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with long-range particle interactions are suggested. The proposed lattice fractional deriv-
atives and integrals are represented by kernels of lattice long-range interactions, such that
their Fourier series transformations have a power-law form with respect to components of
wave vector. Continuous limits for these lattice fractional derivatives and integrals give the
continuum derivatives and integrals of non-integer orders with respect to coordinates. Lat-
tice analogs of fractional differential equations that include suggested lattice differential
and integral operators can serve as an important element of microscopic approach to non-
local continuum models in mechanics and physics.
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1. Introduction

The main approaches to describe nonlocal properties of media and materials are a macroscopic approach based on the
continuum mechanics [1–5], and a microscopic approach based on the lattice mechanics [6–9]. Continuum mechanics can
be considered as a continuous limit of lattice dynamics, where the sizes of continuum elements are much larger than the
distances between lattice particles.

Theory of derivatives and integrals of non-integer orders [10–19] has a long history and it goes back to the famous sci-
entist such as Leibniz, Riemann, Liouville, Letnikov, Weyl, Riesz and other. Fractional calculus and fractional differential
equations have a wide application in different areas of physics [20–31]. Fractional integro-differential equations are very
important to describe processes in nonlocal continua and media. Fractional integrals and differential operators with respect
to coordinates allow us to describe continuously distributed system with power-law type of nonlocality. Therefore fractional
calculus serve as a powerful tool in physics and mechanics of nonlocal continua. As it was shown in [41,42,25], the fractional
differential equations for nonlocal continua can be directly connected to models of lattice with long-range interactions of
power-law type. Interconnection between the equations for lattice with long-range interactions and the fractional differen-
tial equations for continuum is proved by special transform operator that includes a continuous limit, and the Fourier series
and integral transformations [41–44]. In [55–59] this approach has been applied to lattice models of fractional nonlocal con-
tinua in one-dimensional case only. In this paper we propose a lattice fractional calculus that allows us to extend these lat-
tice models to N-dimensional case.

Dynamics of physical lattices and discretely distributed systems with long-range interactions has been the subject of
investigations in different areas of science. Effect of synchronization for nonlinear systems with long-range interactions is
described in [32]. Non-equilibrium phase transitions for systems with long-range interactions are considered in [33]. Sta-
tionary states for fractional systems with long-range interactions are discussed in [46,34,35]. The evolution of soliton-like
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and breather-like structures in one-dimensional lattice of coupled oscillators with the long-range power are considered in
[36]. Kinks in the Frenkel–Kontorova model with long-range particle interactions is studied in [37]. In statistical mechanics
and nonlinear dynamics, solvable models with long-range interactions are described in detail in the reviews [38–40]. Differ-
ent discrete systems and lattice with long-range interactions and its continuous limits are considered in [23,25]. It is impor-
tant that lattice models with long-range interactions of power-law type can lead to fractional nonlocal continuum models in
the continuous limit [41,42,25], Nonlocal continuum mechanics can be considered as a continuous limit of mechanics of lat-
tice with long-range interactions, when the sizes of continuum element are much larger than the distances between particles
of lattice.

It should be note that a calculus of operators of integer orders for physical lattice models has been considered in the
papers [48–50]. This lattice calculus of integer order is defined on a general triangulating graph by using discrete field quan-
tities and differential operators roughly analogous to differential forms and exterior differential calculus. A scheme to derive
lattice differential operators of integer orders from the discrete velocities and associated Maxwell–Boltzmann distributions
that are used in lattice hydrodynamics has been suggested in the articles [51,52]. In this paper to formulate a lattice frac-
tional calculus, we use other approach that is based on models of physical lattices with long-range inter-particle interactions
and its continuum limit that are suggested in [41,42,25] (see also [43–47,55–59]).

In this paper, we propose lattice analogs of differentiation and integration of non-integer orders based on N-dimensional
generalization of the lattice approach suggested in [41,42,25]. A general form of lattice fractional derivatives and integrals
that gives continuum derivatives and integrals of non-integer orders in continuous limit is suggested. These continuum frac-
tional operators of differentiations and integrations can be considered as fractional derivatives and integrals of the Riesz type
with respect to coordinates.

2. Lattice fractional differential operators

2.1. Lattice fractional partial derivatives

Let us consider an unbounded physical lattice characterized by N non-coplanar vectors ai; i ¼ 1; . . . ;N, that are the short-
est vectors by which a lattice can be displaced and be brought back into itself. For simplification, we assume that
ai; i ¼ 1; . . . ;N, are mutually perpendicular primitive lattice vectors. We choose directions of the axes of the Cartesian coor-
dinate system coincides with the vector ai. Then ai ¼ ai ei, where ai ¼ jaij and ei; i ¼ 1; . . . ;N, is the basis of the Cartesian coor-
dinate system for RN . This simplification means that the lattice is a primitive N-dimensional orthorhombic Bravais lattice.
The position vector of an arbitrary lattice site is written rðnÞ ¼

PN
i¼1ni ai, where ni are integer. In a lattice the sites are num-

bered by n, so that the vector n ¼ ðn1; . . . ;nNÞ can be considered as a number vector of the corresponding lattice particle. We
assume that the equilibrium positions of particles coincide with the lattice sites rðnÞ. Coordinates rðnÞ of lattice sites differs
from the coordinates of the corresponding particles, when particles are displaced relative to their equilibrium positions. To
define the coordinates of a particle, we define displacement of n-particle from its equilibrium position by the scalar field
uðnÞ, or the vector field uðnÞ ¼

PN
i¼1uiðnÞei, where the vectors ei ¼ ai=jaij form the basis of the Cartesian coordinate system.

The functions uiðnÞ ¼ uiðn1; . . . ;nNÞ are components of the displacement vector for lattice particle that is defined by
n ¼ ðn1; . . . ;nNÞ. In many cases, we can assume that uðnÞ belongs to the Hilbert space l2 of square-summable sequences to
apply the Fourier transformations. For simplification, we will consider differential and integral operators for the lattice func-
tions u ¼ uðnÞ ¼ uðn1; . . . ; nNÞ. All transformations can be easily generalized to the case of the vector functions.

Let us give a definition of lattice partial derivative of arbitrary positive real order a in the direction ei ¼ ai=jaij in the
lattice.

Definition 1. A lattice fractional partial derivative is the operator D�L
a
i

� �
such that� �
D�L
a
i

u ¼ 1
aa

i

Xþ1
mi¼�1

K�a ðni �miÞuðmÞ; ði ¼ 1; . . . ;NÞ; ð1Þ
where a 2 R;a > 0, m 2 Z, and the interaction kernels K�a ðn�mÞ are defined by the equations
Kþa ðn�mÞ ¼ pa

aþ 1 1F2
aþ 1

2
;
1
2
;
aþ 3

2
;�p2 ðn�mÞ2

4

 !
; a > 0; ð2Þ

K�a ðn�mÞ ¼ �paþ1 ðn�mÞ
aþ 2 1F2

aþ 2
2

;
3
2
;
aþ 4

2
;�p2 ðn�mÞ2

4

 !
; a > 0; ð3Þ
where 1F2 is the Gauss hypergeometric function [63]. The parameter a > 0 will be called the order of the lattice
derivative (1).

Let us explain the reasons for definition the interaction kernels K�a ðn�mÞ in the forms (2), (3), and describe some
properties of these kernels.
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The kernels K�a ðnÞ are real-valued functions of integer variable n 2 Z. The kernel Kþa ðnÞ is even (or symmetric with respect
to zero) function and K�a ðnÞ is odd (or antisymmetric with respect to zero) function such that
Kþa ð�nÞ ¼ þKþa ðnÞ; K�a ð�nÞ ¼ �K�a ðnÞ ð4Þ
hold for all n 2 Z.
The Fourier series transforms K̂þa ðkÞ of the kernels Kþa ðnÞ in the form
K̂þa ðkÞ ¼
Xþ1

n¼�1
e�iknKþa ðnÞ ¼ 2

X1
n¼1

Kþa ðnÞ cosðknÞ þ Kþa ð0Þ ð5Þ
satisfy the condition
K̂þa ðkÞ ¼ jkj
a
; ða > 0Þ: ð6Þ
The Fourier series transforms K̂�a ðkÞ of the kernels K�a ðnÞ in the form
K̂�a ðkÞ ¼
Xþ1

n¼�1
e�ikn K�a ðnÞ ¼ �2 i

X1
n¼1

K�a ðnÞ sinðknÞ ð7Þ
satisfy the condition
K̂�a ðkÞ ¼ i sgnðkÞ jkja; ða > 0Þ: ð8Þ
Note that we use the minus sign in the exponents of (5) and (7) instead of plus in order to have the plus sign for plane waves
and for the Fourier series.

