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CONSTRUCTING SOLUTIONS FOR THE GENERALIZED

HÉNON–HEILES SYSTEM THROUGH THE PAINLEVÉ TEST

S. Yu. Vernov∗

The generalized Hénon–Heiles system is considered. New special solutions for two nonintegrable cases

are obtained using the Painlevé test. The solutions have the form of the Laurent series depending on

three parameters. One parameter determines the singularity-point location, and the other two parameters

determine the coefficients in the Laurent series. For certain values of these two parameters, the series

becomes the Laurent series for the known exact solutions. It is established that such solutions do not exist

in other nonintegrable cases.

Keywords: nonintegrable systems, Painlevé test, singularity analysis, polynomial potential, Hénon–Heiles
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1. Painlevé property and integrability

A Hamiltonian system defined in a 2s-dimensional phase space is said to be fully integrable, or Liouville
integrable, if there exist s independent commuting integrals of motion. In this case, the equations of motion
are separable (at least, in principle), and the solution can be obtained in quadratures.

In problems in mechanics and field theory, the coordinates and time are assumed to be real. On
the other hand, the integrability of the equations of motion depends on the behavior of their solutions as
functions of complex time and also complex spatial coordinates in the case of field theory. The idea of
interpreting time as a complex variable and requiring the mechanical-problem solutions to be single-valued
functions meromorphic in the entire complex plane was first advanced by Kovalevskaya [1]. This idea led
Kovalevskaya to a remarkable result [1] (also see [2], [3]): a new integrable case for the motion of a massive
solid body around a fixed point was discovered. This case is currently known as the Kovalevskaya case. This
result demonstrated that the analytic theory of differential equations can be fruitfully applied to physical
problems. An important step in the development of this theory was the Painlevé classification of ordinary
differential equations (ODEs) with respect to the types of singularities in their solutions.

We formulate the Painlevé property for ODEs. We interpret the solution of a system of ODEs as an
analytic function that can have isolated singularities [4], [5]. A singularity point is called a critical point if
the function changes its value when the singularity point is traced around. Otherwise, the singularity point
is said to be noncritical. A singularity point whose location depends on the initial conditions is called a
movable singularity.1

Definition [6]. A system of ODEs has the Painlevé property if its general solution has no movable
critical singularities.

In the neighborhood of the singularity at the point t0, an arbitrary solution of such a system can be
expanded in a Laurent series containing a finite number of terms with negative powers of the difference

∗Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow, Russia, e-mail: svernov@theory.sinp.msu.ru.

1For systems where the Hamiltonian is independent of time, all singularity points are movable.

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 135, No. 3, pp. 409–419, June, 2003.

792 0040-5779/03/1353-0792$25.00 c© 2003 Plenum Publishing Corporation



t− t0. In a number of cases, a system that does not have the Painlevé property can be reduced to the form
of a system that does have it by changing the variables. In such cases, we say that the initial system has
the weak Painlevé property.

It has been shown that many mechanical systems can be completely integrated only if the values of
the parameters are such that the system has the Painlevé property or the weak Painlevé property [7]–[9].
Some arguments elucidating the connection between the Painlevé analysis and the existence of the integrals
of motion were given in [10]. It has been proved that if a system has complex and irrational “resonances,”
then it is not algebraically integrable [11] (also see [12] and the literature therein). But the integrability
of an arbitrary system that has the Painlevé property has not yet been proved, and an algorithm for
constructing the additional integral from the Painlevé analysis has not been constructed. An example of a
system that is integrable in quadratures but does not have the Painlevé property can be readily given [13]:
H = p2/2+f(x), where f(x) is a polynomial of fifth or higher order. This system can be trivially integrated
in quadratures, and its general solution is not a meromorphic function.

The term Painlevé test refers to any algorithm aimed at checking if the necessary conditions for the
Painlevé property of a differential equation are satisfied. The algorithm constructed and used by Painlevé
himself to identify all second-order ODEs that have the Painlevé property [6] is known as the α-method.
The Kovalevskaya method [1] is less general but much simpler than the α-method.

