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Abstract

We consider the class of non-Hamiltonian and dissipative statistical systems with distribu-
tions that are determined by the Hamiltonian. The distributions are derived analytically as
stationary solutions of the Liouville equation for non-Hamiltonian systems. The class of
non-Hamiltonian systems can be described by a non-holonomic (non-integrable) constraint:
the velocity of the elementary phase volume change is directly proportional to the power of
non-potential forces. The coefficient of this proportionality is determined by Hamiltonian.
The constant temperature systems, canonical-dissipative systems, and Fermi-Bose classical
systems are the special cases of this class of non-Hamiltonian systems.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The canonical distribution for the Hamiltonian systems was defined by Gibbs in
the book “Elementary principles in statistical mechanics” [1], published in 1902. In
general, classical systems are not Hamiltonian systems and the forces are the sum of
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potential and non-potential forces. Non-Hamiltonian and dissipative systems can
have the same distributions as Hamiltonian systems. The canonical distributions
for the non-Hamiltonian and dissipative systems were considered in [2-5,7,8,6,9-11].
The aim of this work is the extension of the statistical mechanics of conservative
Hamiltonian systems to a wide class of non-Hamiltonian and dissipative systems.
Let us point out non-Hamiltonian systems with distribution functions that are de-
fined by the Hamiltonian.

(1) In the papers [2-6,9], the constant temperature systems with minimal Gaussian
constraint are considered. These systems are the non-Hamiltonian systems that
are described by the non-potential forces in the form Ff’” = —yp,; and the Gauss-
ian non-holonomic constraint. Note that this constraint can be represented as an
addition term to the non-potential force.

(2) In the papers [12,13], the canonical-dissipative systems are considered. These sys-

tems are the non-Hamiltonian systems that are described by the non-potential
forces F"") = —0G(H)/dp,, where G(H) is a function of Hamiltonian H. Note that
the distribution functions are derived as solutions the Fokker—Planck equation. It
is known that Fokker—Planck equation can be derived from the Liouville equa-
tion [14].
) In the payer ], the systems with non-holonomic constraint and non-potential
forces F 0 are considered. The equations of motion for this system are incor-
rect [16]. The correct form of the equations is derived in [15] by the limit 7 — 0.
This procedure removes the incorrect term of the equations.

(4) In the paper [11], the canonical distribution is considered as a stationary solution
of the Liouville equation for a wide class of non-Hamiltonian system. This class is
defined by a very simple condition for the non-potential forces: the power of the
non-potential forces must be directly proportional to the velocity of the Gibbs
phase (elementary phase volume) change. This condition defines the general
constant temperature systems. Note that the condition is a non-holonomic
constraint. This constraint leads to the canonical distribution as a stationary
solution of the Liouville equations. For the linear friction, we derived the
constant temperature systems. The general form of the non-potential forces is
not derived in [11].

(5) In the paper [17], the quantum non-Hamiltonian systems with pure stationary
states are considered. The correspondent classical systems are not discussed.

(6) In the paper [19], the non-Gaussian distributions are suggested for the non-Ham-
iltonian systems in the fractional phase space. Note that non-dissipative systems
with the usual phase space are dissipative systems in the fractional phase space [19].

Khintchin [20] revealed the deep relation between the Gaussian central limit the-
orem and canonical Gibbs distribution. However, the Gaussian central limit theorem
is non-unique. Levy and Khintchin have generalized the Gaussian central limit the-
orem to the case of summation of independent, identically distributed random vari-
ables which are described by long tailed distributions. In this case, non-Gaussian
distributions replace the Gaussian in the generalized limit theorems. It is interesting
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to find statistical mechanics and thermodynamics that is based on non-Gaussian and
non-canonical distributions [21-24].

The aim of this paper is the description of non-Hamiltonian and dissipative sys-
tems with (canonical and non-canonical) distributions that are defined by Hamil-
tonian. This class can be described by the non-holonomic (non-integrable)
constraint: the velocity of the elementary phase volume change must be directly
proportional to the power of non-potential forces. The coefficient of this propor-
tionality is determined by the Hamiltonian. These distributions can be derived ana-
lytically as solutions of the Liouville equation for non-Hamiltonian systems. The
special constraint allows us to derive solutions for the system, even in far-from
equilibrium states. This class of the non-Hamiltonian systems is characterized by
the distribution functions that are determined by the Hamiltonian. The constant
temperature systems [2-6,9], the canonical-dissipative systems [12,13], and the Fer-
mi-Bose classical systems [13] are the special cases of suggested class of non-Ham-
iltonian systems.

