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Abstract

We give a necessary condition for the orbital-reversibility of a planar system, namely, the
existence of a normal form under equivalence which is reversible to the change of sign in the
first variable. Based in this condition, we formulate a suitable algorithm to detect orbital-
reversibility and we apply the results to solve the center problem in a family of planar nilpotent
systems.
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1 Introduction

Consider a planar autonomous system of differential equations having an equilibrium point at the
origin given by

ẋ = F(x), (1.1)

where x = (x, y)T ∈ R2. We study if it admits some reversibility modulo C∞-equivalence (see [1]
and [2]).

The problem of determining if system (1.1) has some reversibility is consider in [3] and [4].
In this work, we study if there exists some time-reparametrization such that the resulting system
admits some reversibility. The existence of some orbital-reversibility is a valuable feature that
helps in the understanding of the dynamical behaviour of a given system.

Next, we give a precise definition of the reversibility we will deal with:
An involution is a local diffeomorphism σ ∈ C∞, such that σ ◦ σ = Id, σ(0) = 0 and

codim(Fix(σ)) = 1, where Fix(σ) = {x ∈ Rn : σ(x) = x} is the fixed point set of σ.
We say that system (1.1) is reversible if there exists some involution σ such that σ ∗ F = −F.
We say that system (1.1) is orbital-reversible if there exist an involution σ and a function

µ ∈ C∞, with µ(0) = 1 such that σ ∗ (µF) = −µF, (this means that F is reversible modulo a
time-reparametrization).

We have denoted the pull-back of a vector field of F by a transformation Φ as Φ ∗ F. If we
use a generator of the transformation, the notation U ∗∗ F := Φ ∗ F will be used instead. The

transformed system can be expressed in terms of nested Lie products. Let us define T
(0)
U (F) := F,

and

T
(l)
U (F) := T

(l−1)
U ([F,U]) =

l times︷ ︸︸ ︷
[ · · · [ F,U ] , · · · ,U ] =

[
T

(l−1)
U (F),U

]
, for l ≥ 1.

If we use both, a nonlinear time-reparametrization dt = µ(x)dT and a near-identity transfor-
mation with generator U(x), then the transformed vector field is given by:

U ∗∗ ((1 + µ)F) = U ∗∗ F + µF + µ [F,U] + (∇µ ·U)F +
1

2!
[[µF,U],U] + · · · . (1.2)

In our study, we assume a quasi-homogeneous expansion for the vector fiel F corresponding to
a type t = (t1, t2) ∈ N2. So, we can suppose that F is of the form

F(x) = F̃r(x) + Fr+1(x) + · · · , for some r ∈ Z, (1.3)



where the lowest-degree quasi-homogeneous term F̃r 6= 0 is Rx-reversible, and Fr+k ∈ Qt
r+k for

all k ∈ N.

2 Some Definitions and Main Result

In this section, we introduce some definitions and we present our important result.
Firstly, we introduce the following vector spaces:

• Ot
k = {µ ∈ Pt

k : µ(−x, y) = −µ(x, y)}, the set of quasi-homogeneous scalar functions of
degree k which are odd in the first variable.

• Etk = {µ ∈ Pt
k : µ(−x, y) = µ(x, y)}, the set of quasi-homogeneous scalar functions of degree

k which are even in the first variable.

• Rt
k = {F = (P,Q)T ∈ Qt

k : P ∈ Etk+t1
, Q ∈ Ot

k+t2
}, the set of Rx–reversible quasi-

homogeneous vector fields of degree k.

• Stk := {F = (P,Q)T ∈ Qt
k : P ∈ Ot

k+t1
, Q ∈ Etk+t2

}, the set of Rx–symmetric quasi-
homogeneous vector fields of degree k.

It is easy to deduce that Pt
k = Ot

k

⊕
Etk and Qt

k = Rt
k

⊕
Stk. This decomposition allow us to

define the corresponding projection operators as follows:

π(o)(µ) ∈
⊕
k

Ot
k, π(e)(µ) ∈

⊕
k Etk, for µ ∈

⊕
k

Pt
k, and

Π(r)(U) ∈
⊕
k

Rt
k, Π(s)(U) ∈

⊕
k Stk, for U ∈

⊕
k

Qt
k.

The main goal of this paper is to determine conditions for the orbital–reversibility of (1.3),
which will be based on the existence of a near-identity transformation Φ =

∑
j≥0 Φj , (Φj ∈ Qt

j),
and a scalar function µ ∈ C∞, with µ(0) = 1, such that Φ ∗ (µF) is Rx–reversible.

For our convenience, from now on we will write the time-reparametrization as 1 + µ, with
µ(0) = 0. Indeed, it will be written as 1 +

∑
j≥1 µj , where µj ∈ Pt

j for j ≥ 1.