Developing the Kovalevskaya method further, Ablowitz, Ramani, and Segur [14] constructed a new
algorithm for the Painlevé test for ODEs. They were the first to notice the connection between nonlin-
ear partial differential equations integrable by the inverse scattering method and equations that have the
Painlevé property. Later, the Painlevé property for partial differential equations was formulated, and the
corresponding Painlevé test (the WTC method) was constructed [15], [16] (also see [17]–[20]).

Based on the Painlevé test, an algorithm for obtaining special solutions of an ODE in the form of finite
expansions with respect to the unknown function ϕ(t − t0) was constructed [21]. The function ϕ(t − t0)
and the coefficients in the expansion are solutions of a certain system of ODEs. The latter system is often
simpler than the initial equation. This method was used to obtain exact special solutions of nonintegrable
ODEs [22]. The four-parameter generalization of the exact three-parameter solution of the ninth Bianchi
cosmology model, i.e., the Mixmaster, was obtained in [23] using a Painlevé test based on the perturbation
theory [18].

The objective in this article is to obtain new special solutions of the generalized Hénon–Heiles system
using a Painlevé test. In contrast with [22], we express the solutions as formal Laurent series (possibly
multiplied by

√
t − t0 ). We then obtain the convergency domain for these series.

2. The Hénon–Heiles Hamiltonian

In the 1960s, models of the motion of stars in a cylindrically symmetric, time-independent potential were
intensively investigated by astronomers [24], [25]. Because the potential is symmetric, the three-dimensional
problem reduces to the two-dimensional one. But obtaining the analytic form for the second integral of
the resulting system—for example, in the form of a polynomial with respect to the phase variables—is an
insolvable problem, even for relatively simple polynomial potentials. To learn whether the unknown integral
exists, Hénon and Heiles investigated the behavior of the trajectories, integrating the equations of motion
numerically [25]. Emphasizing that their choice of the potential was not based on experimental data, they
proposed the Hamiltonian

H =
1
2
(x2

t + y2
t + x2 + y2) + x2y − 1

3
y3.
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On one hand, this Hamiltonian is sufficiently simple that the trajectories can be obtained easily, and, on the
other hand, sufficiently complex that the obtained trajectories are by no means trivial. Indeed, for small
energies the Hénon–Heiles system seems integrable: the trajectories obtained from the numerical integration
lie on two-dimensional surfaces for any initial conditions, i.e., the situation is same as in the case where the
second independent integral does exist. At the same time, many of these surfaces disintegrate as the energy
increases, which points toward the absence of the second integral. Subsequent numerical studies [26], [27]
demonstrated that in the complex t plane, the singularity points for the solutions of the equations of motion
are grouped into self-similar spirals. The resulting extremely complex singularity distributions form the
boundary beyond which the solution cannot be analytically continued.

The generalized Hénon–Heiles system is described by the Hamiltonian

H =
1
2
(x2

t + y2
t + λx2 + y2) + x2y − C

3
y3, (1)

and the corresponding system of the equations of motion are

xtt = −λx − 2xy,

ytt = −y − x2 + Cy2,
(2)

where xtt ≡ d2x/dt2, ytt ≡ d2y/dt2, and λ and C are numerical parameters.
The Painlevé analysis yields the following integrable cases (2):

a. C = −1, λ = 1;

b. C = −6, λ is an arbitrary number;

c. C = −16, λ = 1/16.

The Hénon–Heiles system is a model that not only is intensively investigated by different mathematical
methods2 but also is widely used in physics, in particular, in gravitation theory [29]–[31] and plasma
theory [32]. Models that result from adding nonpolynomial terms in Hamiltonian (1) are also intensively
investigated [33]–[35].

3. Nonintegrable cases

General solutions of the Hénon–Heiles system are known only for integrable cases [35]. In other cases,
not only exact four-parameter solutions but also exact three-parameter solutions have not yet been obtained.