In Section 2, the definitions of the non-Hamiltonian and dissipative systems,
mathematical background and notations are considered. In Section 3, we consider
the condition for the non-potential forces. We formulate the proposition that allows
us to answer the following question: Is this system a canonical non-Hamiltonian sys-
tem? We derive the solution of the N-particle Liouville equation for the non-Ham-
iltonian systems with non-holonomic constraint. In Section 4, we consider the
non-holonomic constraint for non-Hamiltonian systems. We formulate the proposi-
tion which allows us to derive the canonical non-Hamiltonian systems from the
equations of non-Hamiltonian system motion. The non-Hamiltonian systems with
the simple Hamiltonian and the simple non-potential forces are considered. In
Section 5, we derive the class of non-Hamiltonian systems with canonical Gibbs
distribution as a solution of the Liouville equation. In Section 6, we consider the
non-Gaussian distributions as solutions of the Liouville equations for the non-Ham-
iltonian systems. In Section 7, we derive the analog of thermodynamics laws for
the non-Hamiltonian systems with the distributions that are defined by Hamiltonian.
Finally, a short conclusion is given in Section 8.

2. Definitions of non-Hamiltonian, dissipative, and canonical non-Hamiltonian systems

Let us consider the definitions of non-Hamiltonian and dissipative classical
systems [25], which are used for the formulation of our results.

Usually a classical system is called a Hamiltonian system if the equations of motion
are determined by Hamiltonian. The more consistent definition of the non-Hamilto-
nian system is connected with Helmholtz condition for the equation of motion.

Definition 1. A classical system which is defined by the equations
dg;

dpi_
dt 1. Fi; (1)

dr

:Gia
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where i = 1,..., NV, is called Hamiltonian system if the right-hand sides of Eq. (1) sat-
isfy the Helmholtz conditions for the phase space

0G; 0G; OF; 0G; 0 OF; OF; 0
op j p; 7 ap i 0q; Oq j 0q;
Here G, = Gi(q,p), F;= Fi(q,p,a,t), where a is a set of external parameters.

If the Helmholtz conditions are satisfied, then the equations of motion for the
system (1) can be represented as canonical equations

dg; ©OoH dp,  OH

dt — op,’ dr  dq,’
which are completely characterized by the Hamiltonian H = H(q,p,a). In this case,
the forces, which act on the particles are potential forces.

If the functions G; for the non-Hamiltonian system (1) are determined by the
Hamiltonian

OH
. 4)

i

(2)

)

3)

Gi:

and the Hamiltonian is a smooth function on the momentum space, then the first
condition (2) is satisfied

OH OH
Op;0p; - op,op
In this case, the second condition (2) has the form
oF;, O°H
op;  Oq,0p;

0. (5)

In general, the second term does not vanish. For example, in the non-linear one-di-
mensional sigma-model [27] the second term of the left-hand side of Eq. (5) is defined
by the metric.

Definition 2. A mechanical system is called non-Hamiltonian if at least one of con-
ditions (2) is not satisfied.

Let us consider the time evolution of the classical state which is defined by the
distribution function py(q,p,a,t). The N-particle distribution function in the
Hamilton picture (for the Euler variables) is normalized by the condition

/pN(q,p%t)qude =1. (6)
The evolution equation of the distribution function py(g,p,a,t) is Liouville equation
in the Hamilton picture

de(qﬂpa a, t)
ds

This equation describes the change of the distribution function p along the trajec-
tory in the 6 N-dimensional phase space. Here, Q is defined by

= *Q(%PvavﬁPN(‘]aPan)- (7)
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OF; n oG;
op;  Og; .

Q(q7p,a,t) = (8)

Here and later we mean the sum on the repeated index i from 1 to N. Derivative d/d¢
is a total time derivative

d 8 _d 9
2_° T
@ a G i,

If the vector function G; is defined by Eq. (4), then

©)

oF, o'H

Q =— 4+ —
(@.p.a.1) Op;  Oq,0p;

In general, the second term does not vanish, for example, in the non-linear one-di-
mensional sigma-model [27].

In the Liouville picture (for the Lagrange variables) the function Q defines the
velocity of the phase volume change [26]

deh(a, l‘)

— Q N N )
s / (¢,p,a,t)d"qd"p

Definition 3. If Q < 0 for all phase space points (¢,p) and 2 <0 for some points of
phase space, then the system is called a dissipative system.