Definition 1 We say that the vector field of system (1.3) is N -orbital–reversible (N ∈ N) if there
exist a vector field U ∈

⊕
j≥1Qt

j and a scalar function µ ∈
⊕

j≥1 Pt
j , such that J r+N (U ∗∗ ((1 +

µ)F)) is Rx-reversible.

Our idea is to adapt the normal form procedure in order to determine conditions under which
the normalized vector field is N -orbital–reversible. We introduce the Lie derivate along the lowest-
degree quasi-homogeneous term F̃r:

`k−r : Pt
k−r −→ Pt

k

µk−r −→ ∇µk−r · F̃r.

In the normal form reduction it is enough to take its quasi-homogeneous terms µk belonging to
Cor(`k−r) (a complementary subspace to Range(`k−r)).

We denote
R̂t

k := Rt
k ∩ Q̂t

k and Ôt
k := Ot

k ∩ Cor(`k−r),

where Q̂t
k is a complementary subspace to Ker(`k−r)F̃r in Qt

k.
Next, we plain to deduce some facts about the normal forms for orbital-reversible vector fields.

To this end, we use that Qt
k = Rt

k

⊕
Stk, which allows to write the vector field (1.3) as:

F = F̃r +

∞∑
j=1

(F̃r+j + F̄r+j), (2.4)

where F̃r+j = Π(r)(Fr+j) ∈ Rt
r+j and F̄r+j = Π(s)(Fr+j) ∈ Str+j .

To describe a normal form procedure well adapted to the orbital-reversibility problem, let us
denote the above vector field as

F(0) := F = F̃(0)
r + (F̃

(0)
r+1 + F̄

(0)
r+1) + · · · .



We observe that the lowest-degree quasi-homogeneous term is reversible: F̃
(0)
r ∈ Rt

r.

We define the homological operator L(m)
as,

L(1)
: R̂t

1 × Ôt
1 −→ Str+1

(Ũ1, µ̃1) −→ −[F̃(0)
r , Ũ1]− µ̃1F̃

(0)
r ,

and

L(m)
: Ker(L(m−1)

)× (R̂t
m, Ôt

m) −→ Str+m

(Ũ1, µ̃1, · · · , Ũm−1, µ̃m−1; Ũm, µ̃m) −→ −
m−1∑
j=0

[F̃
(m−1)
r+j , Ũm−j ]− µ̃m−jF̃

(m−1)
r+j .

It is evident that operator L(m)
depends on F̃

(m)
r , · · · , F̃(m)

r+m−1.
The following result characterizes the (N + 1)-orbital–reversibility of a vector field N -orbital–

reversible. Proceeding degree by degree and following the ideas of the classical normal form theory,
we obtain an algorithm to discarding cases the orbital–reversibility based of the next theorem.

Theorem 2 Let us consider a vector field F = F̃r+· · ·+F̃r+N−1+(F̃r+N +F̄r+N )+· · ·, satisfying
F̄r+N 6= 0 and Proj

Im(L(N)
)
(F̄r+N ) = 0, for some N ∈ N. Then, F is not orbital–reversible.

3 Application

Let us consider the following family of planar vector fields:(
ẋ
ẏ

)
=

(
y

σx4q+1

)
+

(
a1xy + a2x

2q+2

b1y
2 + b2x

2q+1y

)
, (3.5)

where σ = ±1, q ∈ N.
This family has been studied by several authors. Namely, the analytic integrability for this

family has been studied in [5]; the center problem for σ = −1 (which corresponds to the mon-
odromic situation) has been partially studied in [6]; and the reversibility problem is completely
solved in [3]. With respect to the orbital-reversibility problem, we have the following result:

Theorem 3 System (3.5) is orbital-reversible if and only if one of the following conditions is
satisfied:

(a) a2 = b2 = 0.

(b) a2 = a1 = b1 = 0, b2 6= 0.

(c) a1 = b1 = 0, a2 6= 0.

(d) a1 + 2b1 = b2 + 2(q + 1)a2 = 0, a2b1 6= 0.

(e) b2 = (2q + 1)a2, b1 = (2q + 1)a1, a2(a1 + 2b1) 6= 0.

Proof:
The vector field of the statement can be written as F = F̃r + Fr+1, where

F̃r := (y, σx4q+1)T ∈ Qt
2q, and Fr+1 ∈ Qt

2q+1,

being r = 2q and t = (1, 2q + 1). We observe that F̃2q is Rx– and Ry–reversible. It is enough to
study the Rx– and the Ry–orbital-reversibility of the vector field F.
(?) We start with the Rx–orbital-reversibility. As we will see later, in this case is sufficient to reach
the N = 8-orbital–reversibility to solve the orbital–reversibility problem. To reduce the vector
field of the statement to the normal form F(8), we take the generator

