectedly
well behaved in the proper Wilsonian approach. No obstacles for
precision calculations of truly inclusive short-distance observables

Need calculation of the perturbative corrections to the Wilson
coefficients of power-suppressed operators (µ2π, µ

2
G, ρ

3
D)

This becomes a limiting factor

Kinetic value µ2π emerges as theoretically expected
Does the precise value matter? It appears that

µ2π−µ2G ¿ µ2π Interesting regime

Need to recall Heavy Quark Sum Rules

Recent development: D’Orsay sum rules Le Yaouanc et al.



Discard spin of heavy quark – then B,B∗ are spin-12 hadrons
P -waves would be j= 1

2 or j= 3
2 :

1
2 × 1 = 1

2 ⊕ 3
2

j – spin of “light cloud”

Two P -wave families: P
(n)
1/2 ←→ ε

(n)
1/2, τ

(n)
1/2

.
P
(m)
3/2 ←→ ε

(m)
3/2 , τ

(m)
3/2



Sum Rules in the HQ Limit

%
2−

1

4
= 2

∑

m

|τ
(m)

3/2
|2 +

∑

n

|τ
(n)

1/2
|2 Bj 1990

1

2
= 2

∑

m

|τ
(m)

3/2
|2 − 2

∑

n

|τ
(n)

1/2
|2 N.U. 2000

Λ

2
= 2

∑

m

εm|τ
(m)

3/2
|2 +

∑

n

εn|τ
(n)

1/2
|2 Voloshin 1992

Σ = 2
∑

m

εm|τ
(m)

3/2
|2 − 2

∑

n

εn|τ
(n)

1/2
|2 N.U. 2000

ORSAY SUM RULE Le Yaouanc et al. 2000
µ2
π

3
= 2

∑

m

ε
2
m|τ

(m)

3/2
|2 +

∑

n

ε
2
n|τ

(n)

1/2
|2 BSUV 1994

µ2
G

3
= 2

∑

m

ε
2
m|τ

(m)

3/2
|2 − 2

∑

n

ε
2
n|τ

(n)

1/2
|2 BSU 1997

ρ3D
3

= 2
∑

m

ε
3
m|τ

(m)

3/2
|2 +

∑

n

ε
3
n|τ

(n)

1/2
|2 Chow, Pirjol 1994

−
ρ3LS
3

= 2
∑

m

ε
3
m|τ

(m)

3/2
|2 − 2

∑

n

ε
3
n|τ

(n)

1/2
|2 BSU 1997

Second and Fourth sum rules are superconvergent

εk = Mk −MB

〈B(v)| b̄ γ0 b |B(0)〉 = 1− %2 ~v
2

2
+O(~v 4)

〈P (1/2)(v2)|b̄γµγ5b|B(v1)〉 = −τ1/2 (v1−v2)µ
〈P (3/2)(v2)|b̄γµγ5b|B(v1)〉 = − 1√

2
i τ3/2 εµαβγ ε

∗α vβ2 v
γ
1

spin of light cloud is

{

1
2 in P (1/2)

3
2 in P (3/2)



Sum rules yield strict inequalities

%2 > 3
4 , Λ > 2Σ , µ2π > µ2

G
, ρ3D > −ρ3LS

ρ3D > |ρ3LS|/2

Likewise

µ2π ≥
3Λ

2

4%2−1
, ρ3D ≥

3

8

Λ
3

(%2−1
4)

2
, ρ3D ≥

(µ2π)
3/2

√

3(%2−1
4)

Similarly for W− moments – Λ−2Σ , µ2π−µ
2
G , ...

Maximal physical information – advantage of

‘kinetic’ mass and other definitions based on the SV

sum rules



Good example : bound %2> 3
4 N.U. 2000

Assuming the spin sum rule is saturated at µ=1GeV we have

µ2π − µ2
G
= 3 ε̃2 · (%2−3

4)

Quite a constraint:
(

%2−3
4

)

=
µ2π−µ

2
G

3ε̃2 ∼< 0.2 (0.3)

at µ2
π=0.43 (0.5)GeV2 since ε̃>0.4GeV

%2 is probed in experiment important for Vcb
radically affects B→D∗

extrapolation to zero recoil

Recent UKQCD lattice is quite compatible with the prediction:

%2 = 0.83
+.15 + .24

−.11− .01
hep-lat/0202029

Another application, to B→D `ν : expanding in µ2π−µ2G
MB +MD

2
√
MBMD

f+(0) = 1.04 ± 0.01 ± 0.01

µ2π'µ2G is a special point for B and D mesons!