We can define dissipative system using a phase density of entropy

S(qap7a7t) = —k1In pN(Q7p7a7t)'

This function usually called the Gibbs phase. Eq. (7) leads to the equation for the
entropy density (Gibbs phase)

dS(g,p, a,t)
dr
It is easy to see that the function Q is proportional to the velocity of the phase en-

tropy density change. Therefore, the dissipative systems can be defined by the follow-
ing equivalent definition.

=kQ(q,p,a,t). (10)

Definition 4. A system is called a generalized dissipative system if the velocity of the
entropy density change does not equal to zero.

Let us define the special class of the non-Hamiltonian systems with distribution
functions that are completely characterized by the Hamiltonian. These distributions
can be derived analytically as stationary solutions of the Liouville equation for the
non-Hamiltonian system.

Definition 5. A non-Hamiltonian system will be called a canonical non-Hamiltonian
system if the distribution function is determined by the Hamiltonian, i.e., px(q,p,a)
can be written in the form

pN(qvpaa):pN(H(Cbpaa)va)v (11)
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where a is a set of external parameters.
Examples of the canonical non-Hamiltonian systems:

(1) The constant temperature systems [2—6,9] that have the canonical distribution. In
general, these systems can be defined by the non-holonomic constraint, which is
suggested in [11].

(2) The Fermi—Bose canonical-dissipative systems [13] which are defined by the dis-
tribution functions in the form

1
exp(B(H(g,p.a) —p) + )

(3) The classical system with the Breit-Wigner distribution function is defined
by

(12)

px(H(g,p,a))

A
(H—E)’ +(I/2)"

py(H) = (13)

3. Distribution as a solution of the Liouville equation
3.1. Formulation of the results

Let us formulate the proposition that allows us to answer the following question:
Is this system a canonical non-Hamiltonian system?

Let us consider the N-particle non-Hamiltonian systems which are defined by the
equations

dr, O0H dp, OH

= = F\". 14
at op At o (14)
The power of non-potential forces is defined by
H
Pepa) =B (15)

If the power of the non-potential forces is equal to zero (2 = 0) and 0H/d¢ = 0, then
classical system is called a conservative system. The velocity of an elementary phase
volume change Q is defined by the equation

OF, 0o'H OF"

- op; 61'1‘61’[_ op;, (16)

Q(r,p,a)

We use the following notations for the scalar product:

GA,- N ani aAyi aAzi
aa[ B Z (@axi + aay,‘ + aazi) '

i=1

The aim of this section is to prove the following result.
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Proposition 1. If the non-potential forces F of the non-Hamiltonian system (14)
satisfy the constraint condition

) OH OF"
o, op

g(H)F, =0, (17)

then this system is a canonical non-Hamiltonian system with the distribution func-
tion

pN(rv P, (1) :Z(a) exp(—L(H(r,p,a))), (18)
where the function L(H) is defined by the equation

_OL(H)

o) = (19)

The condition (17) can be formulated in other words: If velocity of the elementary

phase volume change Q is directly proportional to the power 2 of non-potential forces

F," of the non-Hamiltonian system (14) and coefficient of this proportionality is a
Sfunction g(H) of Hamiltonian H, i.e.,

Q(l’, P, t) - g(H)W(I':Pat) = Ov (20)
then this system is a canonical non-Hamiltonian system.

Note that any non-Hamiltonian system with the non-holonomic constraint (20) or
(17) is a canonical non-Hamiltonian system.

Example. Let us consider g(H)=3Np(a), where p(a)=1/kT(a). This case
is considered in [11]. If we consider the N-particle system with the Hamiltonian

Hirp.a) =) 5=+ Ulra) (21)

and a linear friction, which is defined by the non-potential forces
E" = —p, (22)

then the non-holonomic constraint (17) has the form

EN: % (23)

i.e., the kinetic energy of the system must be a constant. The constraint (23) is a non-
holonomic minimal Gaussian constraint [11,9].

If the function g(H) is defined by g(H)=3Nf(a), then the non-Hamiltonian
system can have the canonical Gibbs distribution [11]. The classical systems that are
defined by Egs. (21)—(23) are canonical non-Hamiltonian systems.
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3.2. Proof of the result

Solving the Liouville equation with the non-holonomic constraint (17), we can
obtain the (canonical and non-canonical) distributions that are defined by the
Hamiltonian.

