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Abstract

The low-energy limit of string gravity in the semi-classical approximation is in-
vestigated in collaboration with Dr. M.V. Pomazanov and Dr. S.O. Alexeyev. The
method of singularly perturbed ordinary differential equations is used. The most
simple spherically symmetric static four dimensional metric is studied:

ds2 = −∆(r)dt2 +
σ2(r)

∆(r)
dr2 + r2

(

dθ2 + sin2 θdϕ2
)

.

In this particular case, the Lagrangian is made of power series of the string coupling
constant, and has the form

L = L(r,∆, σ, φ,∆′, φ′) + λL1(r,∆, σ, φ,∆′, φ′) +

+ λnl(r,∆, σ, φ,∆′, σ′,∆′′) + higher order corrections,

where ∆, σ, φ are functions of r, φ is a dilatonic field, λ is the string coupling constant,
n = 2 or n = 3 depending on which variant of low-energy string theory is chosen:
bosonic, heterotic or SUSY II. Exact form of L1 and l also depends on this choice.
The unperturbed Lagrangian L yields asymptotically flat spherically symmetric static
black hole solutions (the Schwarzschild metric):

∆ = ∆0(r) = 1 −
2M

r
, σ = σ0(r) = 1, φ = φ0(r) = φ0 = const,

where M is the mass of the black hole.
The problem of proximity between the solution to the Lagrangian equations and

the corresponding solution in classical gravity is extremely important. Since these
equations are singularly perturbed, with higher derivatives of metric in the Lagrangian,
their solutions might be fundamentally different from unperturbed ones. The low-
energy limit must be considered carefully to avoid any internal contradiction in the
theory.

A great amount of calculations is carried out, due to the complexity and unhandi-
ness of the corresponding corrections. So, analytical and numerical calculations on a
computer are performed. Software packages MAPLE and REDUCE are used to derive
the Lagrangian equations taking into account higher order corrections. Mainly, tensor



calculations are performed. Then, proximity of the perturbed solution to the unper-
turbed one with the same initial conditions for three different forms of the Lagrangian
is studied using Tikhonov’s theorem. The necessary condition of the pointwise prox-
imity is u(r) ≤ 0 if r ≥ 0 for all solutions of the equation

|uP − Q|∆=∆0(r),σ=σ0(r),φ=φ0(r) = 0,

where

Q =

(

L∆′∆′ − L2
∆′φ′/Lφ′φ′ Lσ∆′ − Lσφ′Lφ′∆′/Lφ′φ′

L∆′σ − L∆′φ′Lφ′σ/Lφ′φ′ Lσσ − L2
σφ′/Lφ′φ′

)

,

P =

(

l∆′′∆′′ l∆′′σ′

l∆′′σ′ lσ′σ′

)

.

For the sake of errors elimination, two different codes are written, one for MAPLE
and the other for REDUCE, and all the results agreed.

This approach led to serious and unexpected conclusions. It is demonstrated that
the correction to the Lagrangian, in two different variants of low-energy string gravity
(bosonic and heterotic), makes a singular contribution to the equations, because the
condition u ≤ 0 is not fulfilled. The proximity of this solution to the classical one
is possible only with a particular choice of additional initial conditions, which could
hardly be based on the physics.

In SUSY II case, the necessary proximity condition holds. However, a sufficient
condition is not obtained analytically, because it demands taking into account the next
correction to the Lagrangian. The seventh order Runge-Kutta code is used for the
numerical integration of Lagrangian equations in SUSY II case. The initial conditions
at r = 2.5M are derived from the unperturbed solution ∆0(r), σ0(r), φ0(r). Numerical
analysis revealed that the correct behavior of the solution is observed without any
fine-tuning of initial conditions. So, from this point of view, SUSY II seems to be
the most promising variant of the theory. This fact is extremely important for the
specialists in this field as the experimental testing of the string gravity consequences
should be based on an internally consistent model.
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