At µ2π=µ
2
G there is a functional relation ~σ~π|B〉 = 0

µ2π−µ2G = 〈(~σQ~πQ)2〉B = 〈2mQH1/mQ
〉
reminiscent to a BPS state

Ultrarelativistic light cloud – antipode to NR quark models

Remarkable limit in many respects



B → D `ν near zero recoil 2003

〈D(p2)|c̄γνb|B(p1)〉 = f+(p1 + p2)ν + f−(p1−p2)ν
f± ≡ f±(~q 2)

One amplitude J0=(MB+MD)f+(0) + (MB−MD)f−(0) at

~q = 0

HQ limit: f+ = MB+MD

2
√

MBMD
, f− = −MB−MD

MB+MD
f+

J0

2
√
MBMD

= 1− a2
(

1
mc
− 1
mb

)2

− a3
(

1
mc
− 1
mb

)2 (
1
mc

+ 1
mb

)

+ ...

Corrections are well under control and small

Any amplitude with massless leptons depends,
however solely on f+, while only the combination of
f+ and f− has no 1/m corrections

F+ ≡ 2
√

MBMD

MB+MD
f+ has 1/mQ corrections since ~J

has such a term...

Good news: we know it!



F+ = 1 +
(

Λ
2−Σ

)

(

1

mc
− 1

mb

)

MB−MD
MB+MD

−O
(

1
m2
Q

)

Thanks to inclusive decays and exact sum rules we

know Λ
2−Σ (positive, but very small ∝ µ2π−µ

2
G

3µhadr
)

Moreover, we know all power corrections are small

2
√
MBMD

MB +MD
f+(0) = 1.04 ± 0.01 ± 0.01

All orders in 1/m in ‘BPS’, to 1/m2·1/BPS2, α1
s

This formfactor is known better than for
‘gold-plated’ B → D∗

Perturbative renormalization:

This can be done in the

Wilsonian approach
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Miracles of the ‘BPS’ limit
N.U. 2003

• %2 = 3
4 inclusive hadronic moments can tell us about

the slope of the B→D(∗) formfactor!

• No power corrections to M=mQ+Λ for the
ground state

MB−MD = mb−mc to all orders in 1/mQ

• For B→D amplitude

f−(q
2) = −MB−MD

MB+MD
f+(q

2) to any order in 1/mQ

• Zero recoil B→D amplitude: δ1/mk=0
regardless of mass ratio

• In B→D at zero recoil

f+ = MB+MD

2
√

MBMD
to all orders in 1/mQ

• At arbitrary velocity power corrections in B→D

vanish

f+(q)
2 =

MB+MD

2
√
MBMD

ξ
(

M2
B+M2

D−q
2

2MBMD

)

Decay rate directly gives the IW function

Experiment: B→D slope much closer to %2 ' 1
Corrections to the shape of the B→D∗ formfactor are way too significant



Quantifying Corrections to ‘BPS’

How significant are corrections to ‘BPS’ relations in
actual QCD? It depends

The deviation parameter: Dimensionful parameter is

α = ‖(~σ~π) |B〉‖ ≡
√

µ2π−µ2G The dimensionless one is

β = ‖π−10 (~σ~π) |B〉‖ ≡
√

3
(

%2−3
4

)

= 3

(

∑

n
|τ (n)1/2|2

)
1
2

Numerically β is not a too small number, similar in size to
generic 1/mc expansion parameter β2 should be good

We can count together powers of 1/mc and β to judge the real
quality of the HQ relations

At which order in β the ‘BPS’ relations can be violated to all

orders in 1/mQ ? N.U. 2003

• Absence of corrections to MD=mc+Λ,
MB−MD=mb−mc holds up to β2

• Zero recoil B→D amplitude is unity up to β2

• At arbitrary velocity relation between f+ and f−
in B→D holds only to the leading order

f−(q
2) = −MB−MD

MB+MD
f+(q

2) +O(β)



• At arbitrary velocity the relations between f± in

B→D and the IW function may receive corrections ∝β1

• f+ near zero recoil receives only second order

corrections in β to any order in 1/mQ :

f+
(

(MB−MD)
2
)

=
MB+MD

2
√
MBMD

+O(β2)

Analogue of the Ademollo-Gatto theorem for the
‘BPS’ expansion

the same applies to f−
Must be quite accurate, f−/f+ can be checked in B→D τντ

If this can be measured, nothing else exclusive

may be required for |Vcb|



Are all skies blue in SL decays ? Not quite...