The form (2) of the interaction term Kþa ðn�mÞ is completely determined by the requirement (6). If we use an inverse rela-
tion to (5) with K̂þa ðkÞ ¼ jkj

a that has the form
Kþa ðnÞ ¼
1
p

Z p

0
ka cosðnkÞdk; ða 2 R; a > 0Þ; ð9Þ
then we get Eq. (2) for the interaction kernel Kþa ðn�mÞ. Note that
Kþa ð0Þ ¼
pa

aþ 1
: ð10Þ
The form (3) of the interaction term K�a ðn�mÞ is completely determined by (6). If we use an inverse relation to (7) with
K̂�a ðkÞ ¼ i sgnðkÞ jkja that has the form
K�a ðnÞ ¼ �
1
p

Z p

0
ka sinðnkÞdk ða 2 R; a > 0Þ; ð11Þ
then we get Eq. (3) for the interaction kernel K�a ðn�mÞ. Note that K�a ð0Þ ¼ 0.
The interactions with (2) and (3) for integer and non-integer orders a can be interpreted as a long-range interactions of n-

particle with all other particles.
Properties of the interaction kernels (2) and (3), can be visualized by plots of the functions
fþðx; yÞ ¼
py

yþ 1 1F2
yþ 1

2
;
1
2
;
yþ 3

2
;�p2 x2

4

� �
; ð12Þ

f�ðx; yÞ ¼ �
pyþ1 x
yþ 2 1F2

yþ 2
2

;
3
2
;
yþ 4

2
;�p2 x2

4

� �
ð13Þ
for positive values of variables x and y. The function (12) is given on Figs. 1, 3 and 5, and the function (13) is presented by
Figs. 2, 4 and 6.

Let us give exact forms of the kernels K̂�a ðkÞ for integer positive a 2 N. Eqs. (2) and (3) for the case a 2 N can be simplified.
We can use inverse relations (9) and (11) for integer positive a 2 N. to define exact form of the kernels K̂�a ðkÞ. To obtain the
simplified expressions for kernels K̂�a ðkÞ with positive integer a ¼ m, we use the integrals (see Section 2.5.3.5 in [62]) of the
form
 Z p

0
xm cosðnxÞdx ¼ ð�1Þnþ2

nmþ1

X½ðm�1Þ=2�

k¼0

ð�1Þk m!

ðm� 2n� 1Þ! ðpnÞm�2k�1 þ ð�1Þ½ðmþ1Þ=2�m!

nmþ1 2½ðmþ 1Þ=2� �mð Þ; ðm 2 NÞ; ð14Þ

Z p

0
xm sinðnxÞdx ¼ ð�1Þnþ1

nmþ1

X½m=2�

k¼0

ð�1Þk m!

ðm� 2nÞ! ðpnÞm�2k þ ð�1Þ½m=2�m!

nmþ1 2½m=2� �mþ 1ð Þ; ðm 2 NÞ; ð15Þ



Fig. 1. Plot of the function fþðx; yÞ (12) for the range x 2 ½0;6� and y ¼ a 2 ½0;6� that represents the kernels of the lattice fractional derivatives DþL
a
i

� �
with

a ¼ y.

Fig. 2. Plot of the function f�ðx; yÞ (13) for the range x 2 ½0;6� and y ¼ a 2 ½0;6� that represents the kernels of the lattice fractional derivatives D�L
a
i

� �
with

a ¼ y.

Fig. 3. Plot of the function fþðx; yÞ (12) for the range x 2 ½0;6� and y ¼ a 2 ½0;8;1:2� that represents the kernels of the lattice fractional derivatives DþL
a
i

� �
with a ¼ y.
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Fig. 4. Plot of the function f�ðx; yÞ (13) for the range x 2 ½0;6� and y ¼ a 2 ½0;8;1:2� that represents the kernels of the lattice fractional derivatives D�L
a
i

� �
with a ¼ y.

Fig. 5. Plot of the function fþðx; yÞ (12) for the range x 2 ½0;6� and y ¼ a 2 ½1;3� that represents the kernels of the lattice fractional derivatives DþL
a
i

� �
with

a ¼ y.

Fig. 6. Plot of the function f�ðx; yÞ (13) for the range x 2 ½0;6� and y ¼ a 2 ½1;3� that represents the kernels of the lattice fractional derivatives D�L
a
i

� �
with

a ¼ y.
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where ½x� is the integer part of the value x, and n 2 N. Here 2½ðmþ 1Þ=2� �m ¼ 1 for odd m, and 2½ðmþ 1Þ=2� �m ¼ 0 for
even m.

It is easy to see that the kernels K�a ðnÞ for integer positive a ¼ m 2 N are defined by the equations
Kþa ðnÞ ¼
X½ða�1Þ=2�

k¼0

ð�1Þnþk s!pa�2k�2

ða� 2n� 1Þ!
1

n2kþ2 þ
ð�1Þ½ðaþ1Þ=2� s! ð2½ðaþ 1Þ=2� � aÞ

pnaþ1 ð16Þ
and
K�a ðnÞ ¼ �
X½a=2�

k¼0

ð�1Þnþkþ1 s!pa�2k�1

ða� 2nÞ!
1

n2kþ2 �
ð�1Þ½a=2� s! ð2½a=2� � aþ 1Þ

pnaþ1 : ð17Þ
Using Eq. (16) or direct integration (9) for integer values a ¼ 1;2;3;4, we get the examples of Kþa ðnÞwith n – 0 in the form
Kþ1 ðnÞ ¼ �
1� ð�1Þn

pn2 ; Kþ2 ðnÞ ¼
2 ð�1Þn

n2 ; ð18Þ

Kþ3 ðnÞ ¼
3p ð�1Þn

n2 þ 6 ð1� ð�1ÞnÞ
pn4 ; Kþ4 ðnÞ ¼

4p2 ð�1Þn

n2 � 24 ð�1Þn

n4 ; ð19Þ
where n – 0;n 2 Z, and Kþmð0Þ ¼ pm=ðmþ 1Þ for all m 2 N. Using Eq. (17) or direct integration (11) for a ¼ 1;2;3;4, we get
examples of K�a ðnÞ with n – 0 in the form
K�1 ðnÞ ¼
ð�1Þn

n
; K�2 ðnÞ ¼

ð�1Þn p
n

þ 2ð1� ð�1ÞnÞ
pn3 ; ð20Þ

K�3 ðnÞ ¼
ð�1Þn p2

n
� 6 ð�1Þn

n3 ; K�4 ðnÞ ¼
ð�1Þn p3

n
� 12 ð�1Þnp

n3 � 24 ð1� ð�1ÞnÞ
pn5 ; ð21Þ
where n – 0;n 2 Z, and K�mð0Þ ¼ 0 for all m 2 N. Note that ð1� ð�1ÞnÞ ¼ 2 for odd n, and ð1� ð�1ÞnÞ ¼ 0 for even n. In the
definition of lattice fractional derivatives (1) the value i 2 f1; . . . ;Ng characterizes the component ni of the lattice vector n
with respect to which this derivative is taken. It is similar to the variable xi in the usual partial derivatives for the space

RN . The lattice operators D�L
a
i

� �
are analogous to the partial derivatives of order a with respect to coordinates xi for contin-

uum model. The lattice derivative D�L
a
i

� �
is an operator along the vector ei ¼ ai=jaij in the lattice.

2.2. An extension of lattice derivatives of non-integer orders

In general, we can weaken the conditions (6) and (8) to determine a more wider class of the lattice fractional derivatives.
For this aim, we replace the exact conditions (6) and (8) by the asymptotical requirements
K̂þa ðkÞ ¼ jkj
a þ oðjkjaÞ; K̂�a ðkÞ ¼ i sgnðkÞ jkja þ oðjkjaÞ; ðk! 0Þ;
where the little-o notation oðjkjaÞ means the terms that include higher powers of jkj than jkja.

