

Recent results from the HERA-B experiment

Roberto Spighi, INFN Bologna Italy For the HERA-B Collaboration

The XVIIIth International Workshop High Energy Physics and Quantum Field Theory 17-23 june 2004, St. Petersburg

Outline

Main physics studies at HERA-B

Detector

Physics topics addressed:

Production of: Open and hidden Charm Open and hidden Beauty FCNC process Hard photons Strangeness production Pentaquark search

Disclaimer: All results are preliminary

QFTHEP, 17-23 June 2004

Main physics studies at HERA-B

Physics motivation

• Test of QCD predictions: NRQCD confirmed at high energy (CDF Js = 1.8 TeV) and large p_T , no conclusive results at lower energy • Investigation of nuclear effects for correct interpretation of results from ultra relativistic heavy ion collisions (QGP)

charm production

 $\boldsymbol{\cdot}$ no (or very few) results in the **negative \boldsymbol{x}_{F} range**

- few results on the J/ψ , $\psi(2S)$ polarization
- contradictory results on $R(\chi_c/J/\psi)$

• $\sigma(b\overline{b})$: only two other measurements (E771, E789) with large uncertainties and poor compatibility

• $\sigma(\Upsilon)$: testing ground for the theoretical models

beauty production

Charmonium Production in media

Investigation of nuclear effects

Further physics for production in media
Nuclear effect in initial and final state
Initial state:

Shadowing, parton energy loss, transverse
momentum broadening (<p_T> dependence on A)

Final state:

Nuclear absorption (dependence on x_F), Comover suppression

Necessary to study the charmonium differential distributions **Important baseline measurements for QGP study** HERA-B is in the ideal condition to study these effects

The Hera-B Detector

- Fixed target detector at HERA (DESY) IR 5 10 MHz
- 920 GeV/c proton beam ($\int s = 41.6 \text{ GeV}$)
- High angular coverage (15-220 mrad in bending plane)
- High resolution spectrometer very good particle ID for (e, μ , π , K, p)

QFTHEP, 17-23 June 2004

Target system

Different targets (range A[12:184]) can be used simultaneously A-dependence measurements \rightarrow control of systematic errors Events from different wires can be easily separated

QFTHEP, 17-23 June 2004

The vertex detector

Silicon Vertex Detector

- 7 superlayers of silicon microstrips
- High primary vertex resolution ($\sigma_x \sim \sigma_y \sim 50 \ \mu$ m, $\sigma_z \sim 450 \ \mu$ m)

Vertex-wire distance

QFTHEP, 17-23 June 2004

HERA protons

Main tracking system

The world largest honeycomb tracker

[cm]

Particle Identification (RICH)

QFTHEP, 17-23 June 2004

Particle Identification (Ecal)

QFTHEP, 17-23 June 2004

Roberto Spighi (HERA-B coll.)

Recent results from HERA-B (11)

Particle Identification (Muon)

Dilepton trigger system

Dilepton trigger:

- at least 2 pretrigger seeds
- coincidence with at least 1 FLT track
- coincidence with at least 2 SLT tracks

total suppression factor 1:50000

$1000-1500 J/\psi h^{-1}$

Dilepton data analysis

- charmonium production
 - **J**/ψ, χ_c, ψ
- A-dependence
- $D^{\circ} \rightarrow \mu^{+}\mu^{-}$ (FCNC process)
- bb production
- Υ
- Low mass studies (ϕ , ρ/ω) - Exotics production

Dielectron spectra

QFTHEP, 17-23 June 2004

Dimuon spectra

Signal clearly visible, low bkg situation

- · 2 independent analyses
- high statistics & quality in both samples

QFTHEP, 17-23 June 2004

\mathbf{p}_{T} differential distribution of J/ψ

Preliminary results for $\langle p_T \rangle$ (GeV/c)

Good agreement between e⁺e⁻/µ⁺µ⁻ analyses

 $p_{\tau} \rightarrow J/\psi$ transverse momentum Arbitrary scale normalization

$$\frac{d\sigma}{dp_{T}^{2}} \propto \left[1 + \left(\frac{35\pi}{256}\right)^{2} \frac{p_{T}^{2}}{\left\langle \boldsymbol{p}_{T}\right\rangle^{2}}\right]^{-6}$$