A “ 1
2>

3
2 ” puzzle

Primary knowledge about heavy quark parameters

comes from the Heavy Quark Sum Rules + the

known size of µ2G
Sum rules explain why B∗ is heavier than B; they set

the scale of Λ=MB−mb, µ
2
π, ...

Two classes: first for %2, Λ, µ2π, ρ
3
D, ... These are

saturated by both 3
2 and 1

2 P -wave heavy quark

states

Second are ‘spin’ sum rules for %2−3
4, Λ−2Σ,

µ2π−µ2G, ... These include only 1
2 states

Spin sum rules strongly suggest that 3
2 P -wave states

must dominate over 1
2 states. This automatically happens

in all quark models respecting QCD and Lorentz covariance
Orsay quark models

Experiment: 3
2 charm P -wave states are narrow and well

identified, {D1, D
∗
2}. They seem to contribute too little,

|τ3/2|2≈0.15

Wide 1
2 states {D∗0, D∗1} are more abundant and

might saturate the spin-singlet sum rules, but in

aggregate they should be subdominant to 3
2 states!



Average P -wave excitation mass gap

ε̄P '
2µ2π
3Λ
≈ 0.45GeV

√

µ2π
3(%2−1

4)
≈ 0.45GeV

Typical τ 2

τ̄2 ' 1
3 (%

2−1
4) ' 0.25

Λ

6ε̄P
≈ 0.25

and τ21/2 << τ23/2 from the spin sum rules

The most natural solution of all HQSRs:
3
2 states at ε3

2
≈ 450MeV and τ3

2

2 ≈ 0.3 while

τ1
2

2 ≈ 0.07÷ 0.12 with ε1
2
≈ 300÷ 500MeV

Possible resolutions:

Contribution of the excited P -wave states ...

Charm is too light to apply this classification itself,

valid only for heavy quarks; extraction of τ ’s is not justified
Need a good physical reason to invert the hierarchy

Too light c quark... An insight from lattices?

Resolution of this controversy is an important task,

probably needs both theory ideas and more

experimental data



Conclusions:

The dynamic OPE has finally undergone and passed
critical precisions checks at the nonperturbative level
in semileptonic and radiative decays

Experiments find consistent heavy quark parameters
from quite different measurements

|Vcb| extraction has high accuracy and is based on
reliable theory

Similar robust results are anticipated soon for |Vub|

Inclusive studies yield crucial info for HQ physics,
even for exclusive amplitudes Formerly viewed as antipodes

Power corrections to HQ symmetry are very
significant in charm. There is a subset of relations which
are stable, they are limited to the ground-state pseudoscalar B
and D mesons, but exclude spin symmetry for charm

The scale of nonperturbative effects ∼>
√

µ2π'0.7GeV
they look small for ‘BPS’-protected corrections where

√

µ2π−µ2G'0.3GeV≈mconstit
q

Experiment must verify the kinetic expectation value with
higher accuracy and fidelity, extract more reliably ρ3D

in inclusive decays

Perturbative corrections to Wilson coefficients of power-
suppressed operators are needed



B→D decays can be reliable theory-wise

If µ2π ∼< 0.45GeV2 is firmly established then

F+(0) ' 1.04 is an accurate prediction for B→D

A number of nontrivial consequences of this regime

Slope %2 is close to 1 -

B→D(∗) τν and B→Xc τν offer a number of
interesting possibilities

Recent success of the QCD-based dynamic theory of

nonperturbative physics in heavy quarks also raises

new problems

Saturation of the HQ SV sum rules must be understood

A “ 1
2>

3
2 ” puzzle

needs both theoretical and experimental scrutiny
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Digression on mQ→ 0

No power corrections to HQ relations at all? MD = mc + Λ
exactly? What if mQ¿ΛQCD when it is like a K meson?