As a system of two second-order ODEs, the Hénon–Heiles system is equivalent to a fourth-order
equation3

ytttt = (2C − 8)ytty − (4λ+ 1)ytt + 2(C + 1)y2
t +

20C
3

y3 + (4Cλ − 6)y2 − 4λy − 4H, (3)

where H is the energy of the system. Special solutions of these equations can be obtained by assuming
that y is a solution of a simpler ODE. A well-known example is the two-parameter solutions in the form of
elliptic Weierstrass functions [36] satisfying the first-order equation

y2
t = Ãy3 + B̃y2 + C̃y + D̃, (4)

2The history of studies of the generalized Hénon–Heiles system is described in [28].
3If y(t) is known, the function x2(t) can be obtained as a solution of a linear equation. System (2) is invariant under

replacing x with −x.
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where Ã, B̃, C̃, and D̃ are constants.
Timoshkova [37] generalized Eq. (4) to

y2
t = Ãy3 + B̃y2 + C̃y + D̃ + G̃y5/2 + Ẽy3/2 (5)

and obtained new one-parameter sets of solutions for the Hénon–Heiles system in nonintegrable cases
(C = −4/3 or C = −16/5, λ is an arbitrary number). Four equations with G̃ 
= 0 or Ẽ 
= 0 correspond
to each pair of C and λ values. It is noteworthy that such equations can be written for D̃ = 0; therefore,
substituting y = �2 leads to the equation

�2
t =

1
4
(Ã�4 + G̃�3 + B̃�2 + Ẽ�+ C̃). (6)

The general solution of this equation depends on one arbitrary parameter and can be expressed in either
elementary or elliptic functions.

4. Painlevé test results for the Hénon–Heiles system

The Ablowitz–Ramani–Segur algorithm of the Painlevé test is extremely useful for obtaining the solu-
tions as formal Laurent series. Let the behavior of the solution in the neighborhood of the singularity point
t0 be algebraic, i.e., the solutions tend to infinity as

x = aα(t − t0)α, y = bβ(t − t0)β , (7)

where α, β, aα, and bβ are some constants. Of course, the real parts of α and β should be negative, and
aα 
= 0, and bβ 
= 0.

If α and β are integer, substituting expansions of the form

x = aα(t − t0)α +
Nmax∑
k=1

ak+α(t − t0)k+α, y = bβ(t − t0)β +
Nmax∑
k=1

bk+β(t − t0)k+β

allows reducing the system of differential equations to a set of sequentially solved linear algebraic systems
with respect to the coefficients ak and bk. In the general case, the exact solutions in the form of formal
Laurent series can be obtained only if an infinite number of the systems are solved (Nmax = ∞). On
the other hand, it is possible to obtain solutions to the accuracy of O(tNmax) by solving a finite number
of systems. The linear algebraic systems can be sequentially solved by computer using computer algebra
software, such as REDUCE [38], [39] or Mathematica [40]. But for such a computer solution, it is necessary
to predetermine the values of the constants α, β, aα, and bβ and the numbers of the systems whose
determinants are equal to zero. The coefficients of the powers of t corresponding to such systems may
contain new arbitrary parameters. These powers are often called the resonances. The computer solutions
can be obtained only after such systems are investigated. All this necessary information can be obtained
through a Painlevé test (see, e.g., [9]). Moreover, the Painlevé analysis results help to identify cases where
it is useful to include terms with fractional powers of t − t0 in the expansions.

There exist two different behavior types for the solutions of system (2) in the neighborhood of the
singularity [9], [27], [41] (see Table 1). The values of the variable r indicate the resonances: r = −1
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corresponds to t0, and r = 0 in case 2 corresponds to the situation where the leading term is proportional
to the arbitrary parameter c1. The remaining values of r determine the powers of t where new arbitrary
coefficients appear as solutions of the linear systems with zero determinant, namely, tα+r for x and tβ+r for
y. In one of the cases, the existence of negative resonances other than the resonance r = −1 that always
exists means that this case corresponds to a singular solution and not to the general solution.