HERA-B range $p_T < 4.5 \text{ GeV/c}$

$p_T \qquad GeV/c$	Target	electron	muon	stat. err.	
or <p<sub>T> (GeV/c)</p<sub>	С	1.24	1.22	0.01	
	W	1.29	1.30	0.01	
ement between analyses	wide	e p _t range	A deper	ndence?	
Interaction & p-moment	tum Ran	Range (GeV/c)		<p<sub>T> (GeV/c)</p<sub>	
p-Si @ 800 GeV		< 3.4		1.20 ± 0.01	
p-Au @ 800 GeV		< 2.6		1.29 ± 0.01	

Exp.

E771

E789

Roberto Spighi (HERA-B coll.)

p-Au @ 800 GeV

x_F differential distribution of J/ψ

Not clear panorama. Now negative x_F range accessible with HERA-B.

p_T and c dependence on Js

phenomenologic $\langle p_T \rangle = A + B \sqrt{s}$

Fermilab-pub-91/62-E(1991) (E672/706 Coll) A=0.813 ± 0.014 GeV/c B=0.0105 ± 0.0004c⁻¹

phenomenologic c = D/(1 + E/Js)Fermilab-pub-91/62-E(1991) (E672/706 Coll) D=8.80 ± 0.41 E=23.9 ± 2.7 GeV

HERA-B precision competitive with previous results

cos θ differential distribution of J/ψ

A dependence of J/ψ production

Parameterization of cross section:

$$\sigma_{pA} = \sigma_{pN} \cdot A^{\alpha}; \quad \sigma = N / (\varepsilon \cdot L)$$

Determine α from two different targets:

$$\alpha = \frac{1}{\ln(A_W / A_C)} \cdot \ln\left(\frac{N_W}{N_C} \frac{L_C}{L_W} \frac{\varepsilon_C}{\varepsilon_W}\right)$$

- C (A=12.0) and W (A=183.8)
- 25% of full e⁺e⁻ sample
- Ratio of luminosities under investigation \Rightarrow norm. to E866

A dependence of J/ψ

$\psi' / J/\psi$ production ratio

QFTHEP, 17-23 June 2004

ψ' differential distributions

QFTHEP, 17-23 June 2004

χ_c to J/ ψ production ratio

No distinction between χ_{c1} and χ_{c2} ($\Delta M = 46 \text{ MeV/c}^2$) χ_{c0} neglected due to small Br

$$\chi_{c} \rightarrow J/\psi \ \gamma \rightarrow \mu^{+}\mu^{-}\gamma \text{ and } \rightarrow e^{+}e^{-}\gamma \qquad \approx 1$$

$$R_{\chi_{c}} = \frac{\sum_{i=1}^{2} \sigma(\chi_{ci}) \cdot Br(\chi_{ci} \rightarrow J/\psi\gamma)}{\sigma(J/\psi)} = \frac{N(\chi_{c})}{N(J/\psi)} = \frac{N(\chi_{c})}{\sum_{\chi \rightarrow J/\psi} (\varepsilon_{\chi})} \approx 0.4$$

$$R\chi_{c} = 0.21 \pm 0.05$$

Systematic studies ongoing In 15% of µµ sample ≈1300 χ_c ⇒ expected ~15 k for full sample

QFTHEP, 17-23 June 2004

$R_{\chi c}$ experimental situation and expectations

HERA-B results agree with NRQCD expectations

Final precision QFTHEP, 17-23 June 2004

more stringent tests

$D^{o} \rightarrow \mu^{+} \mu^{-}$

Search of FCNC in the decay BR($D^{\circ} \rightarrow \mu^{+}\mu^{-}$):

expected BR for Standard Model ~ 10⁻¹⁹ supersimmetric model enhances to $\sim 10^{-7}$ Upper limit on the branching ratio: BR($D^{\circ} \rightarrow \mu^{+}\mu^{-}$) < 2.0 x 10⁻⁶ (90% cl) hep-ex/0405059 Submitted to Phys Lett B Previous limit: CDF: BR(D° $\rightarrow \mu^{+}\mu^{-}$) < 2.5 ×10⁻⁶ Phys.Rev. D 68 (2003) 091101