No, BPS relations would not apply to light mesons even in a
‘BPS’ world

BPS cannot be exact in QCD – it may be a property of soft
dynamics below 1GeV. The corrections would blow up at mQ

below some hadronic scale

Power expansion is asymptotic. Even if all power terms vanish,

there are exponential terms

e
−

2mQ
µhadr

for instance due to spectral density of -π0 at values exceeding 2mQ

Whatever close we are to BPS corrections are of order 1
below µhadr

Two obvious mechanisms:

Chiral symmetry breaking – 〈Q̄Q〉 6=0 below some mass
a formal solution – even if exact – may not be the actual one on the true

vacuum

Usual QM level crossing

K

B

m

M

Q



µ2
π > µ2

G

µ2π ←→ 〈~p 2b 〉B µ2
G
←→

∣

∣

∣

~B chr(0)
∣

∣

∣

~Pb → ~π =−i ~D =−i~∂− ~A [Pj, Pk] = 0

[πj, πk] = iGjk = −iεjklBl

∼
0.4GeV2

[πj, πk] 6= 0 =⇒ an uncertainty relation

All components of momentum cannot be small
simultaneously

The Landau precession of a charged particle in the
magnetic field

Bz

~P 2 ≥ ~B even without
binding potential



B → D∗
+`ν̄ at zero recoil

dw (B → D∗ + `ν̄) ∼ G2
F · |Vcb|2 · |~p | ·

∣

∣F
B→D∗

(~p )
∣

∣

2

F
B→D∗

is determined by

bound state dynamics

If ~p=0 ( ~pe=−~pν̄ )

almost nothing has changed!

t<0 t≥0

=⇒
ν_

e

cb

F (~p=0) = 1 up to ‘isotopic effects’

Fn/p(0) = 1 +
0

mc,b
+O

(

Λ2
QCD

m2
c,b

)

+O
(

Λ3
QCD

m3
c,b

)

+ ...

1/mb,c effects are absent 1986 Voloshin, Shifman
1990 Luke

Important to estimate δ1/m2

Before May 1994 : δ1/m2 ' −0.02

OPE =⇒ HQ Sum Rules SUV, BSUV April 1994
Experiment June 1994

-δn/p >
M2
B∗−M

2
B

8m2
c

' −0.04 rigorous bound on F (0)

F (0) ' 0.9 actual estimate SUV 1994



FNAL, lattice :
F (0) ' 0.88 order 1/m2

Q

F (0) ' 0.91 order 1/m3
Q

higher orders in 1/mc ?

F (1) = 0.913 +0.024
−0.017 ± 0.016 +0.003 + 0.000 + 0.006

−0.014− 0.016− 0.014 (?)

Significant part of the correction is added theoretically rather than

directly emerged from the lattice simulation
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Question to experiment and fits:

What is the value for F (1)·|Vcb| with the constraint %̂2<1.2 ?



Numerical estimates of FD∗

FD∗=



ξA(µ)−
µ2G
3m2

c
−
µ2π−µ

2
G

4

(

1

m2
c
+

1

m2
b

+
2

3mcmb

)

−

ε<µ
∑

f 6=D∗

|F
B→f

|2+O

(

1

m3

)





1
2

– – – – – – – – – – – – – – – – – – – – – – – – –
2δ1/m2(µ)

ξ
1
2
A(µ) is the short-distance renormalization factor 0.97± 0.01

ε<µ
∑

f 6=D∗

|F
B→f
|2 = χ

[

µ2G
3m2

c

+
µ2π−µ2G

4

(

1

m2
c

+
1

m2
b

+
2

3mcmb

)

+O
(

1
m3

)

]

χ describes the w f overlap deficit guess: 0 < χ ≤ 1 SUV 1994

FD∗' ξ
1
2
A− (1+χ)

[

µ2G
6m2

c

+
µ2π−µ2G

8

(

1

m2
c

+
1

m2
b

+
2

3mcmb

)

+∆ 1
m3

]

if χ = 0.5± 0.5 µ ≈ 0.8GeV

FD∗'0.89− 0.015
µ2π−0.4GeV2

0.1GeV2 ± 0.03exc ± 0.01pert

1/m3
c correction is significant!

FD∗ ∼< 0.92 for χ ' 0

χpert = 1 @ O
(

α1s
)

’t Hooft model: χ = 13
21 +

5
21

m2−β2

Λ
2
−m2+β2

− 4
21

(

%2−3
4

)

' 0.55
Burkardt, N.U. 2000



|Vub| from Γ(B→Xu `ν)

Theory: Γsl(b→u) via |Vub|2

Uncertainties in Γsl(b→u) ←→ |Vub|2 N.U. 1999

δpert = 2% δnonpert = 3.5% δmb
= 5%

O
(

α2
s

)

computed
van Ritbergen

δth|Vub| / |Vub| ≈ 5%

Experiment: Γsl(b→u)/Γsl(b→c) ≈ 70 ...

