Study of Multiplicity and Event Shapes using ZEUS detector at HERA

Michele Rosin

University of Wisconsin, Madison
on behalf of the ZEUS Collaboration

QFTHEP 2004
June 17th

HERA description \& DIS kinematics

-920 GeV p+ (820 GeV before 1998)
-27.5 GeV e- or e^{+}
-318 GeV cms (300 GeV)
-Equivalent to a 50 TeV Fixed Target
-DIS Kinematics:

DESY Hamburg, Germany

$$
Q^{2}=-q^{2}=-\left(k-k^{\prime}\right)^{2} \quad \text { Virtuality of photon }
$$

$$
y=\frac{p \cdot q}{p \cdot k} \quad \text { Inelasticity } 0 \leq y \leq 1 \quad x=\frac{Q^{2}}{2 q \cdot p} \quad \begin{aligned}
& \text { Fraction of } p \text { momentum } \\
& \text { carried by struck parton }
\end{aligned}
$$

$\mathrm{e}^{+} \mathrm{e}^{-}$\& ep : Breit Frame

DIS event

- Breit Frame definition:

$$
2 x P+q=0
$$

- "Brick wall frame" incoming quark scatters off photon and returns along same axis.
-Current region of Breit Frame is analogous to $\mathrm{e}^{+} \mathrm{e}^{-}$.

Hard and soft processes

- Hard processes: perturbative QCD
- Soft processes: (hadronization) non-perturbative QCD

Mean multiplicity: $\mathrm{e}^{+} \mathrm{e}^{-}$and pp

$\sqrt{S_{p p}}=\sqrt{\left(p_{p}+p_{p}\right)^{2}}$
$\sqrt{\left(q_{\text {tot }}^{\text {had }}\right)^{2}}=\sqrt{\left[\left(q_{1}^{\text {inc }}-q_{1}^{\text {leading }}\right)+\left(q_{2}^{\text {inc }}-q_{2}^{\text {leading }}\right)\right]^{2}}$
Multiplicity vs. invariant mass of system is universal for pp \& $\mathrm{e}^{+} \mathrm{e}^{-}$

Motivation for the use of $M_{\text {eff }}$ as energy scale

- Analogous to the pp study: want to measure the dependence of $\left\langle\mathrm{n}_{\mathrm{ch}}\right\rangle$ of on the invariant mass of the system
-Boost in proton direction => proton remnant \& fraction of string escape down the beam pipe
-Can measure only a fraction of string: assume $<n_{c h}>$ vs. invariant mass is universal, can compare to pp data
\bullet - Use $\mathrm{M}_{\text {eff }}$ as a scale
$M_{\text {eff: }}$ HFS measured in the detector where the tracking efficiency is maximized

Comparison of multiplicity for ep, with $\mathrm{e}^{+} e-\& \mathrm{pp}$

- mean charged multiplicity, $<\mathrm{n}_{\mathrm{ch}}>$, for different energy scales: $\mathrm{e}^{+} \mathrm{e}^{-}$ $(\sqrt{ } \mathrm{s}), \mathrm{pp}\left(\sqrt{ } \mathrm{q}^{2}\right)$ and ep $\left(\mathrm{M}_{\text {eff }}\right)$
- Excess in $<\mathrm{n}_{\mathrm{ch}}>$ observed for ep data
-Possible explanations: Different contributions from gluons (HERA can reach smaller x than $p p$)

Compare to LEP data

-LEP data at higher energy: should have contribution from gluons
-Can't conclude from this plot, it seems both ep and pp data could meet LEP points
$\bullet<n_{\mathrm{ch}}>$ vs. Q for ep in current region of Breit frame agrees with $\mathrm{e}^{+} \mathrm{e}^{-}$and pp data, for high Q -Working on improving this measurement using more statistics, and spitting data into x and Q^{2} bins, in current and target region aiming for new results for ICHEP 2004.