Let us consider the Liouville equation for the N-particle distribution function
on = pa(r,p,a,t). This distribution function p yexpress a probability that a phase space
point (r,p) will appear. The Liouville equation for this non-Hamiltonian system

opy O 0
(G, — (F; = 24
at +ari (Gle)+apl( le) O ( )
expresses the conservation of probability in the phase space. Here, we use
OH OH
G=—, F=- F\".
op;’ Or; T

We define a total time derivative along the phase space trajectory by
d 0 0 0

Rl 4 F — 2
- at Sty (25)
Therefore Eq. (24) can be written in the form (7)
dpy
=_Q 2
d[ pNa ( 6)

where the omega function is defined by Eq. (16). In classical mechanics of Hamilto-
nian systems the right-hand side of the Liouville equation (26) is zero, and the dis-
tribution function does not change in time. For the non-Hamiltonian systems (14),
the omega function (16) does not vanish. For this system, the omega function is de-
fined by Eq. (16). For the canonical non-Hamiltonian systems, this function is de-
fined by the constraint (17) in the form

_ (n OH

Q = g(H)F, o,

In this case, the Liouville equation has the form

de B (n) OH

— = L

dr op;
Let us consider the total time derivative of the Hamiltonian. Using equations of
motion (14), we have

dH OH OH 0H 0H _,)\O0H ©OH ) 0H

—=—+— ——+4+F" )| —=—+4+F"—.

dr ot  Op, Or; or; op, Ot op;
If 0H/dt =0, then the power 2 of non-potential forces is equal to the total time
derivative of the Hamiltonian

g O _dH

" Op, dr

—g(H)F (27)

i
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Eq. (27) can be written in the form
don _ df

= —g(H)——py. 2
Let us consider the following form of this equation:
dln py dH
=—g(H)—. 29
I g (29)
If g(H) is an integrable function, then this function can be represented as a derivative
_ OL(H)
§(H) =~ (30)
In this case, we can write Eq. (29) in the form
dln p, dL(H)
= - . 31
dr dr (1)
As a result, we have the following solution of the Liouville equation:
on(r,p,a) = Z(a)exp(—L(H(r,p,a))). (32)

The function Z(a) is defined by the normalization condition. It is easy to see that the
distribution function of the non-Hamiltonian system is determined by the Hamilto-
nian. Therefore, this system is a canonical non-Hamiltonian system.

Note that N is an arbitrary natural number since we do not use the condition
N> 1or N—oo.

4. Non-holonomic constraint for non-Hamiltonian systems
4.1. Formulation of the result

Let us formulate the proposition which allows us to derive the canonical non-
Hamiltonian systems from any equations of motion of non-Hamiltonian systems.
The aim of this section is to prove the following result.

Proposition 2. For any non-Hamiltonian system which is defined by the equation

dr;, OH dp,
—=—" I =TF, 33
de 0p,’ dr (33)
where F; is the sum of potential and non-potential forces
aH (I'l)
F=—- F, 34
&+ F (34)
there exists a canonical non-Hamiltonian system that is defined by the equations
dr, 0oH dp,

E_a_pi’ dr =F", (35)
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where the non-potential forces ¥*" are defined by

Fr_1cw — L _ . 36
' ArAy TAAL 6p, (36)
The vectors A; and B, are defined by the equations
n (n)
dg(H) OH oH _» OF"” oH w OH OF
A=——+_—_—F"+gH) - —+g(HF; - (37)
OH  op; op; ’ op; Op, 7 Op,0p; Op,Op;
and
dog(H) oH oH oF" oH o*H  O°FV
B = H)— = 4 g(H)F —— - . 38
=am o g ) o g, TN ey~ e, (38)

Note that the forces that are defined by Eqgs. (36)—(38) satisfy the non-holonomic
constraint (20), i.e.,

oH OFf™  o’H
HF®™ — - —— — =0. 39
gUHF] op, apj Or;0p; (39)

4.2. Proof. Part 1

In this section, we prove Eq. (36).

Let us consider the N-particle classical system in the Hamilton picture. Denote the
position of the ith particle by r; and its momentum by p,.

