Orbital Reversibility of Planar Dynamical Systems

Antonio Algaba, Isabel Checa, Cristóbal García
University of Huelva (Spain)

Estanislao Gamero
University of Sevilla (Spain)

isabel.checa@dmat.uhu.es

Abstract

We give a necessary condition for the orbital-reversibility of a planar system, namely, the existence of a normal form under equivalence which is reversible to the change of sign in the first variable. Based in this condition, we formulate a suitable algorithm to detect orbitalreversibility and we apply the results to solve the center problem in a family of planar nilpotent systems.

Keywords

Bifurcation, Reversible system, Center problem, Orbital Reversible system

1 Introduction

Consider a planar autonomous system of differential equations having an equilibrium point at the origin given by

$$
\begin{equation*}
\dot{\mathbf{x}}=\mathbf{F}(\mathbf{x}), \tag{1.1}
\end{equation*}
$$

where $\mathbf{x}=(x, y)^{\mathrm{T}} \in \mathbb{R}^{2}$. We study if it admits some reversibility modulo \mathcal{C}^{∞}-equivalence (see [1] and [2]).

The problem of determining if system (1.1) has some reversibility is consider in [3] and [4]. In this work, we study if there exists some time-reparametrization such that the resulting system admits some reversibility. The existence of some orbital-reversibility is a valuable feature that helps in the understanding of the dynamical behaviour of a given system.

Next, we give a precise definition of the reversibility we will deal with:
An involution is a local diffeomorphism $\sigma \in \mathcal{C}^{\infty}$, such that $\sigma \circ \sigma=I d, \sigma(\mathbf{0})=\mathbf{0}$ and $\operatorname{codim}(\operatorname{Fix}(\sigma))=1$, where $\operatorname{Fix}(\sigma)=\left\{\mathbf{x} \in \mathbb{R}^{n}: \sigma(\mathbf{x})=\mathbf{x}\right\}$ is the fixed point set of σ.

We say that system (1.1) is reversible if there exists some involution σ such that $\sigma_{*} \mathbf{F}=-\mathbf{F}$.
We say that system (1.1) is orbital-reversible if there exist an involution σ and a function $\mu \in \mathcal{C}^{\infty}$, with $\mu(\mathbf{0})=1$ such that $\sigma_{*}(\mu \mathbf{F})=-\mu \mathbf{F}$, (this means that \mathbf{F} is reversible modulo a time-reparametrization).

We have denoted the pull-back of a vector field of \mathbf{F} by a transformation Φ as $\Phi_{*} \mathbf{F}$. If we use a generator of the transformation, the notation $\mathbf{U}_{* *} \mathbf{F}:=\Phi_{*} \mathbf{F}$ will be used instead. The transformed system can be expressed in terms of nested Lie products. Let us define $T_{\mathbf{U}}^{(0)}(\mathbf{F}):=\mathbf{F}$, and

$$
T_{\mathbf{U}}^{(l)}(\mathbf{F}):=T_{\mathbf{U}}^{(l-1)}([\mathbf{F}, \mathbf{U}])=\overbrace{[\cdots[}^{l \text { times }} \mathbf{F}, \mathbf{U}], \cdots, \mathbf{U}]=\left[T_{\mathbf{U}}^{(l-1)}(\mathbf{F}), \mathbf{U}\right], \quad \text { for } l \geq 1 .
$$

If we use both, a nonlinear time-reparametrization $d t=\mu(\mathbf{x}) d T$ and a near-identity transformation with generator $\mathbf{U}(\mathbf{x})$, then the transformed vector field is given by:

$$
\begin{equation*}
\mathbf{U}_{* *}((1+\mu) \mathbf{F})=\mathbf{U}_{* *} \mathbf{F}+\mu \mathbf{F}+\mu[\mathbf{F}, \mathbf{U}]+(\nabla \mu \cdot \mathbf{U}) \mathbf{F}+\frac{1}{2!}[[\mu \mathbf{F}, \mathbf{U}], \mathbf{U}]+\cdots \tag{1.2}
\end{equation*}
$$