Definition 2. A lattice fractional partial derivative is the operator D�L
a
i

� �
such that� �
D�L
a
i

u ¼ 1
aa

i

Xþ1
mi¼�1

K�a ðni �miÞuðmÞ; ði ¼ 1; . . . ;NÞ; ð22Þ
where the interaction kernels K�a ðn�mÞ satisfy the conditions:
(a) The kernels K�a ðnÞ are real-valued functions of integer variable n 2 Z. The kernel Kþa ðnÞ is even (or symmetric with
respect to zero) function and the kernels K�a ðnÞ is odd (or antisymmetric with respect to zero) function such that

Kþa ð�nÞ ¼ þKþa ðnÞ; K�a ð�nÞ ¼ �K�a ðnÞ ð23Þ
hold for all n 2 Z.

(b) The Fourier series transforms of the kernels Kþa ðnÞ in the form (5) satisfy the condition

K̂þa ðkÞ ¼ jkj
a þ oðjkjaÞ; ðk! 0Þ; ð24Þ

(c) The Fourier series transforms of the kernels K�a ðnÞ in the form (7) satisfy the condition

K̂�a ðkÞ ¼ i sgnðkÞ jkja þ oðjkjaÞ; ðk! 0Þ; ð25Þ
The parameter a > 0 will be called the order of the operator (22).
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The conditions (24) and (25) also means that we can consider arbitrary functions K�a ðn�mÞ for which K̂�a ðkÞ are asymp-
totically equivalent to jkja and i sgnðkÞ jkja as jkj ! 0 respectively.

A simple example of the interaction kernel Kþa ðn�mÞ, which can give the lattice fractional derivatives (22) with (24), has
been suggested in [41,42] in the form
Kþa ðn�mÞ ¼ ð�1Þn�m Cðaþ 1Þ
Cða=2þ 1þ ðn�mÞÞCða=2þ 1� ðn�mÞÞ : ð26Þ
Note that for integer a 2 N Kþa ðn�mÞ ¼ 0 for jn�mjP a=2þ 1. For a ¼ 2j, we have Kþa ðn�mÞ ¼ 0 for all jn�mjP jþ 1.
The function Kþa ðn�mÞ with even value of a ¼ 2j describes an interaction of the n-particle with 2 j particles with numbers
n� 1 . . . n� j. It is easy to see that expression (2) is more complicated than (26). Note that the long-range interaction with
the kernel (26) is partially connected with fractional central differences considered in [61], and the long-range interaction of
the Grünwald–Letnikov–Riesz type [56].

As an example of the interaction kernel K�a ðn�mÞ with (25), we can give
K�a ðnÞ ¼
ð�1Þððnþ1Þ=2 2½ðnþ 1Þ=2� � nð ÞCðaþ 1Þ
2a Cððaþ nÞ=2þ 1ÞCðða� nÞ=2þ 1Þ

: ð27Þ
where the brackets ½ � is the floor function that maps a real number to the largest previous integer number. The expression
2½ðnþ 1Þ=2� � n is equal to zero for even n ¼ 2m, and it is equal to 1 for odd n ¼ 2m� 1. It should be noted that the kernel
(27) is real valued function since we have zero, when the expression ð�1Þðnþ1Þ=2 is a complex number. This kernel K�a ðnÞ is the
odd function K�a ð�nÞ ¼ �K�a ðnÞ.

For 0 < a 6 2, we can also use different forms of interaction kernels Kþa ðn�mÞ that are suggested in Section 8 of [25]. For
example, we have the kernel of the long-range interactions of the power-law form
Kþa ðn�mÞ ¼ 1
AðbÞ jn�mjb

; ðb > �1Þ; ð28Þ
where the function AðbÞ of the real parameter b is defined by the range of order a. If 1 < b < 2 or 2 < b < 3, then
AðbÞ ¼ �2Cð1� bÞ sinðpb=2Þ. For non-integer b > 3, we have Ab ¼ fðb� 2Þ, where fðzÞ is the Riemann zeta-function. For
details see Section 8.11 and 8.12 in [25].

Note that we can define a modification of definition (22) of the derivative DþL
a
i

� �
by the condition mi – ni in the sum to

exclude self-actions of the particles in the physical lattice. In this case, we should replace the condition (24) by
Xþ1
n¼�1

n–0

e�iknKþa ðnÞ ¼ 2
X1
n¼1

Kþa ðnÞ cosðknÞ ¼ jkja þ oðjkjaÞ; ðk! 0Þ: ð29Þ
In addition, differential operators of integer orders has been suggested in [48–50] for physical lattice models by using
analogous to differential forms and exterior differential calculus. A fractional generalization of exterior differential calculus
of differential forms is suggested [53,54,25], where non-locality is described by the Caputo fractional derivatives. We assume
that this tool can be used to generalize the approach proposed in [48–50] for operators non-integer orders.

3. Lattice fractional integral operators

3.1. Initial lattice fractional integrations

Let us give a definition lattice fractional integrations of positive real order a with respect to ni, where i ¼ 1; . . . ;N.

Definition 3. A lattice fractional integral is the operator I�L
a
i

� �
such that
I�L
a
i

� �
u ¼ 1

aa
i

Xþ1
mi¼�1

L�a ðni �miÞ uðmÞ ði ¼ 1; . . . ;NÞ; ð30Þ
where a 2 R;a > 0, m 2 Z, and the interaction kernels L�a ðn�mÞ are defined by the equations
Lþa ðn�mÞ ¼ p�a

1� a 1F2
1� a

2
;
1
2
;
3� a

2
;�p2 ðn�mÞ2

4

 !
; ð0 < a < 1Þ; ð31Þ

L�a ðn�mÞ ¼ p1�a ðn�mÞ
2� a 1F2

2� a
2

;
3
2
;
4� a

2
;�p2 ðn�mÞ2

4

 !
; ð0 < a < 2Þ; ð32Þ
where 1F2 is the Gauss hypergeometric function [63]. The parameter a > 0 will be called the order of the lattice fractional
integral (30).
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Note that the kernels L�a ðnÞ of lattice fractional integrals are connected with the expressions of the kernels K�a ðnÞ of lattice
derivatives by the equations
Fig. 7.
a ¼ y.
Lþa ðnÞ ¼ þKþ�aðnÞ; 0 < a < 1; ð33Þ

L�a ðnÞ ¼ �K��aðnÞ; 0 < a < 2: ð34Þ
The minus sign in the Eq. (34), and the positive sign in the Eq. (32) are used to have the correspondence with the usual inte-
gration for a ¼ 1.

The interaction kernels L�a ðn�mÞ, which are used in the definition of lattice fractional integral, can be characterized by
the following properties.

The kernels L�a ðnÞ are real-valued functions of integer variable n 2 Z. The kernel Lþa ðnÞ is even function and the kernel L�a ðnÞ
is odd function such that
Lþa ð�nÞ ¼ þLþa ðnÞ; L�a ð�nÞ ¼ �L�a ðnÞ ð35Þ
hold for all n 2 Z.
The Fourier series transforms L̂þa ðkÞ of the kernels Lþa ðnÞ in the form
L̂þa ðkÞ ¼
Xþ1

n¼�1
e�iknLþa ðnÞ ¼ 2

X1
n¼1

Lþa ðnÞ cosðknÞ þ Lþa ð0Þ; ð0 < a < 1Þ ð36Þ
satisfy the condition
L̂þa ðkÞ ¼
1
jkja

: ð37Þ
The Fourier series transforms L̂�a ðkÞ of the kernels L�a ðnÞ in the form
L̂�a ðkÞ ¼
Xþ1

n¼�1
e�iknL�a ðnÞ ¼ �2 i

X1
n¼1

L�a ðnÞ sinðknÞ ð38Þ
satisfy the condition
L̂�a ðkÞ ¼ �
i sgnðkÞ
jkja

; ð0 < a < 2Þ: ð39Þ
Note that the Fourier series transforms of the kernels of lattice integration are connected with the kernels of lattice dif-
ferentiation by the relations
L̂þa ðkÞ ¼ þK̂þ�aðkÞ; 0 < a < 1; ð40Þ

L̂�a ðkÞ ¼ �K̂��aðkÞ; 0 < a < 2: ð41Þ� �

We also can state that L̂�a ðkÞ ¼ ði kÞ�1, and the lattice integral I�L

a
i wirh a ¼ 1 corresponds to the usual integral of first

order with respect to xi 2 R1 in the continuous limit. In this case, the kernel L�a ðnÞ can be represented by the sine-integral in
the form L�1 ðnÞ ¼ �SiðpnÞ=p.
Plot of the function gþðx; yÞ (42) for the range x 2 ½0;6� and y ¼ a 2 ½0;0:9� that represents the kernels of the lattice fractional integrals IþL
a
i

� �
with
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To demonstrate the properties of (31) and (32), we visualize the functions
Fig. 8.
a ¼ y.