ZEUS

Study Hadronization using Event Shapes

- Event shape variables measure aspects of the topology of the hadronic final state
- Event shapes in DIS should allow investigation of QCD over a wide range of energy scales, though hadronization corrections are large for these variables
- Power Correction: analytical calculation suggested by Dokshitzer \& Webber to describe the effect of hadronization for these variables
- Event shape analysis is done in current region of the Breit frame

Power corrections: an analytical approach

-Power correction is used to calculate hadronization corrections for any infrared safe event shape variable, F
-Mean event shape variables are sum of perturbative and nonperturbative (power correction) parts
-The power correction depends on two parameters, α_{0} and α_{s}

$$
\begin{aligned}
& \langle F\rangle=\langle F\rangle_{\text {perturbative }}+\langle F\rangle_{\text {power correction }} \begin{array}{c}
\begin{array}{c}
\text { Used to determine the } \\
\text { hadronization corrections }
\end{array} \\
\langle F\rangle_{\text {pow }}=a_{F} \frac{16}{3 \pi} \frac{\mu_{I}}{Q} \ln ^{P} \frac{Q}{\mu_{I}} \cdot\left[\overline{\alpha_{0}}\left(\mu_{I}\right)-\alpha_{s}(Q)-\frac{\beta_{0}}{2 \pi}\left(\ln \frac{Q}{\mu_{I}}+\frac{K}{\beta_{0}}+1\right) \alpha_{s}^{2}(Q)\right]
\end{array}, ~
\end{aligned}
$$

$$
\alpha_{0}=\text { "non-perturbative parameter" }
$$

-(Dokshitzer, Webber Phys. Lett. B 352(1995)451)

Event Shape Variables

- Thrust: longitudinal momentum sum
- Broadening: transverse momentum sum
- Measured with n set to the thrust axis, and photon axis

$$
C=\frac{3 \sum_{i j} \vec{p}_{i} \vec{p}_{j} \sin ^{2}\left(\theta_{i j}\right)}{2 \sum_{i j} \vec{p}_{i} \vec{p}_{j}}
$$

- Jet Mass and C parameter: correlations of pairs of particles
- Sum over all momenta in current region of Breit frame.

Mean event shape variables

-NLO + Power correction fits to means measured in bins of X and Q^{2}

- High x points (open circles) not fitted
-All variables fitted with a good x^{2}
-Photon axis variables (1-Ty) show large x -dependence
-1-Ty correction very small and negative
-Model describes data well

ZEUS

Extraction of α_{0} and α_{s} from NLO + PC fits to means

- Not all variables give same α_{s} and α_{0}.
- 1 - Ty fit poorly defined -large systematic errors
- Extracted parameters: $\alpha_{o} \approx 0.45, \alpha_{s} \approx 0.12$

Differential distributions

NLO+PC Fits to Differential Distributions

- Try to improve our understanding ušing differential distributions
-Power correction is interpreted as a 'shift' in the NLO distribution

$$
\frac{1}{N} \frac{d n}{d F}(F)=\frac{1}{N} \frac{d n_{N L O}}{d F}\left(F-F_{\text {pow }}\right)
$$

Extraction of α_{0} and α_{s} from fits to differential distributions

-Photon axis variables fit with high α_{s}, but other variables consistent with each other in α_{s} and α_{0}
-Fits α_{0} somewhat high compared to that from means

- Extracted parameters:

$$
\alpha_{0} \approx 0.65, \alpha_{s} \approx 0.12
$$

-Method a little unstable, try adding NNLO effectsresummations

Differential distributions: with resummation

Calculation describes data better; able to enlarge range of fit

Extraction of α_{0} and α_{s} from fits to differential distributions

- C is consistent in α_{s} but low in α_{o}. C result very sensitive to fitted range: under investigation
- α_{0} consistent with results from fit to means. Extracted parameters:
$\alpha_{0} \approx 0.118, \alpha_{s} \approx 0.5$

Summary

Showed results for two methods of investigating hadronization:

-Multiplicity:

- Mean charged multiplicity vs. effective mass was measured for ep and compared to $\mathrm{e}^{+} e^{-}$and pp. Multiplicity shows excess in data for ep.
- Current study aiming for higher precision using new data

-Event Shapes:

- NLO + power correction has been fitted to the mean event shape data, α_{s} $\approx 0.12, \alpha_{0} \approx 0.45$. Consistent with published results. Photon axis variables poorly determined
-NNLO Resummed calculations give better results than NLO + power correction only, with $\alpha_{s} \approx 0.118, \alpha_{0} \approx 0.5$. Resummation gives consistent $\alpha_{\mathrm{s}}, \alpha_{\mathrm{o}}$ for all event shape variables, but C fit dependant on range
-Current investigation of new event shape variables \& new methods. ($\mathrm{K}_{\text {out }}$ for events with 2 or more jets, 2 jets can fix the NLO predictions better)