Suppose that the system is subjected to a non-holonomic (non-integrable) con-
straint in the form

f(r,p) =0. (40)
Differentiation of Eq. (40) with respect to time gives a relation
dp, dr; B
Ar,D) B+ Bi(r,p) S =0, (41)
where
_of _o
Ai(r,p) = a_p,«7 B(r,p) = o, (42)

An unconstrained motion of the ith particle, where i =1,..., N, is described by the
equations
dr; dp,
_g, 9
dr dr
where F; is a resulting force, which acts on the ith particle.
The unconstrained motion gives a trajectory which leaves the constraint hypersur-

face (40). The constraint forces R; must be added to the equation of motion to pre-
vent the deviation from the constraint hypersurface

~F. (43)
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dr; dp,

- = Gi7 = Fi R[' 44

dt dr * (“44)
The constraint force R; for the non-holonomic constraint is proportional to the A;[16]

Ri = ;"Aiu (45)

where the coefficient 1 of the constraint force term is an undetermined Lagrangian
multiplier. For the non-holonomic constraint (40), the equations of motion (43)
are modified as

dr; dp;

—_ = Gi7 L= F,‘ /IA, 46
dr a0 (46)
The Lagrangian coefficient 1 is determined by Eq. (41). Substituting Eq. (44) into

Eq. (41), we get

Ai(Fi + )\.A,‘) + BiGi - 0. (47)
Therefore, the Lagrange multiplier 4 is equal to
AF; + BG;
I=———. 48
AA, (48)
As a result, we obtain the following equations:
dr; dp, AF; + B,G;
—l:Gl —l:FlfAlM 49
dt Todr ArA; (49)
These equations we can rewrite in the form (43)
dr; dp;
— =G, L =F" 50
dt dt ! (50)
with the new forces
AALS, — AA, AB,
F*Y = 4 “F, - LG, 51
! AkAk / AkAk / ( )

In general, the forces F;°" are non-potentials forces (see examples in [11]).

Eq. (49) are equations of the holonomic non-Hamiltonian system. For any trajec-
tory of the system in the phase space, we have = const. If initial values r,(0) and
p«(0) satisfy the constraint condition f(r(0),p(0)) =0, then solution of Egs. (49)
and (51) is a motion of the non-holonomic system.

4.3. Proof. Part 11

In this section, we prove Egs. (37) and (38).
Let us consider the non-Hamiltonian system (43) with

G-A -
op;

1

F" 52
5 +F (52)
and the special form of the non-holonomic constraint (40). Let us assume the follow-
ing constraint: the velocity of the elementary phase volume change Q(r,p,«) is directly
proportional to the power 2(r,p,a) of the non-potential forces, i.e.,
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Q(r,p,a) :g(H)'@(rvpva)v (53)

where g(H) depends on the Hamiltonian H. Therefore, the system is subjected to a
non-holonomic (non-integrable) constraint (40) in the form

f(rvpva) = g(H);?(l‘, P, a) - Q(r,p,a) =0. (54)

This constraint is a generalization of the condition which is suggested in [11]. The
power Z of the non-potential forces Ff”) is defined by Eq. (15). The function Q is de-
fined by Eq. (16).

Eq. (54) for the non-potential forces has the form

., OH OF"
gH)F]) 2= — == =0
op, Op,
Let us find the functions A; and B; for this constraint. Differentiation of the func-
tion f{(r,p,a) with respect to p; gives

oF!"
A0 <(H)F<,,)6H> o OF

"op op / op;)  op; op;

Therefore we obviously have (37). Differentiation of the function f(r,p,a) with re-
spect to r; gives

_of D wOH) 0 OF
B == i(g(H)Fj @pj) B b

Therefore, we have (38).
4.4. Minimal constraint models

To realize simulation of the classical systems with canonical and non-canonical
distributions, we must have the simple constraints. Let us consider the minimal con-
straint models which are defined by the simplest form of the Hamiltonian and the
non-potential forces

2
p n
H(rp.a) =2~ +U(ra), F"=—p,. (55)
where p?> = 3°¥ p?. For these models, the non-holonomic constraint is defined by the
equation
2

/= g(H)®

m

3N =0, (56)

where N is the number of particles. The phase space gradients (37) and (38) of the
constraint can be represented in the form

_ (%g(H) P 2p, _ Og(H) oH
Af—(Wﬂ+ )% B="m &

) 1

m
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The non-potential forces of the minimal constraint models have the form
pz(sij — PiP; a_U n P:P; 0g(H) a_U
P’ O 2p*((p*/2m)(0g(H)/O0H) +g(H)) OH or;

It is easy to see that all minimal constraint models have the potential forces.
For the minimal Gaussian constraint model

%) _,
O0H ’

we have the non-potential forces in the form

Fi:_

v v p’dy — Pp;

' ar; P

This model describes the constant temperature systems [2-6,9,11].
4.5. Minimal Gaussian constraint model