Fig. 9.
a ¼ y.
gþðx; yÞ ¼ fþðx;�yÞ ¼ p�y

1� y 1F2
1� y

2
;
1
2
;
3� y

2
;�p2 x2

4

� �
; ð42Þ

g�ðx; yÞ ¼ �f�ðx;�yÞ ¼ p1�y x
2� y 1F2

2� y
2

;
3
2
;
4� y

2
;�p2 x2

4

� �
ð43Þ
for positive values of continuous variables x and y for the case 0 < y < 1. The function (42) are presented by Figs. 7 and 9, and
the function (43) are given by Figs. 8 and 10.

3.2. Lattice fractional integration for higher orders

Using (31) and (32), we can see that the kernel Lþa ðn�mÞ of lattice fractional integral operator IþL
a
i

� �
is defined for

0 < a < 1, and the kernel L�a ðn�mÞ of lattice operator I�L
a
i

� �
is defined for 0 < a < 2. Therefore these ‘‘initial’’ lattice frac-

tional integral operators IþL
a
i

� �
and I�L

a
i

� �
are defined only for 0 < a < 1 and 0 < a < 2 respectively. Note that there is only

one ‘‘initial’’ lattice integral operators of integer order. It is the ‘‘odd’’ lattice integral operators I�L
1
i

� �
.

Plot of the function g�ðx; yÞ (43) for the range x 2 ½0;6� and y ¼ a 2 ½0;0:9� that represents the kernels of the lattice fractional integrals I�L
a
i

� �
with

Plot of the function gþðx; yÞ (42) for the range x 2 ½0;6� and y ¼ a 2 ½0;0:5� that represents the kernels of the lattice fractional integrals IþL
a
i

� �
with



Fig. 10. Plot of the function g�ðx; yÞ (43) for the range x 2 ½0;6� and y ¼ a 2 ½0;0:5� that represents the kernels of the lattice fractional integrals I�L
a
i

� �
with

a ¼ y.
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We can expand the definitions of lattice fractional integral operators in order to include all positive orders a such that
n� 1 < a 6 n, where n 2 N. It is possible to define the lattice fractional integral operators for n� 1 < a 6 n with n P 2 by
the following ways:

(1) Using the ‘‘initial’’ integral operators only, we can consider two types of formulas: (a) IaI-type: Composition of one
operator of non-integer order and the operators of integer orders; (b) aII-type: Composition of operators with non-
integer orders only.

(2) Using compositions of differential and ‘‘initial’’ integral operators, we can consider the following types of formulas: (a)
aDI-type: The integral operators act first and then we use the differential operator. (b) IaD-type: The differential oper-
ator acts first and then we use the integral operators.

We can state that the aDI-type operators in some sense are similar to the Riemann–Liouville fractional derivatives, and
the IaD-type operators are similar to the Caputo fractional derivatives [12].

We should define the lattice fractional integral operators of higher orders a such that the parity of the kernels of
these operators and the correspondent Fourier series transforms will be the same as for ‘‘initial’’ lattice integral operators
(30)–(32).

Let us define the lattice fractional integral operators for n� 1 < a 6 n, where n P 2 by using compositions of differential
and ‘‘initial’’ integral operators.

The aDI-type of lattice integral operators for n� 1 < a 6 n, where n P 2, is defined by the equation
I�L
a
i

� �
¼

�ð�1Þmþ1
D�L

n� a
i

� �
I�L

1
i

� �� �n

n ¼ 2m; m 2 N;

�ð�1Þm D�L
nþ 1� a

i

� �
I�L

1
i

� �� �nþ1

n ¼ 2mþ 1; m 2 N:

8>>><>>>: ð44Þ
The IaD-type of lattice integral operators for n� 1 < a 6 n, where n P 2, is defined by the equation
I�L
a
i

� �
¼

�ð�1Þmþ1
I�L

1
i

� �� �n

D�L
n� a

i

� �
n ¼ 2m; m 2 N;

�ð�1Þm I�L
1
i

� �� �nþ1

D�L
nþ 1� a

i

� �
n ¼ 2mþ 1; m 2 N:

8>>><>>>: ð45Þ
To prove this property, we use the Fourier series transform and the relations
i sgnðkÞ jkjn�a � i sgnðkÞ
jkj1

 !n

¼ i ð�1ÞmsgnðkÞ
jkja

¼ ð�1Þmþ1 �i sgnðkÞ
jkja

ðn ¼ 2m; m 2 NÞ; ð46Þ

i sgnðkÞ jkjnþ1�a � i sgnðkÞ
jkj1

 !nþ1

¼ i ð�1Þmþ1sgnðkÞ
jkja

¼ ð�1Þm �i sgnðkÞ
jkja

ðn ¼ 2mþ 1Þ: ð47Þ
It is easy to see that the parity of the lattice fractional integral operators I�L
a
i

� �
with n� 1 < a 6 n are the same as the parity

of the ‘‘initial’’ operators (30)–(32).
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Let us define the lattice fractional integral operators for n� 1 < a 6 n, where n P 2 by using the ‘‘initial’’ integral oper-
ators only.

The aII-type of lattice integral operators for n� 1 < a 6 n, where n P 2, is defined by the equations
IþL
a
i

� �
¼ IþL

a=n

i

� �� �n

ð48Þ
and
I�L
a
i

� �
¼

ð�1Þmþ1
IþL

a=ðn� 1Þ
i

� �� �n�1

n ¼ 2m; m 2 N; m – 1

ð�1Þm I�L
a=n

i

� �� �n

n ¼ 2mþ 1; m 2 N:

8>>><>>>: ð49Þ

� �

Note that we cannot define I�L

a
i for even n ¼ 2m by the equations analogous to (48) since the equation will have another

parity for n ¼ 2m, and we have
I�L
a=n

i

� �� �n

¼ ð�1Þm IþL
a
i

� �
; ðn ¼ 2m; m 2 NÞ: ð50Þ
The IaI-type of lattice integral operators for n� 1 < a 6 n, where n P 2, is defined by the equations
I�L
a
i

� �
¼

�ð�1Þm I�L
a� nþ 1

i

� �
I�L

1
i

� �� �n�1

n ¼ 2m; m 2 N;

ð�1Þm I�L
a� nþ 1

i

� �
I�L

1
i

� �� �n�1

n ¼ 2mþ 1; m 2 N:

8>>>><>>>>: ð51Þ
Note that we use mp instead of ± for the case n ¼ 2m, and no signs ± as a multiplier for the case n ¼ 2mþ 1.

The parity of suggested definitions of the lattice fractional integral operators I�L
a
i

� �
for the case n� 1 < a 6 n, where

n 2 N, are the same as the parity of the ‘‘initial’’ operators.

4. Properties of lattice fractional derivatives and integrals

Let us describe some properties of lattice fractional derivatives. All these properties are similar to properties of the Riesz
derivatives of non-integer orders [12,60].