Only hard kinematic rejection is competitive

The most direct discriminator is hadronic mass MX

b→ c M2
X ≥M2

D ≈ 3.5GeV2

b→ u M2
X ≈ 0 bare quarks

QCD: M2
X ∝ mbΛ + αs

π m
2
b ∼ 2.5GeV2

Analysis: In 85% of b→ u events MX is below MD

M2
X = (PB − q)2 =M2

B + q2 − 2MB q0

q0 fluctuate with the ‘uncertainty’ ∼ ΛQCD

Familiar from the usual quark distributions in DIS
For heavy quarks is known under the name of “Fermi motion”



Fermi motion and consequences of its universality

Introduced phenomenologically 20 years ago AC2M2
1982

Ali, Pietarinen.

Fermi Motion emerges through the OPE in QCD as a
counterpart of the leading-twist distribution function, though
has some peculiarities BSUV 1993

Important in the quest for |Vub| in charmless decays b→u `ν :

Distribution over M2
hadr is given by FQ(x)

Even though we do not literally know FQ(x) beforehand
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BU hep-ph/0202175 BU hep-ph/0202175

Υ(4S) Doppler
smearing on

Application to extraction |Vub| from semileptonic decays :
evaluation of the rejected fraction 1−Φ(M) of b→u decays

with MX>M

Φ(M) =
1

Γsl(b→u)

∫ M

0

dMX
dΓsl

dMX



Universality relations : BU 2002

1− Φsl(M) =

∫

MB
2 − M2

2MB

0

dEγ φ(Eγ,M)
1

Γbsγ

dΓbsγ
dEγ

φ(Eγ,M) = 1− 2r3

(1−y)3
+ r4

(1−y)4

y =
2Eγ
MB

, r = M2

M2
B
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1/mb corrections can be incorporated: BU 2002

dangerous domain of large q2 automatically drops out

Can aim at 5% precision in |Vub|

Measure separately for B± and B0 (and (Bs))



Renormalization of operators, masses etc. can be done in
different ways

not easy to arbitrary loop unless a particular gauge is fixed

The only way suggested so far is using the SV sum rules; it
defines “kinetic” mass mQ(µ): BSUV 1996

E(~p ) = m0 +
~p 2

2m2
− ~p 4

8m3
4

+ ...

mQ(µ) has the meaning of m2

Such a running mass has no limitation on precision

mb(1GeV) = (4.57±0.05)GeV Voloshin 1995–1996

Melnikov, Yelkhovsky 1998–1999
Beneke, Signer 1998–1999

Hoang 1998–1999

e

e

γ

b

b
_

*

+

−

e+e− → Υ(1S, 2S, 3S, 4S, 5S)

moments of σ(e+e− → bb̄)

Likewise µ2π(1GeV), µ2
G
(1GeV), ...

Physical observables, renormalon-free
Can be directly measured on the lattice



Λ = lim
mb→∞

MB−mb related to the value of mb

Λ ≈ 700MeV with the uncertainty ± 60MeV at µ = 1GeV

µ2
π, µ2

G
— next important hadronic quantities in HQE

µ2G = 1
2MB
〈B| b̄ i2 gs σµνGµν b |B〉 ←→ 〈B|−gs ~σb ~Bchr(0) |B〉QM

µ2π = 1
2MB
〈B| b̄ (i ~D )2 b |B〉 ←→ 〈B| ~p 2b |B〉QM

~pb → ~πb =−i ~D =−i~∂−gs ~A

Using the same accurate regularized definition for kinetic ({j, k})

and chromomagnetic ([j, k]) operators allows precision numerical
evaluation
Product of covariant derivatives Q̄(x)iDj P exp iDkQ(0) offset along t direction it∼1/µ

MB∗−MB '
2
3

µ2G
mb µ2G(1GeV) = 0.35+.03−.02GeV2

N.U. 11/2001

µ2π(µ) > µ2
G
(µ) at any µ rigorous inequality

BSUV, Voloshin 1993–1994

Theory: µ2
π ≈ (0.45± 0.1)GeV2

Nonperturbative inequality for QuantumField Theory

µ2π−µ2G equals to an integral of a certain cross section
Heavy Quark Sum Rules

similar to the Adler-Weisberger sum rule for ν reactions

Neat Quantum Mechanical interpretation



Heavy Quark Limit

mb,mc →∞ – no corrections in 1/mQ survive

t ≤ 0 t > 0

At ~v=0 physics is trivial: 〈k|J |n〉 = δkn
elastic amplitude is 1 other states are not excited

Effects appear when ~v 6= 0

Amplitudes ∝ ~v — ‘dipole’ transitions
into “P -wave” states

1

2MB
〈P (n)(v)|b̄b|B〉 = τ (n)~v

1

2MB

(n)〈B(v)|b̄b|B〉 = F (~v 2) = 1− %2

2
~v 2 + . . .