Let us consider the N-particle system with the Hamiltonian

2
H(r.p.a) =2+ U(r,a) (57)

the function g(H) = 3N/kT, and the linear friction
E" = —p, (58)

where i = 1,...,N. Note that N is an arbitrary natural number. Substituting Eq. (58)
into Egs. (15) and (16), we get the power 2 and the omega function Q:

2= Q=_-3N.
m

The non-holonomic constraint has the form

e
—=kT 59
P~ k() (59)
i.e., the kinetic energy of the system must be a constant. Note that Eq. (59) has not
the friction parameter 7.
For the N-particle system with friction (58) and non-holonomic constraint (59),

we have the following equations of motion:

dr, p, dp, OU of

@ m A an Mgy
where the function f'is defined by

f(r,p) =3(p* —mkT):  f(r,p) =0. (61)

Eq. (60) and condition (61) define 6 N + 1 variables (r,p, 4).

(60)
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Let us find the Lagrange multiplier A. Substituting Eq. (61) into Eq. (60), we get
dp; oU

=— L —7)p.. 2
d = or, T AR (62)
Using df/d¢ = 0 in the form
dp,
= 63
Py, (63)
and substituting Eq. (62) into Eq. (63), we get the Lagrange multiplier 4 in the form
1 oU

f e T
As a result, we have the holonomic system that is defined by the equations
dr, _p; dp,_ 1 oUu oU

dt —m’ dr mkr®™ %, " or

(64)

This system is equivalent to the non-holonomic system (60). For the classical N-par-
ticle system (64), condition (59) is satisfied. If the time evolution of the N-particle sys-
tem is defined by Eq. (64) or Egs. (60) and (61), then we have the canonical
distribution function in the form

1

p(r7p7a7T):expﬁ(y(aaT)_H(rvpaa))' (65)

For example, the N-particle system with the forces
»’(a)

F, = T pp;T; — ma*(a)r; (66)

can have canonical distribution (65) of the linear harmonic oscillator with
20 2
Ulr,a) = %.

5. Canonical distributions

In this section, we consider the subclass of the canonical non-Hamiltonian system
that is described by canonical distribution. This subclass of the canonical non-Ham-
iltonian N-particle system is defined by the simple function g(H) =3Nf(a) in the
non-holonomic constraint (20).

Proposition 3. If velocity of the elementary phase volume change is directly propor-
tional to the power of non-potential forces, then we have the usual canonical Gibbs
distribution as a solution of the Liouville equation.

In other words, the non-Hamiltonian system with the non-holonomic
constraint

Q= p(a)? (67)
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can have the canonical Gibbs distribution

py = exp f(a)(F (a) — H(r,p,a))
as a solution of the Liouville equation. Here, the coefficient ff(«) does not depend on
(r,p,?), i.e.,

df(a)/dt = 0.

For the non-Hamiltonian systems, the omega function (16) does not vanish.
Using Eq. (15), we have

o0H
_ (1)
Q= k! (68)
In this case, the Liouville equation has the form

de N (n) aH

= PR oy (69)
Let us consider the total time derivative for the Hamiltonian

dH oH (n) OH

& T o (70)

If 0H/dt = 0, then the energy change is equal to the power 2 of the non-potential
forces F,(-">. Eq. (69) can be written in the form

dpy dH
T _ﬁ(a)EpN' (71)
Therefore, the Liouville equation can be rewritten in the form
dln pN(rapaaat) dH(r,p,a) _
T
Since coefficient f(a) is a constant (df(a)/dr = 0), we have
d
g, 0 px(x,pa, 1) + f(a)H (r,p, a)) =0,

i.e., the value (In p + fH)is a constant along the trajectory of the system in 6 N-dimen-
sional phase space. Let us denote this constant value by f/(a)Z (a). Then, we have

In py(r,p,a,1) + f(a)H(r,p,a) = p(a)7 (a),
where d.7 (a)/dt = 0. It follows that:
In py(r,p,a,1) = pa)(F (a) — H(r,p,a)).
As a result, we have a canonical distribution function
py(r,p,a,1) = exp f(a)(F (a) — H(r,p, a))

in the Hamilton picture. The value # (a) is defined by the normalization condition
(40).

Therefore the distribution of this non-Hamiltonian system is a canonical distribu-
tion.
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Note that N is an arbitrary natural number since we do not use the condition
N> 1or N— oc.