The lattice fractional derivatives are the linear operators
D�L
a
i

� �
a1 u1ðmÞ þ a2 u2ðmÞð Þ ¼ a1 D�L

a
i

� �
u1ðmÞ þ a2 D�L

a
i

� �
u2ðmÞ; ð52Þ
where a1; a2 2 R.
In general, the lattice particle derivatives for the same direction ei ¼ ai=jaij in the lattice do not commute
D�L
a1

i

� �
D�L

a2

i

� �
– D�L

a2

i

� �
D�L

a1

i

� �
; ða1 – a2Þ: ð53Þ
The lattice derivatives for different direction ei and ej, where i – j, obviously commute
D�L
a1

i

� �
D�L

a2

j

� �
¼ D�L

a2

j

� �
D�L

a1

i

� �
; ði – jÞ: ð54Þ
In the general case, the semigroup property is not satisfied
D�L
a1

i

� �
D�L

a2

i

� �
– D�L

a1 þ a2

i

� �
; ða1;a2 > 0Þ: ð55Þ
The property (55) leads to the fact that action of two repeated fractional derivatives of order a1 does not equivalent to the
action of fractional derivative of double order 2a1,
D�L
a1

i

� �
D�L

a1

i

� �
– D�L

2a1

i

� �
; ða1 > 0Þ: ð56Þ
It should be noted that the Leibniz rule for lattice fractional derivative of order a – 1 does not satisfied
D�L
a
i

� �
ðu1 u2Þ– u2 D�L

a
i

� �
u1 þ u1 D�L

a
i

� �
u2; ða > 0; a – 1Þ: ð57Þ
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This property is similar to fractional derivatives with respect to coordinates [64], and it is a characteristic property of frac-
tional derivatives.

We can consider the value a ¼ 0 that means that the correspondent lattice derivatives are the identity operator
D�L
0
i

� �
¼ E; ð58Þ
where EuðmÞ ¼ uðmÞ.
The commutation relation (54) with a1 ¼ a2 ¼ 1 is
D�L
1
i

� �
D�L

1
j

� �
¼ D�L

1
j

� �
D�L

1
i

� �
; ði – jÞ; ð59Þ
that have the continuum analog in the form
@2uðrÞ
@xi@xj

¼ @
2uðrÞ
@xj@xi

: ð60Þ
It is well-known that the commutation relation (60) may be broken for discontinuous functions uðrÞ and if the partial deriv-
atives of uðrÞ are not continuous. We assume that the relation (59) can be broken for lattice models with dislocations and
disclinations. However, the exact conditions for violation of this relationship remain an open question. In this paper, we con-
sider lattices without dislocations and disclinations only.

We can define the lattice fractional mixed partial derivatives by the equations
D�L
a1 a2

i j

� �
¼ D�L

a1

i

� �
D�L

a2

j

� �
; ði – jÞ; ð61Þ

D�L
a1 a2 a3

i j k

� �
¼ D�L

a1

i

� �
D�L

a2

j

� �
D�L

a3

k

� �
; ði – j – k – iÞ; ð62Þ
where i; j and k take different values from f1; . . . ; Ng and the values of i; j; k cannot coincide. The order of the operators (61)
and (62) are equal to a ¼ a1 þ a2 and a ¼ a1 þ a2 þ a3 respectively.

Using the definition (1), the mixed lattice partial derivative (61) is represented by
D�L
a1 a2

i j

� �
uðmÞ ¼ 1

aa1
i aa2

j

Xþ1
mi¼�1

Xþ1
mj¼�1

K�a1
ðni �miÞK�a2

ðnj �mjÞuðmÞ: ð63Þ
Similarly, we can define the operator (62) by the interaction kernels.
If the parameter ak ¼ 0, then the lattice derivative (62) can be represented as an operator (61) by
D�L
a1 a2 0
i j 0

� �
¼ D�L

a1 a2

i j

� �
ð64Þ
and similarly we have
D�L
a1 0 0
i 0 0

� �
¼ D�L

a1 0
i 0

� �
¼ D�L

a1

i

� �
: ð65Þ
Using (62) and the property (54), we can rearrange any pair of columns
D�L
a1 a2

i j

� �
¼ D�L

a2 a1

j i

� �
ð66Þ
and
D�L
a1 a2 a3

i j k

� �
¼ D�L

a2 a3 a1

j k i

� �
¼ D�L

a3 a1 a2

k i j

� �
¼ � � � : ð67Þ
It also is possible to define other lattice mixed derivatives by a combination of odd and even partial derivatives
D��L

a1 a2

i j

� �
¼ D�L

a1

i

� �
D�L

a2

j

� �
; ði – jÞ: ð68Þ

D���L

a1 a2 a3

i j k

� �
¼ D�L

a1

i

� �
D�L

a2

j

� �
D�L

a3

k

� �
; ði – j – k – iÞ; ð69Þ

D���L

a1 a2 a3

i j k

� �
¼ D�L

a1

i

� �
D�L

a2

j

� �
D�L

a3

k

� �
; ði – j – k – iÞ: ð70Þ
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The lattice fractional integral operators have properties similar to the properties that are described for lattice fractional
derivatives.

Let us give some relations between lattice fractional integral operators. The even and odd lattice integral operators are
connected by the following relations.

Two odd operators give the even integral operator
I�L
a
i

� �
I�L

b

i

� �
¼ � IþL

aþ b

i

� �
; ð71Þ
where a; b > 0 and aþ b < 1. To prove this property, we use the Fourier series transform and the relation
L̂�a ðkÞ L̂�b ðkÞ ¼ � i sgnðkÞ
jkja

� �
� i sgnðkÞ
jkjb

 !
¼ � 1

jkjaþb

 !
¼ �L̂�aþbðkÞ: ð72Þ
Similarly we have that the odd and even ’’initial’’ lattice integral operators give the even lattice operator
I�L
a
i

� �
IþL

b

i

� �
¼ I�L

aþ b

i

� �
; ð73Þ
if a; b > 0; b < 1 and aþ b < 2. We also have the relation for even ‘‘initial’’ lattice integral operators
IþL
a
i

� �
IþL

b

i

� �
¼ IþL

aþ b

i

� �
; ð74Þ
if 0 < a; b < 1 and aþ b < 1.

5. Continuum limit for lattice fractional operators

5.1. Transformation of lattice fields into continuum fields

In this section, we use the methods suggested in [41,42] to define the operation that transforms a lattice field uðnÞ into a
field uðrÞ of continuum, These transformations are following. We consider the lattice scalar field uðnÞ as Fourier series coef-
ficients of some function ûðkÞ for kj 2 ½�kj0=2; kj0=2�, where j ¼ 1; . . . ;N. As a next step we use the continuous limit k0 !1 to
obtain ~uðkÞ. Finally we apply the inverse Fourier integral transformation to obtain the continuum scalar field uðrÞ.

Let us give some details for these transformations of a lattice field into a continuum field [41,42].

1. The Fourier series transform uðnÞ ! FDfuðnÞg ¼ ûðkÞ of the lattice scalar field uðnÞ is defined by
ûðkÞ ¼ FDfuðnÞg ¼
Xþ1

n1 ;...;nN¼�1
uðnÞ e�iðk;rðnÞÞ; ð75Þ

where the inverse Fourier series transform is

uðnÞ ¼ F�1
D fûðkÞg ¼

YN

j¼1

1
kj0

 !Z þk10=2

�k10=2
dk1 � � �

Z þkN0=2

�kN0=2
dkN ûðkÞ eiðk;rðnÞÞ: ð76Þ

Here rðnÞ ¼ nj aj, and aj ¼ 2p=kj0 is distance between lattice particle in the direction aj. For simplicity we assume that the
lattice has equal distance aj between all particle distance in the direction aj.

2. The passage to the limit ûðkÞ ! LimfûðkÞg ¼ ~uðkÞ, where we use aj ! 0 (or kj0 !1) allows us to derive the function ~uðkÞ
from ûðkÞ. By definition ~uðkÞ is the Fourier integral transform of the continuum field uðrÞ, and the function ûðkÞ is the Fou-
rier series transform of the lattice field uðnÞ, where
uðnÞ ¼
YN

j¼1

2p
kj0

 !
uðrðnÞÞ

and rðnÞ ¼ njaj ¼ 2pnj=kj0 ! r.
3. The inverse Fourier integral transform ~uðkÞ ! F�1f~uðkÞg ¼ uðrÞ is defined by
uðrÞ ¼ 1

ð2pÞN
Z þ1

�1
dk1 � � �

Z þ1

�1
dkN ~uðkÞ ei

PN

j¼1
kjxj ¼ F�1f~uðkÞg ð77Þ

and the Fourier integral transform of the continuum scalar field uðrÞ is

~uðkÞ ¼
Z þ1

�1
dx1 � � �

Z þ1

�1
dxN uðrÞ e�i

PN

j¼1
kjxj ¼ FfuðrÞg: ð78Þ



Fig. 11. Diagram of sets of operations for scalar fields.
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Note that the Fourier series transforms (75) and (76) in the limit aj ! 0 (kj0 !1) are gives the Fourier integral transform
(78) and (77), such that the sum is replaced by the integral.