~v ¿ 1 is a good approximation for actual B → Xc+`ν decays

SV physics: spectrum of ‘P -wave’ states P (n), ε(n)=Mn−MB

SV physics: values of τ (n)

If quarks did not have spin, P ’s were L=1 states



Discard spin of heavy quark – then B,B∗ are spin-12 hadrons
P -waves would be j= 1

2 or j= 3
2 :

1
2 × 1 = 1

2 ⊕ 3
2

j – spin of “light cloud”

Two P -wave families: P
(n)
1/2 ←→ ε

(n)
1/2, τ

(n)
1/2

.
P
(m)
3/2 ←→ ε

(m)
3/2 , τ

(m)
3/2

In atoms τ1/2 ' τ3/2, ε1/2 ' ε3/2

Difference is a relativistic spin-orbital effect (fine splitting)

In B mesons – effect of order 1
(small in ε’s, but large in τ ’s)



Remarkable extension of first sum rules to v4 and higher orders:

D′ Orsay Sum Rules
LeYaouanc, Oliver, Raynal 10/2002

OPE for nonforward scattering amplitude

%2L = (2L+ 1)
∑

n

∣

∣

∣
τ
(n)

L+1
2

∣

∣

∣

2

%2L ≡ (−1)L

L!
dLξ(w)

(dw)L
w=1

L
∑

n

∣

∣

∣
τ
(n)

L+1
2

∣

∣

∣

2

−
∑

k

∣

∣

∣
τ
(k)

L−1
2

∣

∣

∣

2

= 2L−1
4

∑

n

∣

∣

∣
τ̃
(n)

(L−1)+1
2

∣

∣

∣

2

Divergent – undergo renormalization...

Peculiar: only L-th orbital waves enter for L-th derivative !

For instance
%22 ≥ 5

4
%2 ≥ 15

16

→ →

IW curvature IW slope

%2L ≥ (2L+ 1)!!

22LL!
%2

‘Extended BPS’ limit: All τ 2
L−1

2
suppressed ?!

all ‘spin’ inequalities are approximately saturated

ξBPS(w) =

(

2

w + 1

)
3
2

Can be directly
measured in
B→D `νw ≡ v0



〈(M2
X)

k〉 are important to scrutinize HQ parameters

Even without a cut on E` convergence for k ≥ 2 is not great...

〈(M2
X)

3〉 seems a bit too low

Peculiarity of M2
X :

M2
X ≡ (PB−q)2 = p2c + 2(MB−mb)(mb−q0) + (MB−mb)

2

– – – – – – – – – – –

OPE −→ parton + small 1/m2
b corrections

Large corrections are traced to 2(MB−mb)Ec
– – – – – – – –

rather than to

p2c−m2
c

Cure : use the combinations of M 2
X and EX moments, viz.

Trade M2
X for

N 2
X =M2

X − 2Λ̃Ex with Λ̃ ≈ 650MeV

Say, 〈N 4
X〉−〈N 2

X〉2 :

[〈M4
X〉−〈M

2
X〉

2
]− 4Λ̃[〈M2

XEX〉−〈M
2
X〉〈EX〉] + 4Λ̃

2
[〈E2

X〉−〈EX〉
2
]

Q: Can you do this? ICHEP 2002

A: Yes, at B-factories SLAC 12/2002

Distribution over N 2
X is a counterpart of Eγ-distribution in b→ s+ γ



Alleged problems with the OPE for inclusive decays

• E` -cut dependence of 〈M2
X〉 from BaBar 2002

I believe such a conclusion is wrong missing essentials of
the OPE

• Inconsistency with b→ s+ γ moments

Relying on imprecise∗ relations in presence of a high cut
on Eγ hep-ph/0202175

For similar reasons global fit combining accurate

and imprecise relations on equal footing, may not be

too meaningful, and the conclusions may be
misleading

DELPHI: Lepton moments vs. 〈M 2
X〉

an impressive agreement, nonperturbative OPE relation
for MB−mb ' 650MeV is checked with a 40MeV accuracy

or

BaBar: 〈M2
X〉 vs. E` unexpected dependence

Triumph or failure ?