6. Non-canonical distributions

The well-known non-Gaussian distribution is the Breit—-Wigner distribution. This
distribution has a probability density function in the form

1

= (72)

p(x)
The Breit—Wigner distribution is also known in statistics as Cauchy distribution. The
Breit—Wigner distribution is a generalized form originally introduced [28] to describe
the cross-section of resonant nuclear scattering in the form
A
p(H) = :
(H—E)* +(I/2)

(73)

This distribution can be derived from the transition probability of a resonant state
with known lifetime [29-31].
If the function g(H) of the non-holonomic constrain is defined by

. 2H-E)
) =

(74)

then we have non-Hamiltonian systems with the Breit—-Wigner distribution as a solu-
tion of the Liouville equation.
If the function g(H) of the non-holonomic constrain has the form

@
1 +aexp fla)H’

then we have classical non-Hamiltonian systems with Fermi-Bose distribution (12)
considered by Ebeling [13]. This distribution can be derived as a solution of the Liou-
ville equation. Note that Ebeling derives the Fermi—Bose distribution function as a
solution of the Fokker—Planck equation. It is known that Fokker—Planck equation
can be derived from the Liouville equation [14].

If the non-potential forces FE") are determined by the Hamiltonian

F" = —0G(H)/op,, (76)

g(H) (75)

then we have the canonical non-Hamiltonian systems, which are considered in
[12,13]. These systems are called canonical dissipative systems.
Note that the linear function g(H) in the form

g(H) = By(a) + By(a)H

leads to the following non-canonical distribution function:

py = Z(a) exp —(B,(a)H + 1B, (a)H?). (77)
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The proof of this proposition can be directly derived from Egs. (32) and (30).
Let us assume that Eq. (11) can be solved in the form

H = 0(a)h(py), (78)

where & depends on the distribution py. The function 0(«) is a function of the param-
eters . In this case, the function g(H) is a composite function

R(py) = —g(0(a)h(py))- (79)

This function can be defined by
1 ah(pN>)“
R =—10(a . 80
(o) = (000 2 (80)

In this case, the Liouville equation for the non-Hamiltonian system has the form

dpy

—= =R . 1

This equation is a non-linear equation. Note that the classical Fermi—Bose systems
[13] have the function in the form

R(py) = —B(@)(py = spy). (82)

The non-linearity of the Liouville equation is not connected with an incorrectly de-
fined phase space. This non-linearity is a symptom of the use of an incorrectly defined
boundary condition. The Bogoliubov principle of correlation weakening cannot be
used for classical Fermi—Bose systems. The classical Fermi—Bose systems can be con-
sidered as a model of open (non-Hamiltonian) system with the special correlation.
Note that the non-linear evolution of statistical systems is considered in [33-39].

7. Thermodynamics laws for non-Hamiltonian systems

Let us define the mean value f(a) of the function f(r,p,a) by the relation

fl@) = [ Fep.aipypa)d'rd'p (83)
and the variation for this function by
_ N Y (rp,a)
5a4f(r7 p, 61) - Z aak dak~ (84)

k=1

The first law of thermodynamic states that the internal energy U(a) may change
because of heat transfer 6Q, and work of thermodynamic forces

04 = iFk(a) dak. (85)

The external parameters ¢« = {a;,a», . . .,a,} here act as generalized coordinates. In the
usual equilibrium thermodynamics the work done does not entirely account for the
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change in the internal energy. The internal energy also changes because of the trans-
fer of heat, and so
dU = 6Q — d4. (86)
Since thermodynamic forces Fj(a) are non-potential forces
OF OF
k(a) — l(a) , (87)
661[ aak

the amount of work 4 depends on the path of transition from one state in param-
eters space to another. For this reason 04 and 0Q, taken separately, are not total
differentials.

Let us give a statistical definition of thermodynamic forces for the non-Hamilto-
nian systems in the mathematical expression of the analog of the first thermodynam-
ics law for the mean values. It would be natural to define the internal energy as the
mean value of Hamiltonian

Ula) = / H(r,p,a)py(r,p, a)d"rd"p. (88)

It follows that the expression for the total differential has the form:
dU(a) = /5aH(r, p,a)py(r,p,a)d"rd"p + /H(r7p7a)5ap,\,(r, p,a)d"rd"p.

Therefore

OH((r,p,
dU(a) = /%Mkmv(r,p,a)dlvrdlvp

+ / H(r,p, a)3,0x(r, p @) drdp. (89)

In the first term on the right-hand side, we can use the definition of phase density
of the thermodynamic force

_OH(r,p,a)

F"(x,p,a) = S

The thermodynamic force Fy(a) is a mean value of the phase density of the thermo-
dynamic force

Fula) = / FI™(r, p, a)py(r, p, a) d"r d*p. (90)

Using this equation we can prove the relation (87).