In our study, we assume a quasi-homogeneous expansion for the vector fiel \mathbf{F} corresponding to a type $\mathbf{t}=\left(t_{1}, t_{2}\right) \in \mathbb{N}^{2}$. So, we can suppose that \mathbf{F} is of the form

$$
\begin{equation*}
\mathbf{F}(\mathbf{x})=\tilde{\mathbf{F}}_{r}(\mathbf{x})+\mathbf{F}_{r+1}(\mathbf{x})+\cdots, \text { for some } r \in \mathbb{Z}, \tag{1.3}
\end{equation*}
$$

where the lowest-degree quasi-homogeneous term $\tilde{\mathbf{F}}_{r} \neq \mathbf{0}$ is R_{x}-reversible, and $\mathbf{F}_{r+k} \in \mathcal{Q}_{r+k}^{\mathbf{t}}$ for all $k \in \mathbb{N}$.

2 Some Definitions and Main Result

In this section, we introduce some definitions and we present our important result.
Firstly, we introduce the following vector spaces:

- $\mathcal{O}_{k}^{\mathbf{t}}=\left\{\mu \in \mathcal{P}_{k}^{\mathbf{t}}: \mu(-x, y)=-\mu(x, y)\right\}$, the set of quasi-homogeneous scalar functions of degree k which are odd in the first variable.
- $\mathcal{E}_{k}^{\mathbf{t}}=\left\{\mu \in \mathcal{P}_{k}^{\mathbf{t}}: \mu(-x, y)=\mu(x, y)\right\}$, the set of quasi-homogeneous scalar functions of degree k which are even in the first variable.
- $\mathcal{R}_{k}^{\mathbf{t}}=\left\{\mathbf{F}=(P, Q)^{T} \in \mathcal{Q}_{k}^{\mathbf{t}}: P \in \mathcal{E}_{k+t_{1}}^{\mathbf{t}}, Q \in \mathcal{O}_{k+t_{2}}^{\mathbf{t}}\right\}$, the set of R_{x}-reversible quasihomogeneous vector fields of degree k.
- $\mathcal{S}_{k}^{\mathbf{t}}:=\left\{\mathbf{F}=(P, Q)^{T} \in \mathcal{Q}_{k}^{\mathbf{t}}: P \in \mathcal{O}_{k+t_{1}}^{\mathbf{t}}, Q \in \mathcal{E}_{k+t_{2}}^{\mathbf{t}}\right\}$, the set of R_{x}-symmetric quasihomogeneous vector fields of degree k.

It is easy to deduce that $\mathcal{P}_{k}^{\mathrm{t}}=\mathcal{O}_{k}^{\mathrm{t}} \bigoplus \mathcal{E}_{k}^{\mathrm{t}}$ and $\mathcal{Q}_{k}^{\mathrm{t}}=\mathcal{R}_{k}^{\mathrm{t}} \bigoplus \mathcal{S}_{k}^{\mathrm{t}}$. This decomposition allow us to define the corresponding projection operators as follows:

$$
\begin{aligned}
\pi^{(0)}(\mu) \in \bigoplus_{k} \mathcal{O}_{k}^{\mathrm{t}}, & \pi^{(\mathbf{e})}(\mu) \in \bigoplus_{k} \mathcal{E}_{k}^{\mathrm{t}},
\end{aligned} \quad \text { for } \mu \in \bigoplus_{k} \mathcal{P}_{k}^{\mathrm{t}}, \quad \text { and }, ~=\bigoplus_{k} \mathcal{R}_{k}^{\mathrm{t}}, \quad \Pi^{(\mathbf{s})}(\mathbf{U}) \in \bigoplus_{k} \mathcal{S}_{k}^{\mathbf{t}}, \quad \text { for } \mathbf{U} \in \bigoplus_{k} \mathcal{Q}_{k}^{\mathbf{t}} .
$$