∗Politically correct
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CLEO
〈M

2 X
−
M̄

2 D
〉

hep-ex/0207084

E` , GeV

• OPE computes not 〈M2
X−M̄2

D〉'0.4GeV2, but

〈M2
X−(mc+Λ̄)2〉' 1.2GeV2

• Using proper parameters (e.g., DELPHI’s) yields a
twice larger slope

• Absolute th-accuracy is similar to experimental error bars
even without E` cut ±0.1GeV2 ⇐⇒ δmb=20MeV

• ‘Dealing in the expressions, not necessarily in (OPE) truths’

Of course mb is the same at all E`. However, the comparison implicitly

assumed that the ‘theoretical bias’ is likewise a constant in E`. This is
grossly wrong



The way the accuracy of the expansion at different cuts on E`

was estimated by Falk et al., Ligeti et al. long ago, hep-ph/9708327,
/9506201 is conceptually flawed

A closer look reveals that the expansion becomes meaningless at
Ecut=1.7GeV, uncertainty reaches 100%

The problem and why it is missed have been discussed. How
this happens is obscured by 3-body kinematics in the SL decays
with E` cut, but would be quite transparent in the different
kinematic settings, or in b→ s+ γ

• The behavior observed by BaBar is expected. The open
question is rather if we can quantitatively utilize the measured
fall off of 〈M2

X〉 for further constraining HQ parameters



Sum rules in Quantum Mechanics

Basic idea: ∑

n

〈0|J |n〉〈n|J ′|0〉 = 〈0|JJ ′|0〉
∑

n

(En−E0)〈0|J |n〉〈n|J ′|0〉 =
∑

n

〈0|JH−HJ |n〉〈n|J ′|0〉 =

〈0|[J,H]J ′|0〉= 1
2〈0|J idJ

′

dt − idJdtJ ′|0〉
etc.

In QFT :

T (q0, ~q )=
1

2MB

∫

d3~x dx0 e
i~q~x−iq0x0 〈B|iT{c̄Γb(x), b̄Γ′c(0)}|B〉

At physical q0 corresponding to the decay of
(or scattering off) the heavy quark

1

π
ImT (q0, ~q ) =

∑

f

〈B|b̄Γc|f(~q )〉〈f(~q )|c̄Γ′b|B〉 δ(Ef−(MB−q0))

ε =MB−ED(~q )−q0 ' mb−
√

m2
c+~q

2−q0 excitation energy

in the final state, or, in general, quark off-shellness

q

QQ
_
u

Q
q

~q ∝ mQ



A problem with sum rules in QFT – ultraviolet divergence

In QM
∑

n

ε2n|τ (n)|2 ∝ 〈p2〉 converges fast, but not in QCD

q

Q

Q Q

Q

k k

q

dipole radiation

At εÀ ΛQCD

∑

m

|τ (m)
3/2 |2 '

∑

n

|τ (n)1/2|2 '
8

27

α
(d)
s (ε)

π

dε

ε

and hence

%
2
(µ)−

1

4
= 2

∑

εm<µ

|τ
(m)
3/2
|2 +

∑

εn<µ

|τ
(n)
1/2
|2 µ

d%2

dµ
=

8

9

α
(d)
s (µ)

π

Λ(µ)

2
= 2

∑

εm<µ

εm|τ
(m)
3/2
|2 +

∑

εn<µ

εn|τ
(n)
1/2
|2

dΛ

dµ
=

16

9

α
(d)
s (µ)

π

µ2π(µ)

3
= 2

∑

εm<µ

ε
2
m|τ

(m)
3/2
|2 +

∑

εn<µ

ε
2
n|τ

(n)
1/2
|2

dµ2π
dµ

=
8

3

α
(d)
s (µ)

π
µ

µ2G(µ)

3
= 2

∑

εm<µ

ε
2
m|τ

(m)
3/2
|2 − 2

∑

εn<µ

ε
2
n|τ

(n)
1/2
|2 −µ

dµ2G
dµ

=
3

2

α
(me)
s

π
µ
2
G

etc.