Analyzing these expressions we see that the first term on the right-hand side of Eq.
(89) answers for the work (85) of thermodynamic forces (90), whereas the amount of
the heat transfer is given by

5Q = /H(rapaa>5apN(r7p7a) dNrde' (91)
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We see that the heat transfer term accounts for the change in the internal energy due
not to the work of thermodynamic forces, but rather to change in the distribution
function cased by the external parameters a.

Now let us turn our attention to the analog of the second law for the non-Ham-
iltonian systems.

The second law of thermodynamics has the form

30 = 0(a)dS(a). (92)

This implies that there exists a function of state S(a) called entropy. The function
0(a) acts as integration factor.

Let us prove that (92) follows from the statistical definition of 6Q in Eq. (91). For
Eq. (91), we take the distribution that is defined by the Hamiltonian, and show that
(91) can be reduced to (92).

Let us assume that Eq. (11) can be solved in the form

H = 0(a)h(py),

where /1 depends on the distribution py. The function 6(a) is a function of the param-
eters a = {ay,as,...,a,}.
We rewrite (91) in the equivalent form

50 = / (0(a) h(p(r. p. @) a) + C(a)) 6,py (r, p.a)d"rd"p. (93)

New term with C(a), which is added into this equation, is equal to zero because of
the normalization condition of the distribution function py

C(a)d, /pN(r,p, a)d"rd"p = C(a)é,1 = 0.

We can write Eq. (93) in the form

50 = 0@, [ Kipy(r.p.a)d"rd". (94)
where the function K = K(py) is defined by
0K
s (o) + Cla) /0(a). 95)
19%

We see that the expression for 60 is integrable. If we take 1/0(a) for the integra-
tion factor, thus identifying 0 (a) with the analog of absolute temperature, then, using
(92) and (94), we can give the statistical definition of entropy

S(a) = / / K(py(r,p.a)) d"rd"p + 5. (96)

Here, Sy is the contribution to the entropy which does not depend on the variables «,
but may depend on the number of particles N in the system. Note that the expression
for entropy is equivalent to the mean value of phase density function

P (r,p,a) = K(py(r,p,a))/py(r,p,a) + C(a). ©7)
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SPM is a function of dynamic variables r, p, and the parameters a = {ay,as, .. .,a,}.
The number N is an arbitrary natural number since we do not use the condition
N> 1 or N — co. Note that in the usual equilibrium thermodynamics the function
0(a) is a mean value of kinetic energy. In the suggested thermodynamics for the non-
Hamiltonian systems 0(a) is the usual function of the external parameters
a=\{a,a,...,a,}.

8. Conclusion

The aim of this paper was the extension of the statistical mechanics of conserva-
tive Hamiltonian systems to non-Hamiltonian and dissipative systems. In this paper,
we consider a wide class of non-Hamiltonian statistical systems that have (canonical
or non-canonical) distributions that are defined by Hamiltonian. This class can be
described by the non-holonomic (non-integrable) constraint: the velocity of the ele-
mentary phase volume change is directly proportional to the power of non-potential
forces. The coefficient of this proportionality is defined by Hamiltonian. The special
constraint allows us to derive solution for the distribution function of the system,
even in far-from equilibrium situation. These distributions, which are defined by
Hamiltonian, can be derived analytically as solutions of the Liouville equation for
non-Hamiltonian systems.

The suggested class of the non-Hamiltonian systems is characterized by the distri-
bution functions that are determined by the Hamiltonian. The constant temperature
systems [2-6,9], the canonical-dissipative systems [12,13], and the Fermi—Bose clas-
sical systems [13] are the special cases of suggested class of non-Hamiltonian systems.
For the non-Hamiltonian N-particle systems of this class, we can use the analogs of
the usual thermodynamics laws. Note that N is an arbitrary natural number since we
do not use the condition N > | or N — oo. This allows us to use the suggested class
of non-Hamiltonian systems for the simulation schemes [32] for the molecular
dynamics.

In the papers [40-42], the quantization of the evolution equations for non-Ham-
iltonian and dissipative systems was suggested. Using this quantization it is easy to
derive the quantum Liouville-von Neumann equations for the N-particle statistical
operator of the non-Hamiltonian quantum system [26]. We can derive the canonical
and non-canonical statistical operators that are determined by the Hamiltonian
[17,18]. The condition for non-Hamiltonian systems can be generalized by the quan-
tization method suggested in [40,41].
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