The main goal of this paper is to determine conditions for the orbital-reversibility of (1.3), which will be based on the existence of a near-identity transformation $\Phi=\sum_{j \geq 0} \Phi_{j},\left(\Phi_{j} \in \mathcal{Q}_{j}^{\mathbf{t}}\right)$, and a scalar function $\mu \in \mathcal{C}^{\infty}$, with $\mu(\mathbf{0})=1$, such that $\Phi_{*}(\mu \mathbf{F})$ is R_{x}-reversible.

For our convenience, from now on we will write the time-reparametrization as $1+\mu$, with $\mu(\mathbf{0})=0$. Indeed, it will be written as $1+\sum_{j \geq 1} \mu_{j}$, where $\mu_{j} \in \mathcal{P}_{j}^{\mathbf{t}}$ for $j \geq 1$.

Definition 1 We say that the vector field of system (1.3) is N-orbital-reversible ($N \in \mathbb{N}$) if there exist a vector field $\mathbf{U} \in \bigoplus_{j \geq 1} \mathcal{Q}_{j}^{\mathbf{t}}$ and a scalar function $\mu \in \bigoplus_{j \geq 1} \mathcal{P}_{j}^{\mathrm{t}}$, such that $\mathcal{J}^{r+N}\left(\mathbf{U}_{* *}((1+\right.$ $\mu) \mathbf{F})$) is R_{x}-reversible.

Our idea is to adapt the normal form procedure in order to determine conditions under which the normalized vector field is N-orbital-reversible. We introduce the Lie derivate along the lowestdegree quasi-homogeneous term $\tilde{\mathbf{F}}_{r}$:

$$
\begin{aligned}
\ell_{k-r}: & \mathcal{P}_{k-r}^{\mathbf{t}} \longrightarrow \mathcal{P}_{k}^{\mathbf{t}} \\
& \mu_{k-r} \longrightarrow \nabla \mu_{k-r} \cdot \tilde{\mathbf{F}}_{r} .
\end{aligned}
$$

In the normal form reduction it is enough to take its quasi-homogeneous terms μ_{k} belonging to $\operatorname{Cor}\left(\ell_{k-r}\right)$ (a complementary subspace to Range $\left(\ell_{k-r}\right)$).

We denote

$$
\widehat{\mathcal{R}}_{k}^{\mathrm{t}}:=\mathcal{R}_{k}^{\mathrm{t}} \cap \widehat{\mathcal{Q}}_{k}^{\mathrm{t}} \text { and } \widehat{\mathcal{O}}_{k}^{\mathrm{t}}:=\mathcal{O}_{k}^{\mathrm{t}} \cap \operatorname{Cor}\left(\ell_{k-r}\right),
$$

where $\widehat{\mathcal{Q}}_{k}^{\mathbf{t}}$ is a complementary subspace to $\operatorname{Ker}\left(\ell_{k-r}\right) \tilde{\mathbf{F}}_{r}$ in $\mathcal{Q}_{k}^{\mathbf{t}}$.
Next, we plain to deduce some facts about the normal forms for orbital-reversible vector fields. To this end, we use that $\mathcal{Q}_{k}^{\mathbf{t}}=\mathcal{R}_{k}^{\mathrm{t}} \bigoplus \mathcal{S}_{k}^{\mathrm{t}}$, which allows to write the vector field (1.3) as:

$$
\begin{equation*}
\mathbf{F}=\tilde{\mathbf{F}}_{r}+\sum_{j=1}^{\infty}\left(\tilde{\mathbf{F}}_{r+j}+\overline{\mathbf{F}}_{r+j}\right) \tag{2.4}
\end{equation*}
$$