These transformations can be represented by the diagram (see Fig. 11).
The combination F�1 � Lim � FD of the operations F�1; Lim, and FD define the lattice-continuum transform operation
T L!C ¼ F�1 � Lim � FD; ð79Þ
that maps lattice models into the continuum models [41,42].

5.2. Transformation of lattice operators into continuum operators

Let us consider a transformation of lattice derivatives and integrals into the continuum fractional derivatives and inte-
grals with respect to coordinates. The lattice-continuum transform operation T L!C as the combination of three operations
F�1 � Limit � FD can be applied not only for lattice fields but also for lattice operators. The operation T L!C allows us to

map of lattice derivatives D�L
a
j

� �
and integrals I�L

a
j

� �
into continuum derivatives D�C

a
j

� �
and integrals I�C

a
j

� �
that will

be defined in the next subsections.
We performed transformations F�1 � Limit � FD for differential operators to map the lattice fractional derivative into the

fractional derivative for the continuum. We can represent these sets of transformations from lattice operators to operators
for continuum in the form of the diagram presented by Fig. 12.

The functions K̂�a ðkjÞ, L̂�a ðkjÞ are defined by the Fourier series transform FD of the kernels of lattice operators, and the func-

tions eK�a ðkjÞ, eL�a ðkjÞ are defined by the Fourier integral transforms F of the correspondent continuum derivatives and inte-

grals. The equations that define K̂�a ðkjÞ and L̂�a ðkjÞ have the form
FD D�L
a
j

� �
uðmÞ

� �
¼ 1

aa
j

K̂�a ðkj ajÞ ûðkÞ; ð80Þ

FD I�L
a
j

� �
uðmÞ

� �
¼ 1

aa
j

L̂�a ðkj ajÞ ûðkÞ; ð81Þ
where ûðkÞ ¼ FDfuðmÞg, and FD is an operator notation for the Fourier series transform. The equations that define eK�a ðkjÞ
and eL�a ðkjÞ are
F D�C
a
j

� �
uðrÞ

� �
¼ eK�a ðkjÞ ~uðkÞ; ð82Þ

F I�C
a
j

� �
uðrÞ

� �
¼ eL�a ðkjÞ ~uðkÞ; ð83Þ



Fig. 12. Diagram of sets of operations for differential and integral operators.
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where ~uðkÞ ¼ FfuðrÞg, and FD is an operator notation for the Fourier transform. In general, the order of the partial derivative

D�C
a
j

� �
and the integrals I�C

a
j

� �
is defined by the order of lattice operators D�L

a
j

� �
and I�L

a
j

� �
, and this order can be integer

and non-integer. The continuum fractional derivatives and integrals are defined in the next subsections.

5.3. Continuum fractional derivatives DþC
a
j

� �
of the Riesz type

The continuum derivative of the order a is defined [10,12] by the equation
DþC
a
j

� �
uðrÞ ¼ 1

d1ðm;aÞ

Z
R1

1

jzjjaþ1 ðD
m
zj

uÞðrÞdzj; ð0 < a < mÞ; ð84Þ
where ðDm
zj

uÞðrÞ is a finite difference of order m of a function uðrÞ with the vector step zj ¼ zj ej 2 RN for the point r 2 RN . The

centered difference
ðDm
zj

uÞðrÞ ¼
Xm

n¼0

ð�1Þn m!

n! ðm� nÞ! uðr� ðm=2� nÞzj ejÞ: ð85Þ
The constant d1ðm;aÞ is defined by
d1ðm;aÞ ¼
p3=2AmðaÞ

2aCð1þ a=2ÞCðð1þ aÞ=2Þ sinðpa=2Þ
;

where
AmðaÞ ¼ 2
X½m=2�

s¼0

ð�1Þs�1 m!

s!ðm� sÞ! ðm=2� sÞa
for the centered difference (85). The constants d1ðm;aÞ is different from zero for all a > 0 in the case of an even m and cen-
tered difference ðDm

j uÞ (see Theorem 26.1 in [10]). Note that the integral (84) does not depend on the choice of m > a. There-
fore, we can always choose an even number m so that it is greater than parameter a, and we can use the centered difference
(85) for all positive real values of a.

It should be noted that we can use the non-centered difference instead of the centered difference (85). The non-centered
difference is defined by the equation
ðDm
zj

uÞðrÞ ¼
Xm

n¼0

ð�1Þn m!

n! ðm� nÞ! uðr� nzj ejÞ ð86Þ
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and the correspondent coefficient AmðaÞ is
AmðaÞ ¼ 2
Xm

s¼0

ð�1Þs�1 m!

s!ðm� sÞ! sa:
In the case of a non-centered difference the constant d1ðm;aÞ vanishes if and only if a ¼ 1;3;5; . . . ;2½m=2� � 1. Therefore the
non-centered differences (86) can be used only for the non-integer positive orders a and for odd integer values of a. Using

(84), we can see that the continuum fractional derivative DþC
a
j

� �
u is the Riesz derivative of the function uðrÞ with respect to

one component xj 2 R1 of the vector r 2 RN , i.e. the operator DþC
a
j

� �
can be considered as a partial fractional derivative of

Riesz type.
Using that ð�iÞ2m ¼ ð�1Þm, the Riesz fractional derivatives for even a ¼ 2m, where m 2 N, are connected with the usual

partial derivative of integer orders 2m by the relation
DþC
2m

j

� �
uðrÞ ¼ ð�1Þm @2muðrÞ

@x2m
j

: ð87Þ� �

For a ¼ 2 the Riesz derivative is the local operator �@2=@x2

j . The fractional derivatives DþC
2m

j for even orders a are local

operators. Note that the Riesz derivative DþC
1
i

� �
cannot be considered as a derivative of first order with respect to xj, i.e.,
DþC
1
j

� �
uðrÞ –

@uðrÞ
@xj

: ð88Þ
Note that the Riesz derivatives for odd orders a ¼ 2mþ 1, where m 2 N, are non-local operators that cannot be considered as

usual derivatives @2mþ1=@x2mþ1
j . For a ¼ 1 the operator DþC

1
j

� �
is nonlocal, and it can be considered as a ‘‘square root of the 1D

Laplacian’’.
An important property of the Riesz fractional derivatives is the Fourier transform F of this operators in the form
F DþC
a
j

� �
uðrÞ

� �
ðkÞ ¼ jkjjaðFuÞðkÞ: ð89Þ
The property (89) is valid for functions uðrÞ from the space C1ðR1Þ of infinitely differentiable functions on R1 with compact
support. It is also holds for the Lizorkin space (see Section 8.1 in [10]). Using the property (89), we can write the formula
DþC
a
j

� �
uðrÞ ¼ F�1 jkjjaðFuÞðkÞ

� �
ðrÞ: ð90Þ
It is easy to see that Eq. (90) simpler than definition (84). For application we can consider formula (90) as a definition of the

continuum fractional derivative DþC
a
j

� �
.

5.4. Continuum fractional integrals I�C
a
j

� �
of the Riesz type

The Riesz fractional integrals, which are usually called the Riesz potential [10,12], can be defined by the convolution in
the form
Iar uðrÞ ¼
Z

RN
Raðr� zÞuðzÞdNz; ða > 0Þ; ð91Þ
where the function RaðrÞ is the Riesz kernel that is defined by
RaðrÞ ¼
c�1

N ðaÞjrj
a�N a – N þ 2n; n;N 2 N;

�c�1
N ðaÞjrj

a�N ln jrj a ¼ N þ 2n; n;N 2 N:

(
ð92Þ
The constant cNðaÞ has the form
cNðaÞ ¼
2apN=2Cða=2Þ=CððN � aÞ=2Þ a – N þ 2n;

ð�1ÞðN�aÞ=22a�1pN=2 Cða=2Þ Cð1þ ½a� N�=2Þ a ¼ N þ 2n;

(
ð93Þ
where n;N 2 N and a 2 Rþ.
An important property of the Riesz fractional integrals (91) is the Fourier transform F of this integrals in the form
F Iar uðrÞ
� �

¼ jkj�aðFuÞðkÞ: ð94Þ
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Eq. (94) holds for the operator (91) if the function uðrÞ belongs to the Lizorkin space [10,12]. We can state that functions
obtained by applying the Riesz integration to functions from the Lizorkin space also belong to this space, i.e., the Lizorkin
space is invariant with respect to the Riesz fractional integration.