Table 1

Case 1 Case 2
(
β < Reα < 0

)
α = −2 α =

(
1±

√
1− 48/C

)
/2

β = −2 β = −2

aα = ±3
√
2 + C aα = c1 (arbitrary)

bβ = −3 bβ = 6/C

r = −1, 6, 5/2−
(√

1− 24(1 + C)
)
/2, r = −1, 0, 6, ∓

√
1− 48/C

5/2 +
(√

1− 24(1 + C)
)
/2

It is necessary for the integrability of system (2) that all values of α and r be integer or rational and
that all systems with zero determinants have solutions for any values of the free parameters entering these
systems. This is possible only in the integrable cases a–c (see Sec. 2).

In the search for special solutions, it is interesting to consider the values of C for which α and r are
integer or rational numbers either only in case 1 or only in case 2. We identify all cases where there exists
a special (not singular) solution that can be expressed in the form of a three-parameter Laurent series
(possibly multiplied by

√
t − t0 ). Because the values of r must be natural, the general solution can be

expressed in the form of a Laurent series for either C = −1 and C = −4/3 (case 1) or C = −16/5, C = −6,
and C = −16 (case 2, α = (1−

√
1− 48/C )/2) and also C = −2, in which case the two behavior types for

the solutions in the singularity neighborhood merge into one. We consider all these alternatives.
For C = −2, we obtain the inconsistency aα = 0 (see case 1) because our assumption is not satisfied

and the behavior of the solution in the singularity neighborhood is not algebraic: the leading order contains
logarithmic terms [9]. For C = −6 and any value of λ, the exact four-parameter solutions are known. In
the cases where C = −1 and C = −16, substituting the unknown functions in the form of the Laurent
series leads to the respective equations λ = 1 and λ = 1/16 for λ. Therefore, the solutions that are free
of logarithms exist only in the integrable cases. Hence, special solutions in the form of the Laurent series
depending on three parameters can exist only in two nonintegrable cases, namely, for C = −16/5 and
C = −4/3. It is remarkable that these Laurent series generalize the exact solutions obtained in [37].

5. New solutions

We consider the Hénon–Heiles system for C = −16/5. In case 2, we obtain α = −3/2 and r =
−1, 0, 4, 6; therefore, x should be sought in a form such that the expansion of x2 in the Laurent series in
the neighborhood of t0 begins with (t − t0)−3. Let t0 = 0. Substituting

x =
√

t

(
c1t

−2 +
∞∑

k=−1

aktk
)

, y = −15
8

t−2 +
∞∑

k=−1

bktk
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in system (2), we obtain the sequence of linear systems for the coefficients ak and bk:

(k2 − 4)ak + 2c1bk = −λak−2 − 2
k−1∑

j=−1

ajbk−j−2,

(
(k − 1)k − 12

)
bk = −bk−2 −

k−1∑
j=−2

ajak−j−3 −
16
5

k−1∑
j=−1

bjbk−j−2.

(8)

The determinants of the systems corresponding to the values k = 2 and k = 4 are equal to zero. To
determine a2 and b2, we obtain the system

c1

(
557056c8

1 + (15552000λ− 4860000)c4
1 + 864000000b2+

+ 108000000λ2 − 67500000λ+ 10546875
)
= 0,

818176c8
1 + (15660000λ− 4893750)c4

1 − 810000000b2 − 6328125 = 0.

(9)

It is easy to see that this system contains no terms proportional to a2. Therefore, a2 is the new integration
constant. Disregarding the solution with c1 = 0, we obtain a system for c̃1 ≡ c4

1 and b2. This system has
the solutions

c̃1 =
1125

(
4
√
35(2048λ2 − 1280λ+ 387) − 1680λ+ 525

)
167552

,

b2 = − (10944λ− 3420)
√
35(2048λ2 − 1280λ+ 387) − 4403456λ2 + 2752160λ− 789065

117956608

and

c̃1 =
1125

(
−4

√
35(2048λ2 − 1280λ+ 387) − 1680λ+ 525

)
167552

,

b2 =
(10944λ− 3420)

√
35(2048λ2 − 1280λ+ 387) − 4403456λ2 + 2752160λ− 789065

117956608
.