where $\tilde{\mathbf{F}}_{r+j}=\Pi^{(\mathbf{r})}\left(\mathbf{F}_{r+j}\right) \in \mathcal{R}_{r+j}^{\mathbf{t}}$ and $\overline{\mathbf{F}}_{r+j}=\Pi^{(\mathbf{s})}\left(\mathbf{F}_{r+j}\right) \in \mathcal{S}_{r+j}^{\mathbf{t}}$.
To describe a normal form procedure well adapted to the orbital-reversibility problem, let us denote the above vector field as

$$
\mathbf{F}^{(0)}:=\mathbf{F}=\tilde{\mathbf{F}}_{r}^{(0)}+\left(\tilde{\mathbf{F}}_{r+1}^{(0)}+\overline{\mathbf{F}}_{r+1}^{(0)}\right)+\cdots
$$

We observe that the lowest-degree quasi-homogeneous term is reversible: $\tilde{\mathbf{F}}_{r}^{(0)} \in \mathcal{R}_{r}^{\mathrm{t}}$.
We define the homological operator $\overline{\mathcal{L}}^{(m)}$ as,

$$
\begin{aligned}
\overline{\mathcal{L}}^{(1)}: \widehat{\mathcal{R}}_{1}^{\mathbf{t}} \times \widehat{\mathcal{O}}_{1}^{\mathbf{t}} & \longrightarrow \mathcal{S}_{r+1}^{\mathbf{t}} \\
\left(\tilde{\mathbf{U}}_{1}, \tilde{\mu}_{1}\right) & \longrightarrow
\end{aligned}-\left[\tilde{\mathbf{F}}_{r}^{(0)}, \tilde{\mathbf{U}}_{1}\right]-\tilde{\mu}_{1} \tilde{\mathbf{F}}_{r}^{(0)},
$$

and

$$
\begin{aligned}
\overline{\mathcal{L}}^{(m)}: \operatorname{Ker}\left(\overline{\mathcal{L}}^{(m-1)}\right) \times\left(\widehat{\mathcal{R}}_{m}^{\mathbf{t}}, \widehat{\mathcal{O}}_{m}^{\mathbf{t}}\right) & \longrightarrow \mathcal{S}_{r+m}^{\mathbf{t}} \\
\left(\tilde{\mathbf{U}}_{1}, \tilde{\mu}_{1}, \cdots, \tilde{\mathbf{U}}_{m-1}, \tilde{\mu}_{m-1} ; \tilde{\mathbf{U}}_{m}, \tilde{\mu}_{m}\right) & \longrightarrow-\sum_{j=0}^{m-1}\left[\tilde{\mathbf{F}}_{r+j}^{(m-1)}, \tilde{\mathbf{U}}_{m-j}\right]-\tilde{\mu}_{m-j} \tilde{\mathbf{F}}_{r+j}^{(m-1)}
\end{aligned}
$$

It is evident that operator $\overline{\mathcal{L}}^{(m)}$ depends on $\tilde{\mathbf{F}}_{r}^{(m)}, \cdots, \tilde{\mathbf{F}}_{r+m-1}^{(m)}$.
The following result characterizes the ($N+1$)-orbital-reversibility of a vector field N-orbitalreversible. Proceeding degree by degree and following the ideas of the classical normal form theory, we obtain an algorithm to discarding cases the orbital-reversibility based of the next theorem.

Theorem 2 Let us consider a vector field $\mathbf{F}=\tilde{\mathbf{F}}_{r}+\cdots+\tilde{\mathbf{F}}_{r+N-1}+\left(\tilde{\mathbf{F}}_{r+N}+\overline{\mathbf{F}}_{r+N}\right)+\cdots$, satisfying $\overline{\mathbf{F}}_{r+N} \neq 0$ and $\operatorname{Proj}_{\operatorname{Im}\left(\overline{\mathcal{L}}^{(N)}\right)}\left(\overline{\mathbf{F}}_{r+N}\right)=\mathbf{0}$, for some $N \in \mathbb{N}$. Then, \mathbf{F} is not orbital-reversible.