We can use the property (94) to define the Riesz fractional integrals by the equation
Iar uðrÞ ¼ F�1 jkj�aðFuÞðkÞ
� �

ðrÞ: ð95Þ
This definition is somewhat simpler than the definition based on the Eq. (91), and we can use (95) as a definition of the Riesz
fractional integrations for some applications.

We suggest to define the continuum fractional integral IþC
a
j

� �
of the Riesz type as the Riesz potential of order a with

respect to xj by the equation
IþC
a
j

� �
uðrÞ ¼

Z
R1

Raðxj � zjÞuðrþ ðzj � xjÞejÞdzj; ða > 0Þ; ð96Þ
where ej is the basis of the Cartesian coordinate system. This integral can also be defined by the Fourier transform
IþC
a
j

� �
uðrÞ ¼ F�1 jkjj�aðFuÞðkÞ

� �
ðrÞ: ð97Þ
Let us note the distinction between the continuum fractional integral IþC
a
j

� �
and the Riesz potential Iar defined by (95) con-

sists in the use of eLþa ðkjÞ ¼ jkjj�a instead of jkj�a. The continuum integral IþC
a
j

� �
of the Riesz type is an integration of uðrÞwith

respect to one variable xj instead of all N variables x1, . . .xN in Iar .
If uðrÞ as a function of xj belongs to the Lizorkin space, then we have [10] the semi-group property
IþC
a
j

� �
IþC

b

j

� �
uðrÞ ¼ IþC

aþ b

j

� �
uðrÞ; ð98Þ
where a > 0 and b > 0.
The continuum fractional derivative DþC

a
j

� �
yields an operator inverse to the continuum fractional integration IþC

a
j

� �
for

a special space of functions
DþC
a
j

� �
IþC

a
j

� �
uðrÞ ¼ uðrÞ; ða > 0Þ: ð99Þ
Eq. (99) hold for uðrÞ belonging to the Lizorkin space of functions with respect to xi 2 R. Moreover, this property is also valid
for the continuum fractional integration in the frame of Lp-spaces LpðR1Þ for 1 6 p < 1=a (see Theorem 26.3 in [10]). Using

the property (94), it is easy to see that the continuum fractional integrals IþC
a
j

� �
with a ¼ 1 cannot be considered as usual

integral of first order with respect to xj. Therefore we define new continuum fractional integral I�C
a
j

� �
of the Riesz type by the

Fourier transforms
I�C
a
j

� �
uðrÞ ¼ F�1 �i sgnðkjÞ jkjj�aðFuÞðkÞ

� �
ðrÞ; ða > 0Þ: ð100Þ
In this case, the Fourier integral transform eL�a ðkjÞ of this continuum fractional integral is
eL�a ðkjÞ ¼ F I�C
a
j

� �
uðrÞ

� �
¼ �i sgnðkjÞ jkjj�a ðFuÞðkÞ; ða > 0Þ: ð101Þ� �
We can see that the fractional integral I�C
a
j of the integer order a ¼ 1 is the usual integral of the first order
I�C
1
j

� �
uðrÞ ¼

Z
R1

uðrÞdxj; ð102Þ
since eL�a ðkjÞ ¼ ðikjÞ�1 in this case.
Using (96), we can see that the continuum fractional integral IþC

a
j

� �
u is the Riesz integrations of the function u ¼ uðrÞ

with respect to one component xj 2 R1 of the vector r 2 RN .
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5.5. Continuum fractional derivative D�C
a
j

� �
of the Riesz type

Using the property (94), we can see that the continuum fractional derivative DþC
a
j

� �
with a ¼ 1 cannot be considered as

usual derivative of first order with respect to xj. Therefore we define new continuum fractional derivative D�C
a
j

� �
of the Riesz

type by the equation
D�C
a
j

� �
uðrÞ ¼ F�1ði sgnðkjÞ jkjjaðFuÞðkÞÞðrÞ: ð103Þ� �
We can define the continuum fractional derivative D�C
a
j as a combinations of the continuum fractional derivative

DþC
a� 1

j

� �
, the derivative of the first order @=@xj, and the continuum fractional integral IþC

1� a
j

� �
. The Fourier integral

transforms of the derivative DþC
a� 1

j

� �
, the usual derivative @=@xj, and the integral IþC

1� a
j

� �
have the forms
F DþC
a� 1

j

� �
uðrÞ

� �
ðkÞ ¼ jkjja�1 ðFuÞðkÞ; ða > 1Þ; ð104Þ

F IþC
1� a

j

� �
uðrÞ

� �
ðkÞ ¼ 1

jkjj1�a ðFuÞðkÞ; ða < 1Þ; ð105Þ

F @uðrÞ
@xj

� �
ðkÞ ¼ ikj ðFuÞðkÞ: ð106Þ
Using Eqs. (104)–(106), and the equality kj jkjja�1 ¼ sgnðkjÞ jkjja, we can define the fractional operator (103) as a combination
of these operators in the form
D�C
a
j

� �
¼

@
@xj

DþC
a� 1

j

� �
a > 1;

@
@xj

a ¼ 1;

@
@xj

IþC
1� a

j

� �
0 < a < 1:

8>>>>>><>>>>>>:
ð107Þ

� � � �

For 0 < a < 1 the operator D�C

a
j

is analogous to the conjugate Riesz derivative [14]. Therefore, the operator D�C
a
j

for

all positive values a can be called a generalized conjugate derivative of the Riesz type.
The Fourier integral transform F of the fractional derivative (107) is given by
F D�C
a
j

� �
uðrÞ

� �
ðkÞ ¼ ikj jkjja�1ðFuÞðkÞ ¼ i sgnðkjÞ jkjjaðFuÞðkÞ: ð108Þ
Using (98), (99) and (107), it is easy to prove the property
D�C
a
j

� �
I�C

a
j

� �
uðrÞ ¼ @

@xj

Z
R1

uðrÞdxj ¼ uðrÞ; ða > 0Þ: ð109Þ
For the odd values of a, equations (87) and (107) gives the relation
D�C
2mþ 1

j

� �
uðrÞ ¼ ð�1Þm @2mþ1uðrÞ

@x2mþ1
j

; ðm 2 NÞ: ð110Þ� �

Eq. (110) means that the fractional derivatives D�C

a
i of the odd orders a are local operators represented by the usual deriv-

atives of integer orders.
Note that the continuum derivative D�C

2
j

� �
cannot be considered as a local derivative of second order with respect to xj.

The derivatives D�C
a
j

� �
for even orders a ¼ 2m, where m 2 N, are non-local operators that cannot be considered as usual

derivatives @2m=@x2m
j .

5.6. Rules of fractionalization of the Riesz type

Eqs. (87) and (110) allow us to state that the partial derivatives of integer orders are obtained from the fractional deriv-

atives of the Riesz type D�C
a
j

� �
for odd values a ¼ 2mþ 1 > 0 by D�C

a
j

� �
only, and for even values a ¼ 2m > 0, where m 2 N,
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by DþC
a
j

� �
. The continuum derivatives of the Riesz type D�C

2m
j

� �
and DþC

2mþ 1
j

� �
are nonlocal differential operators of

integer orders.
In formulation of mathematical models for nonlocal continuously distributed systems, we need to generalize some well-

known local model, which is described by partial differential equations of integer order. It is obvious that we would like to
have a fractional generalization of partial differential equations such that to obtain the original equations in the limit case,
when the orders of generalized derivatives become equal to initial integer values. This requirement is often called the cor-
respondence principle.