We thus obtain the new integration constant a2. But we needed to fix c1, and the number of arbitrary
parameters remains equal to two. It is easy to verify that for k = 4, the system reduces to one equation
and b4 is the new arbitrary parameter. We hence obtain a formal solution depending on three parameters,
namely, t0, a2, and b4.

We can now obtain the solution to any required accuracy using computer algebra software. For a given
value of λ, we choose one of the possible values of c1, and then aj and bj are obtained automatically. We
thus obtain four three-parameter solutions for C = −16/5, corresponding to the four exact one-parameter
solutions obtained in [37]. The Laurent series for the exact solutions coincide with the corresponding
two-parameter series for certain values of these parameters. The case where λ = 1/9 is considered in the
appendix as an example.

For C = −4/3, the situation is analogous to that in the case examined above. In case 1, we have
r = −1, 1, 4, 6. Substituting

x =
√
6 t−2 +

∞∑
k=−1

dktk, y = −3t−2 +
∞∑

k=−1

fktk
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in system (2), we obtain the sequence of linear systems for the coefficients dk and fk:

(
(k − 1)k − 6

)
dk + 2

√
6 fk = −λdk−2 − 2

k−1∑
j=−1

djfk−j−2,

(
(k − 1)k − 8

)
fk + 2

√
6 dk = −fk−2 −

k−1∑
j=−1

djdk−j−2 − 4
3

k−1∑
j=−1

fjfk−j−2.

(10)

These systems have a zero determinant for k = −1, 2, 4. In the case where k = −1, the system always
has a solution, and f−1 is the new parameter fixed by solving the system with k = 2. If

f−1 = ±

√√
7(1216λ2 − 1824λ+ 783) − 140λ+ 105

385

or

f−1 = ±

√
−

√
7(1216λ2 − 1824λ+ 783) − 140λ+ 105

385
,

then the system has solutions, and f2 is the new arbitrary parameter. For k = 4, in analogy with the case
where C = −16/5, the system reduces to one equation, and f4 is the new arbitrary parameter. Hence, in
the case where C = −4/3, we again have four three-parameter (t0, f2, f4) solutions corresponding to the
four exact one-parameter solutions obtained in [37]. The Laurent series for the exact solutions coincide
with the corresponding two-parameter series for certain values of these parameters.

Once a formal series is obtained, the question of its convergence naturally arises. It was proved
in [41], [42] that the solutions of the generalized Hénon–Heiles system obtained as formal psi-series have a
nonzero convergency domain. The case where C = −16/5 and λ = 1/9 is considered in the appendix as an
example. For this case, it is proved that if |a2| ≤ 1 and |b4| ≤ 1, then the Laurent series converges in the
ring 0 < |t− t0| ≤ (1− ε), where ε is an arbitrary positive number. The convergence of the series for other
values of C and λ can be investigated similarly.

6. Conclusions

The Painlevé analysis allows not only identifying the integrable cases of dynamical systems but also
constructing special solutions, even in nonintegrable cases.

Three-parameter solutions in the form of Laurent series are obtained for the Hénon–Heiles system with
C = −16/5 or C = −4/3 and an arbitrary λ. For certain values of the two parameters, these solutions
coincide with the known exact solutions. The series have a nonzero convergence domain. It is shown
using the Painlevé test that the nonintegrable Hénon–Heiles system has special solutions in the form of a
three-parameter Laurent series only for the abovementioned values of C. In these cases, the probability of
obtaining the exact three-parameter solutions of Eq. (3) is highest because nothing impedes their existence
in the form of single-valued functions.