3 Application

Let us consider the following family of planar vector fields:

$$
\begin{equation*}
\binom{\dot{x}}{\dot{y}}=\binom{y}{\sigma x^{4 q+1}}+\binom{a_{1} x y+a_{2} x^{2 q+2}}{b_{1} y^{2}+b_{2} x^{2 q+1} y}, \tag{3.5}
\end{equation*}
$$

where $\sigma= \pm 1, q \in \mathbb{N}$.
This family has been studied by several authors. Namely, the analytic integrability for this family has been studied in [5]; the center problem for $\sigma=-1$ (which corresponds to the monodromic situation) has been partially studied in [6]; and the reversibility problem is completely solved in [3]. With respect to the orbital-reversibility problem, we have the following result:

Theorem 3 System (3.5) is orbital-reversible if and only if one of the following conditions is satisfied:
(a) $a_{2}=b_{2}=0$.
(b) $a_{2}=a_{1}=b_{1}=0, b_{2} \neq 0$.
(c) $a_{1}=b_{1}=0, a_{2} \neq 0$.
(d) $a_{1}+2 b_{1}=b_{2}+2(q+1) a_{2}=0, a_{2} b_{1} \neq 0$.
(e) $b_{2}=(2 q+1) a_{2}, b_{1}=(2 q+1) a_{1}, a_{2}\left(a_{1}+2 b_{1}\right) \neq 0$.

Proof:
The vector field of the statement can be written as $\mathbf{F}=\tilde{\mathbf{F}}_{r}+\mathbf{F}_{r+1}$, where

$$
\tilde{\mathbf{F}}_{r}:=\left(y, \sigma x^{4 q+1}\right)^{T} \in \mathcal{Q}_{2 q}^{\mathbf{t}}, \text { and } \mathbf{F}_{r+1} \in \mathcal{Q}_{2 q+1}^{\mathbf{t}}
$$

being $r=2 q$ and $\mathbf{t}=(1,2 q+1)$. We observe that $\tilde{\mathbf{F}}_{2 q}$ is $R_{x}-$ and R_{y}-reversible. It is enough to study the R_{x} - and the R_{y}-orbital-reversibility of the vector field \mathbf{F}.
(\star) We start with the R_{x}-orbital-reversibility. As we will see later, in this case is sufficient to reach the $N=8$-orbital-reversibility to solve the orbital-reversibility problem. To reduce the vector field of the statement to the normal form $\mathbf{F}^{(8)}$, we take the generator

$$
\tilde{\mathbf{U}}=\binom{\alpha_{1} x^{2}}{\alpha_{2} x y}+\binom{0}{\alpha_{3} x^{2 q+3}}+\binom{\alpha_{4} x^{4}}{\alpha_{5} x^{3} y}+\cdots \in \bigoplus_{j=1}^{8} \mathcal{R}_{j}^{\mathbf{t}},
$$

and the time-reparametrization associated to

$$
\tilde{\mu}=\gamma_{1} x+\gamma_{3} x^{3}+\gamma_{5} x^{5}+\gamma_{7} x^{7} \in \bigoplus_{j \geq 1}^{8} \widehat{\mathcal{O}}_{j}^{\mathbf{t}}
$$

where α_{i} and γ_{i} are arbitrary parameters. Using Maple in the computations, we obtain the following normal form:

$$
\begin{aligned}
\mathbf{F}^{(8)}= & \tilde{\mathbf{U}}_{* *}((1+\tilde{\mu}) \mathbf{F})=\tilde{\mathbf{F}}_{2 q}+\tilde{\mathbf{F}}_{2 q+1}+\left(\tilde{\mathbf{F}}_{2 q+2}-\frac{1}{3(4 q+3)} \lambda^{(2)}\binom{0}{x^{2 q+2} y}\right) \\
& +\tilde{\mathbf{F}}_{2 q+3}+\left(\tilde{\mathbf{F}}_{2 q+4}+\frac{\sigma}{3(4 q+5)(4 q+3)^{3}} \lambda^{(4)}\binom{0}{x^{2 q+4} y}\right) \\
& +\tilde{\mathbf{F}}_{2 q+5}+\left(\tilde{\mathbf{F}}_{2 q+6}+\lambda^{(6)}\binom{0}{x^{2 q+6} y}\right) \\
& +\tilde{\mathbf{F}}_{2 q+7}+\left(\tilde{\mathbf{F}}_{2 q+8}+\lambda^{(8)}\binom{0}{x^{2 q+8} y}\right)+\cdots .
\end{aligned}
$$

So, by applying Theorem 2, if \mathbf{F} is orbital-reversible then the coefficients $\lambda^{(2 j)}$ must vanish.
The first normal form coefficient $\lambda^{(2 j)}$ is:

$$
\begin{equation*}
\lambda^{(2)}=a_{2}\left((2 q+3)(2 q+1) a_{1}+2 q b_{1}\right)+b_{2}\left(2 q a_{1}-3 b_{1}\right) . \tag{3.6}
\end{equation*}
$$

To study the vanishing of this coefficient, we consider the following two possibilities:
(1) $2 q a_{1}-3 b_{1}=0$, and then $\lambda^{(2)}$ vanishes in a couple of cases:
(1a) $a_{2}=0$. In this case, the next normal form coefficient is

$$
\lambda^{(4)}=q b_{2} a_{1}^{3},
$$

which vanishes if $b_{2}=0$ (in this case, covered in item (a), the system is R_{y}-reversible), or if $a_{1}=0$ (now, the system is R_{x}-reversible; this situation is described in item (b)).
(1b) $a_{2} \neq 0,(2 q+3)(2 q+1) a_{1}+2 q b_{1}=0$, which provides $a_{1}=b_{1}=0$. In this case the system is R_{x}-reversible. This is the situation described in item (c).
(2) $2 q a_{1}-3 b_{1} \neq 0$, and then $\lambda^{(2)}$ vanishes if, and only if,

$$
\begin{equation*}
b_{2}=-\frac{(2 q+3)(2 q+1) a_{1}+2 q b_{1}}{2 q a_{1}-3 b_{1}} a_{2} . \tag{3.7}
\end{equation*}
$$

For this value, the next normal form coefficient is

$$
\lambda^{(4)}=\frac{4 q+3}{2 q a_{1}-3 b_{1}} a_{2}\left(a_{1}+2 b_{1}\right)\left(b_{1}-(2 q+1) a_{1}\right) p_{4}\left(a_{2}, a_{1}, b_{1}, q, \sigma\right)
$$

where we have denoted

$$
\begin{aligned}
& p_{4}\left(a_{2}, a_{1}, b_{1}, q, \sigma\right)=3(2 q+5)(4 q+3)^{2}\left((2 q+3)(4 q+1) a_{1}-(4 q+9) b_{1}\right) a_{2}^{2} \\
& \quad+\sigma\left(2 q a_{1}-3 b_{1}\right)\left(2 q\left(120 q^{2}+202 q+49\right) a_{1}^{2}-\left(512 q^{2}+844 q+135\right) a_{1} b_{1}+5(52 q+81) b_{1}^{2}\right)
\end{aligned}
$$

The vanishing of $\lambda^{(4)}$ leads to some subcases:
(2a) $a_{2}=0$, which implies $b_{2}=0$. We get again item (a).
(2b) $a_{2} \neq 0, a_{1}+2 b_{1}=0$. This hypothesis implies that $b_{1} \neq 0$ (otherwise, $a_{1}=b_{1}=0$). Moreover, the equation (3.7) reduces to $b_{2}=-2(q+1) a_{2}$. Now, the system (3.5) is Hamiltonian, with Hamiltonian

$$
h(x, y)=-\frac{1}{2} y^{2}+\frac{\sigma}{2(2 q+1)} x^{4 q+2}+b_{1} x y^{2}-a_{2} x^{2 q+2} y
$$