In order to the correspondence principle has performed at fractional generalizations of local models, we suggest the fol-
lowing ‘‘rules of fractionalization’’ (the rule of generalization of differential equations to fractional case):
@2m

@x2m
j

¼ ð�1Þm DþC
2m

j

� �
! ð�1Þm DþC

a
j

� �
; ðm 2 N; 2m� 1 < a < 2mþ 1Þ; ð111Þ

@2mþ1

@x2mþ1
j

¼ ð�1Þm D�C
2mþ 1

j

� �
! ð�1Þm D�C

a
j

� �
; ðm 2 N; 2m < a < 2mþ 2Þ: ð112Þ
In order to derive a fractional generalization of differential equation with partial derivatives of integer orders, we should
replace the usual derivatives of odd orders with respect to xi by the continuum fractional derivatives of the Riesz type

D�C
a
i

� �
, and the usual derivatives of even orders with respect to xi by the continuum fractional derivatives of the Riesz type

DþC
a
i

� �
.

5.7. Continuum limit for lattice fractional derivatives and integrals

Let us formulate and prove a proposition about the connection between the lattice fractional operators and continuum
fractional operators of non-integer orders with respect to coordinates.

Proposition. The combination F�1 � Lim � FD transforms the lattice fractional derivatives
D�L
a
j

� �
uðmÞ ¼ 1

aa
j

Xþ1
mj¼�1

K�a ðnj �mjÞuðmÞ; ð113Þ
where K�a ðn�mÞ are defined by (2), (3), and the lattice fractional integrals
I�L
a
j

� �
uðmÞ ¼ 1

aa
j

Xþ1
mj¼�1

L�a ðnj �mjÞuðmÞ; ð114Þ
where L�a ðn�mÞ are defined by (31), (32), into the continuum fractional derivatives and integrals of order a with respect to coor-
dinate xj by
F�1 � Lim � FD D�L
a
j

� �� �
¼ D�C

a
j

� �
; ð115Þ

F�1 � Lim � FD I�L
a
j

� �� �
¼ I�C

a
j

� �
: ð116Þ
Proof. For simplification, we prove the statement for the lattice fractional derivatives D�C
a
j

� �
. The proof for the lattice frac-

tional integrals I�C
a
j

� �
is realized analogously.

Let us multiply Eq. (113) by expð�ikj nj ajÞ, and summing over nj from �1 to þ1. Then
Xþ1
nj¼�1

e�ikj nj aj D�L
a
j

� �
uðmÞ ¼ 1

aj

Xþ1
nj¼�1

Xþ1
mj¼�1

e�ikj nj aj K�a ðnj �mjÞuðmÞ: ð117Þ
Using (75), the right-hand side of (117) gives
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Xþ1
nj¼�1

Xþ1
mj¼�1

e�ikj nj aj K�a ðnj �mjÞuðmÞ ¼
Xþ1

nj¼�1
e�ikj nj aj K�a ðnj �mjÞ

Xþ1
mj¼�1

uðmÞ

¼
Xþ1

n0
j
¼�1

e�ikj n0
j

aj K�a ðn0jÞ
Xþ1

mj¼�1
uðmÞe�ikj mj aj ¼ K̂�a ðkj ajÞ ûðkÞ; ð118Þ
where n0j ¼ nj �mj.
As a result, Eq. (117) has the form
FD D�L
a
j

� �
uðmÞ

� �
¼ 1

aa
j

K̂�a ðkj ajÞ ûðkÞ; ð119Þ
where FD is an operator notation for the Fourier series transform.
Then we use
K̂þa ðaj kjÞ ¼ jaj kjja; ð120Þ

K̂�a ðaj kjÞ ¼ i sgnðkjÞ jaj kjja ð121Þ
and, the limit aj ! 0 gives
eKþa ðkjÞ ¼ lim
aj!0

1
aa

j

K̂þa ðkj ajÞ ¼ jkjja; ð122Þ

eK�a ðkjÞ ¼ lim
aj!0

1
aa

j

K̂�a ðkj ajÞ ¼ ikj jkjja�1
: ð123Þ
As a result, Eq. (119) in the limit aj ! 0 gives
Lim � FD D�L
a
j

� �
uðmÞ

� �
¼ eK�a ðkjÞ ~uðkÞ; ð124Þ
where
eKþa ðkjÞ ¼ jkjja; eK�a ðkjÞ ¼ ikj jkjja�1
; ~uðkÞ ¼ Lim ûðkÞ:
The inverse Fourier transform of (124) is
F�1 � Lim � FD DþL
a
j

� �
uðmÞ

� �
¼ DþC

a
j

� �
uðrÞ; ða > 0Þ; ð125Þ

F�1 � Lim � FD D�L
a
j

� �
uðmÞ

� �
¼ @

@xj
DþC

a� 1
j

� �
uðrÞ; ða > 1Þ; ð126Þ

F�1 � Lim � FD D�L
a
j

� �
uðmÞ

� �
¼ @

@xj
IþC

1� a
j

� �
uðrÞ; ð0 < a < 1Þ: ð127Þ
Here the fractional derivative and fractional integral are
DþC
a
j

� �
uðrÞ ¼ F�1fjkjja~uðkÞg; IþC

a
j

� �
uðrÞ ¼ F�1fjkjj�a~uðkÞg: ð128Þ
where we use the connection (89) and (94) between the continuum derivative and integral of the Riesz type of the order a
and the correspondent Fourier integrals transforms.

As a result, we obtain that lattice fractional derivatives are transformed (115) into continuum fractional derivatives of the
Riesz type.

This ends the proof. h

Using the Proposition (115), and the independence of ni and nj for i – j, it is easy to prove that the continuum limits for the
lattice mixed partial derivatives (61) and (62) have the form
F�1 � Lim � FD D
�;�
L

a1 a2

i j

� �� �
¼ D�C

a1

i

� �
D�C

a2

j

� �
; ði – jÞ; ð129Þ

F�1 � Lim � FD D�;�L

a1 a2

i j

� �� �
¼ D�C

a1

i

� �
D�C

a2

j

� �
; ði – jÞ: ð130Þ
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We have similar relations for other mixed lattice fractional derivatives and integrals. As a result, the continuous limits of the
lattice fractional derivatives and integrals give the continuum fractional derivatives and integrals of the Riesz type.

Note that the continuum fractional derivatives DþC
a
j

� �
for a ¼ 1 are non-local operators that cannot be considered as

usual local derivatives @=@xj, i.e. DþC
1
j

� �
– @=@xj. Therefore the fractional differential operators that correspond to the even

(symmetric) kernels with a ¼ 1 are non-local operators also. Analogously the continuum fractional derivative D�C
a
j

� �
for

a ¼ 2 is nonlocal operator and it cannot be considered as usual derivatives of second order.

At the same time, the continuum fractional operators DþC
a
j

� �
and IþC

a
j

� �
for the even integer values of order a give the

usual expressions for the differential and integral operators of even integer orders up to signs. The continuum fractional

operators D�C
a
j

� �
and I�C

a
j

� �
for the odd integer values of order a also give the usual expressions for the differential and inte-

gral operators of odd integer orders up to signs.

6. Conclusion

In this paper we suggest a formulation of fractional calculus for N-dimensional lattices with long-range interactions. The
main advantage of the suggested lattice fractional calculus is a possibility to consider this calculus as tools for a microstruc-
tural basis of fractional nonlocal continuum models. The lattice analogs of fractional derivatives and integrals are repre-
sented by kernels of long-range interactions of lattice particles. The Fourier series transform of these kernels have a
power-law form with respect to components of wave vector. The suggested long-range interactions can be used for integer
and fractional orders of lattice derivatives and integrals. The continuous limits for these lattice derivatives and integrals of
non-integer order give the continuum fractional derivatives and integrals of the Riesz type with respect to coordinates. Frac-
tional continuum dynamics can be considered as a continuous limit of lattice dynamics with long-range interactions, where
the sizes of continuum elements are much larger than the distances between lattice particles. Lattice fractional calculus
allows us to formulate a lot of different lattice models for wide class of media with nonlocality of power-law type. It allows
us to have a microstructural basis for the fractional nonlocal continuum mechanics and physics. Lattice calculus can serve as
a tools to formulate adequate lattice models in for nanomechanics [65,66]. The suggested lattice fractional calculus is formu-
lated for discretely distributed systems with the long-range interparticles interactions. Therefore this calculus can be impor-
tant to describe the non-local properties of different types of media at nano-scale and micro-scale, where the intermolecular
and interatomic interactions are crucial in determining the properties of these media.
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