Ũ =

(
α1x

2

α2xy

)
+

(
0

α3x
2q+3

)
+

(
α4x

4

α5x
3y

)
+ · · · ∈

8⊕
j=1

Rt
j ,



and the time-reparametrization associated to

µ̃ = γ1x+ γ3x
3 + γ5x

5 + γ7x
7 ∈

8⊕
j≥1

Ôt
j ,

where αi and γi are arbitrary parameters. Using Maple in the computations, we obtain the
following normal form:

F(8) = Ũ ∗∗ ((1 + µ̃)F) = F̃2q + F̃2q+1 + (F̃2q+2 −
1

3(4q + 3)
λ(2)

(
0

x2q+2y

)
)

+F̃2q+3 + (F̃2q+4 +
σ

3(4q + 5)(4q + 3)3
λ(4)

(
0

x2q+4y

)
)

+F̃2q+5 + (F̃2q+6 + λ(6)
(

0
x2q+6y

)
)

+F̃2q+7 + (F̃2q+8 + λ(8)
(

0
x2q+8y

)
) + · · · .

So, by applying Theorem 2, if F is orbital-reversible then the coefficients λ(2j) must vanish.
The first normal form coefficient λ(2j) is:

λ(2) = a2((2q + 3)(2q + 1)a1 + 2qb1) + b2(2qa1 − 3b1). (3.6)

To study the vanishing of this coefficient, we consider the following two possibilities:

(1) 2qa1 − 3b1 = 0, and then λ(2) vanishes in a couple of cases:

(1a) a2 = 0. In this case, the next normal form coefficient is

λ(4) = qb2a
3
1,

which vanishes if b2 = 0 (in this case, covered in item (a), the system is Ry-reversible),
or if a1 = 0 (now, the system is Rx-reversible; this situation is described in item (b)).

(1b) a2 6= 0, (2q + 3)(2q + 1)a1 + 2qb1 = 0, which provides a1 = b1 = 0. In this case the
system is Rx-reversible. This is the situation described in item (c).

(2) 2qa1 − 3b1 6= 0, and then λ(2) vanishes if, and only if,

b2 = − (2q + 3)(2q + 1)a1 + 2qb1
2qa1 − 3b1

a2. (3.7)

For this value, the next normal form coefficient is

λ(4) =
4q + 3

2qa1 − 3b1
a2(a1 + 2b1)(b1 − (2q + 1)a1)p4(a2, a1, b1, q, σ),

where we have denoted

p4(a2, a1, b1, q, σ) = 3(2q + 5)(4q + 3)2((2q + 3)(4q + 1)a1 − (4q + 9)b1)a22

+σ(2qa1 − 3b1)(2q(120q2 + 202q + 49)a21 − (512q2 + 844q + 135)a1b1 + 5(52q + 81)b21).

The vanishing of λ(4) leads to some subcases:

(2a) a2 = 0, which implies b2 = 0 . We get again item (a).

(2b) a2 6= 0, a1+2b1 = 0. This hypothesis implies that b1 6= 0 (otherwise, a1 = b1 = 0). Moreover,
the equation (3.7) reduces to b2 = −2(q + 1)a2. Now, the system (3.5) is Hamiltonian, with
Hamiltonian

h(x, y) = −1

2
y2 +

σ

2(2q + 1)
x4q+2 + b1xy

2 − a2x2q+2y.

If we denote u = x, v = y − 2b1xy + a2x
2q+2, then system (3.5) becomes:

u̇ = v,

v̇ = σu4q+4 + (2(q + 1)a22 − 2b1σ)u4q+2 +
a2u

4q+4 − b1v2

1− 2b1u
,

which is Rv–reversible (item (d)).



(2c) a2(a1 + 2b1) 6= 0, b1 = (2q + 1)a1. Now, the equation (3.7) reduces to b2 = (2q + 1)a2.

In this case, it is more convenient to work with system (3.5) with the transformation x = u,
y = v(1 + a1u)2q+1, i.e.:

u̇ = v(1 + a1u)2q+2 + a2u
2q+2,

v̇ =
σu4q+1

(1 + a1u)2q+1
+

(2q + 1)a2
1 + a1u

u2q+1v.

The time reparametrization dT = (1 + a1X)2qdt and the transformation X = u
1+a1u

, Y = v,
yield

X ′ = Y + a2X
2q+2,

Y ′ = σX4q+1 + (2q + 1)a2X
2q+1Y,

which is RX–reversible (item (e)).

(2d) a2(a1 + 2b1)(b1 − (2q + 1)a1) 6= 0, p4(a2, a1, b1, q, σ) = 0. In this case, both coefficients λ(6)

and λ(8) can not vanish simultaneously, and the vector field is not orbital-reversible.

(??) The situation with the Ry–orbital-reversibility does not include any new case.
From the proof of the theorem, we obtain that system (3.5) is orbital-reversible if, and only if,

it is 8-orbital reversible.
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