Currently best upper limit

Open beauty production

$$pA \rightarrow b\overline{b} + X, b \rightarrow J/\psi + Y$$

Select detached vertex to separate B (decay length ~7 mm) from J/ψ

Dilepton vertex resolution 0.5 mm

$$\sigma_{b\bar{b}} = \sigma_{J/\Psi} \cdot \frac{n_B}{n_{J/\Psi}} \cdot \frac{1}{\varepsilon_R \cdot \varepsilon_B^{\Delta z} \cdot Br(b\bar{b} \to J/\psi)}$$

Results of 2000: Eur. Phys.J. C26(2003) 345: $e^+e^- = 8.6^{+3.9}_{-3.2}$; $\mu^+\mu^- = 1.9^{+2.2}_{-1.5}$ $\sigma(b\overline{b}) = 32^{+14+6}_{-12-7}$ nb/N

Open beauty production

Analysis of 2002/03 data:

- 35% of e⁺e⁻ and μ + μ statistics
- Expect $N_B \sim 100$ for full sample
- Carbon + Tungsten targets
- J/ ψ acceptance: -0.35<*x_F<0.15 (90% of bb cross section)

- Preliminary results of both channels compatible
- \bullet 1.5 σ lower than 2000 result

$$\sigma(b\bar{b}) = 12.3^{+3.5}_{-3.2} \text{ nb / N}$$

Hidden beauty production

QFTHEP, 17-23 June 2004

Hidden beauty production

	Events	Br∙ d₀/dy _{y=0}	
μ +μ-	33±7	3.9±1.1 pb/N	
e⁺e⁻	31±10	2.9±1.2 pb/N	
both		3.4±0.8 pb/N	

Hard photon analysis

QFTHEP, 17-23 June 2004

- Open charm production
- V⁰ production
- Hyperon production
- Strangeness production
- Pentaquark search

Open charm production

Open charm production

preliminary	-0.1 < x _F < 0.05	\rightarrow full x _F
σ(Dº)μb/Nucl	21.4±3.2±3.6	56.3±8.5±9.5
σ(D⁺)μb/Nucl	11.5±1.7±2.2	30.2±4.5±5.8
$R(D^+/D^0)$		0.54±0.11±0.14

QFTHEP, 17-23 June 2004

 \rightarrow Measurement of the production cross section and ratio vs A \rightarrow 2000 data analysis published in: Eur.Phys.J. C 29,181 (2003)

QFTHEP, 17-23 June 2004

Hyperon production

- Good proton/kaon identification
- Very large ± statistics

Pentaquark search

Use the full MB data sample (~210M evts, 3 nuclear targets C, Ti, W) to:

- search for the reported pentaquark signals
- provide upper limits on particle yield ratios (vs $\Lambda(1520)$ and $\Xi^{0}(1530)$)
- possibly determine physical quantities (width, spin, parity, charge) of pentaquarks for different final states (p-K⁰, Ξ - π)

QFTHEP, 17-23 June 2004

Pentaquark search: $\Theta^+ \rightarrow pK^0$ ¹²⁵⁰ _{pKe data}

- No evidence of signals where expected (~ 1530 MeV/c²)
- Upper limit on particle yield ratio: $\Theta^+/\Lambda_{1520} < 0.02 \text{ at } 95\% \text{ C.L.}$ (Hermes: ~ 1.6 ÷ 3.5) BR($\Theta^+ \rightarrow pK_s$) = 0.25
- Upper limit on nuclear cross section under evaluation

QFTHEP, 17-23 June 2004

Pentaquark search: $\Xi^{--}(\Xi^{++}) \rightarrow \Xi^{-}\pi^{-}(\Xi^{+}\pi^{+})$

Summary

Many thanks to the organizers for the invitation and the logistic support

QFTHEP, 17-23 June 2004