If we denote $u=x, v=y-2 b_{1} x y+a_{2} x^{2 q+2}$, then system (3.5) becomes:

$$
\begin{aligned}
\dot{u} & =v \\
\dot{v} & =\sigma u^{4 q+4}+\left(2(q+1) a_{2}^{2}-2 b_{1} \sigma\right) u^{4 q+2}+\frac{a_{2} u^{4 q+4}-b_{1} v^{2}}{1-2 b_{1} u}
\end{aligned}
$$

which is $R_{v}-$ reversible (item (d)).
(2c) $a_{2}\left(a_{1}+2 b_{1}\right) \neq 0, b_{1}=(2 q+1) a_{1}$. Now, the equation (3.7) reduces to $b_{2}=(2 q+1) a_{2}$.
In this case, it is more convenient to work with system (3.5) with the transformation $x=u$, $y=v\left(1+a_{1} u\right)^{2 q+1}$, i.e.:

$$
\begin{aligned}
\dot{u} & =v\left(1+a_{1} u\right)^{2 q+2}+a_{2} u^{2 q+2} \\
\dot{v} & =\frac{\sigma u^{4 q+1}}{\left(1+a_{1} u\right)^{2 q+1}}+\frac{(2 q+1) a_{2}}{1+a_{1} u} u^{2 q+1} v
\end{aligned}
$$

The time reparametrization $d T=\left(1+a_{1} X\right)^{2 q} d t$ and the transformation $X=\frac{u}{1+a_{1} u}, Y=v$, yield

$$
\begin{aligned}
X^{\prime} & =Y+a_{2} X^{2 q+2} \\
Y^{\prime} & =\sigma X^{4 q+1}+(2 q+1) a_{2} X^{2 q+1} Y
\end{aligned}
$$

which is R_{X}-reversible (item (e)).
(2d) $a_{2}\left(a_{1}+2 b_{1}\right)\left(b_{1}-(2 q+1) a_{1}\right) \neq 0, p_{4}\left(a_{2}, a_{1}, b_{1}, q, \sigma\right)=0$. In this case, both coefficients $\lambda^{(6)}$ and $\lambda^{(8)}$ can not vanish simultaneously, and the vector field is not orbital-reversible.
($\star \star$) The situation with the R_{y}-orbital-reversibility does not include any new case.
From the proof of the theorem, we obtain that system (3.5) is orbital-reversible if, and only if, it is 8 -orbital reversible.

References

[1] J.S.W. Lamb and J.A.G. Roberts. Time-reversal symmetry in dynamical systems: a survey. Physica D. Nonlinear Phenomena, 112, 1-2, (1998), pp. 1-39.
[2] D. Montgomery and L. Zippin. Topological Transformations Group. Interscience Publ., New York, 1995.
[3] A. Algaba, C. García and M.A. Teixeira. Reversibility and quasi-homogeneous normal forms of vector fields. Nonlinear Analysis: Theory, Methods and Applications, 73, (2010), pp. 510-525.
[4] A. Algaba, E. Gamero and C. García. The reversibility problem for quasi-homogeneous dynamical systems. Discrete and Continuous Dynamical System-A, 33, 8, (2013), pp. 3225-3236. doi:10.3934/dcds.2013.33.3225
[5] J. Chavarriga, I. García and J. Giné. Integrability of centers perturbed by quasi-homogeneous polynomials. Journal of Mathematical Analysis and Applications, 210 (1997), pp. 268-278.
[6] A. Gasull and J. Torregrosa. Center problem for several differential equations via Cherkas' method. Journal of Mathematical Analysis and Applications, 228 (1998), pp. 322-343.