Two exceptions: new spin sum rules

Superconvergent similar to Weinberg sum rules



Spin Sum Rules N.U. 2001

B → D
∗∗

(n) + ` ν

2

(

∑

k

|τ (k)3/2|2 −
∑

m

|τ (m)
1/2 |2

)

=
1

2
= spin of light cloud in B

2

(

∑

k

εk|τ (k)3/2|2 −
∑

m

εm|τ (m)
1/2 |2

)

= Σ

〈D∗∗s=3/2| J0 |B 〉 ∼ τ3/2 〈D∗∗s=1/2| J0 |B 〉 ∼ τ1/2

〈B∗
(~v)|b̄iDjb|B

∗
(0)〉=−

Λ

2
vj(~ε

′∗
~ε )−

Σ

2

{

ε
′∗
j (~ε~v )−(~ε

′∗
~v )εj

}

+O
(

~v
2
)

Σ determines a 1
m correction to B→D∗ amplitude LeYaouanc et al. 2000

Sum rule for Σ ensures vanishing of 1
m correction to Γsl(B)

in the SV limit LeYaouanc et al. 2000 - 01

First sum rule leads to the exact bound %2 > 3
4 for the slope of the

Isgur-Wise function (B → D(∗) formfactor)

Explains why B∗ is heavier than B

Applied to atomic and nuclear physics: novel sum rules for
spin-orbital effects in dipole transitions

Exact superconvergent sum rules – not renormalized Unique



Spin sum rules come from the OPE for nonforward scattering
off the heavy quark Q

q q
Q

u
_

~q, ~q ′ ∝ mQ ~q 6= ~q ′

Thomas precession – allows to measure spin of light degrees

of freedom

〈A(~v
′
)|J(0)|A(~v )〉 ' const (1− a (δ~v~v ) ) spin-0 particles

〈A(~v
′
)|J(0)|A(~v )〉 ' const

(

ϕ
†
ϕ− 1

4 i[δ~v ×~v ]·ϕ
†
~σϕ−a (δ~v~v )

)

s= 1
2

etc.

t2

∆+

*
1

B*

v vv

B t

Boost (0→~v ) × Boost (~v→~v+∆~v )=

{

Boost (0→~v+∆~v)
Galilean mechanics

Boost (0→~v+∆~v)×Rotation
(

1
c2
[~v×∆~v ]

)

Relativistic mechanics

t2 − t1 ¿ Λ−1QCD ←→ sum over intermediate states – spin of
bare heavy quark

t2 − t1 À Λ−1QCD ←→ only B∗ contribution – total spin of
heavy hadron

Sum over the excited states – spin of light cloud



Theoretical status

Can go down to a % level in |Vcb| if relevant

parameters are determined:

• mb,c(µ), µ
2
π(µ), µ

2
G(µ), ... are completely defined and can

(in principle) be determined from experiment with an
unlimited accuracy

• Duality violation is very small in Γsl(B) BU 2001

• αs corrections to Wilson coefficients are feasible Limiting factor

• Know how to analyze higher power corrections BBMU 2003

mb, mc, µ
2
π, ... (properly defined) can be determined

from the semileptonic (b→s+γ) decay distributions

themselves BSUV, 1993-1994

Nowadays is being implemented in a number of
experiments

New strategy: formulated at CKM 2002 @ CERN

Comprehensive approach: measure many observables

to extract the ‘theoretical’ input parameters

We can do without relying on 1/mc expansion at all

Expansion in 1/mc is questionable:
1
m2
c
> 14 1

m2
b
, 8 1

(mb−mc)2



If indeed µ2π ∼< 0.45GeV2, i.e. µ2π−µ2G ¿ µ2π, µ
2
G

BPS expansion: Expand around µ2π−µ2G = 0
N.U. 2001

At µ2π=µ
2
G there is a functional relation ~σ~π|B〉 = 0

Ultrarelativistic light cloud – antipode to NR quark models

Remarkable limit in many respects



Experiment suggests an intriguing nontrivial pattern

Why proximity to ‘BPS’ ? Lowest Landau level

In quantum mechanics of electrons: | ~B| À | ~E| =⇒ BPS

In B mesons a priori ~B ∼ ~E ∼ Λ2
QCD , strongly fluctuates

Would imply a strong correlation between spin and momentum
vanishes in nonrelativistic systems

If this is true, it is unlikely accidental What drives it?

Some large parameter?

What happens in the Instanton Vacuum? SUSY?

Requires further theoretical understanding