Appendix

We consider the case where C = −16/5 and λ = 1/9. There are two possible forms of Eq. (5). The
first possible form is

y2
t +

32
15

y3 +
4
9
y2 ± 8i√

135
y5/2 = 0,
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and depending on the sign of the last term, we obtain either

y = − 5

3
(
1− 3 sin

(
(t − t0)/3

))2 (11a)

for the case with the plus sign or

y = − 5

3
(
1 + 3 sin

(
(t − t0)/3

))2 (11b)

for the case with the minus sign. The other possible form is

y2
t +

32
15

y3 +
1748
1683

y2 ± 8
√
65

15
√
561

y5/2 ± 8125
√
65

20196
√
561

y3/2 +
333125
7553304

y = 0,

and the solutions can be obtained in the form of the elliptic Jacobi functions.
The solutions of system (9) are

{
c̃1 =

625
128

, b2 = − 1819
663552

}
,

{
c̃1 = − 8125

23936
, b2 = − 8700683

1364926464

}
,

and we obtain four types of the function y:

y = − 15
8

t−2 +
5
√
2

32
t−1 − 205

2304
+
115

√
2

13824
t − 1819

663552
t2 +

+
(
741719

√
2

1528823808
+
5 4
√
2

12
a2

)
t3 + b4t

4 + . . . , (12a)

y = − 15
8

t−2 − 5
√
2

32
t−1 − 205

2304
− 115

√
2

13824
t − 1819

663552
t2 −

−
(
741719

√
2

1528823808
+
5i 4
√
2

12
a2

)
t3 + b4t

4 + . . . , (12b)

y = − 15
8

t−2 +
5i
√
4862

5984
t−1 − 69335

430848
− 37745i

√
4862

483411456
t − 8700683

1364926464
t2 −

−
(
1148020763i

√
13

√
374

3332429743915008
− 5

√
2

12
a2

4

√
− 13
374

)
t3 + b4t

4 + . . . , (12c)

y = − 15
8

t−2 − 5i
√
4862

5984
t−1 − 69335

430848
+
37745i

√
4862

483411456
t − 8700683

1364926464
t2 −

−
(
1148020763

√
13

√
374

3332429743915008
+
5i
√
2

12
a2

4

√
− 13
374

)
t3 + b4t

4 + . . . . (12d)

It is easy to verify that series (12a) for a2 = −21497 4
√
2 /42467328 and b4 = −858455/12039487488

is the Laurent series for solution (11a) and that series (12b) for a2 = −21497i 4
√
2 /42467328 and b4 =

−858455/12039487488 is the Laurent series for solution (11b). For certain values of the parameters, se-
ries (12c) and (12d) are the Laurent series for the solutions of Eqs. (9).

As known, the convergence domain for a Laurent series is a ring. We formulate the conditions under
which series (12a)–(12d) and the corresponding series for the function x converge in the domain 0 < |t| ≤
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1 − ε, where ε is an arbitrary positive number. The geometric-progression sum S =
∑∞

n=0 tn = 1/(1 − t)
is finite for |t| ≤ 1 − ε; therefore, the series converges in a given ring if there exists N such that ∀n > N ,
|an| ≤ M and |bn| ≤ M , where M is a real number.

Let |an| ≤ M and |bn| ≤ M for all −1 < n < k. We then obtain the relations

|ak| ≤
2M(k + 1) + |λ|+ 2|c1|

|k2 − 4| M, |bk| ≤
21Mk + 26M + 5
5|k2 − k − 12| M (13)

from Eq. (8). It is easy to see that there exists N such that if |an| ≤ M and |bn| ≤ M for −1 ≤ n ≤ N ,
then |an| ≤ M and |bn| ≤ M for −1 ≤ n < ∞. For example, in the case where M = 1, we have N = 8 for
any possible value of c1. It is easy to verify that if |a2| ≤ 1 and |b4| ≤ 1, then |an| ≤ 1 and |bn| ≤ 1 for
−1 ≤ n ≤ 8 and therefore for an arbitrary n. Hence, the Laurent series converges in the ring 0 < |t| ≤ 1−ε.
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