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Abstract

We consider the class of non-Hamiltonian and dissipative statistical systems with distribu-
tions that are determined by the Hamiltonian. The distributions are derived analytically as
stationary solutions of the Liouville equation for non-Hamiltonian systems. The class of
non-Hamiltonian systems can be described by a non-holonomic (non-integrable) constraint:
the velocity of the elementary phase volume change is directly proportional to the power of
non-potential forces. The coefficient of this proportionality is determined by Hamiltonian.
The constant temperature systems, canonical–dissipative systems, and Fermi–Bose classical
systems are the special cases of this class of non-Hamiltonian systems.
� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The canonical distribution for the Hamiltonian systems was defined by Gibbs in
the book ‘‘Elementary principles in statistical mechanics’’ [1], published in 1902. In
general, classical systems are not Hamiltonian systems and the forces are the sum of
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potential and non-potential forces. Non-Hamiltonian and dissipative systems can
have the same distributions as Hamiltonian systems. The canonical distributions
for the non-Hamiltonian and dissipative systems were considered in [2–5,7,8,6,9–11].

The aim of this work is the extension of the statistical mechanics of conservative
Hamiltonian systems to a wide class of non-Hamiltonian and dissipative systems.

Let us point out non-Hamiltonian systems with distribution functions that are de-
fined by the Hamiltonian.

(1) In the papers [2–6,9], the constant temperature systems with minimal Gaussian
constraint are considered. These systems are the non-Hamiltonian systems that
are described by the non-potential forces in the form F

ðnÞ
i ¼ �cpi and the Gauss-

ian non-holonomic constraint. Note that this constraint can be represented as an
addition term to the non-potential force.

(2) In the papers [12,13], the canonical–dissipative systems are considered. These sys-
tems are the non-Hamiltonian systems that are described by the non-potential
forces FðnÞ

i ¼ �oGðHÞ=opi, where G (H) is a function of Hamiltonian H. Note that
the distribution functions are derived as solutions the Fokker–Planck equation. It
is known that Fokker–Planck equation can be derived from the Liouville equa-
tion [14].

(3) In the paper [15], the systems with non-holonomic constraint and non-potential
forces F

ðnÞ
i ¼ 0 are considered. The equations of motion for this system are incor-

rect [16]. The correct form of the equations is derived in [15] by the limit s fi 0.
This procedure removes the incorrect term of the equations.

(4) In the paper [11], the canonical distribution is considered as a stationary solution
of the Liouville equation for a wide class of non-Hamiltonian system. This class is
defined by a very simple condition for the non-potential forces: the power of the
non-potential forces must be directly proportional to the velocity of the Gibbs
phase (elementary phase volume) change. This condition defines the general
constant temperature systems. Note that the condition is a non-holonomic
constraint. This constraint leads to the canonical distribution as a stationary
solution of the Liouville equations. For the linear friction, we derived the
constant temperature systems. The general form of the non-potential forces is
not derived in [11].

(5) In the paper [17], the quantum non-Hamiltonian systems with pure stationary
states are considered. The correspondent classical systems are not discussed.

(6) In the paper [19], the non-Gaussian distributions are suggested for the non-Ham-
iltonian systems in the fractional phase space. Note that non-dissipative systems
with the usual phase space are dissipative systems in the fractional phase space [19].

Khintchin [20] revealed the deep relation between the Gaussian central limit the-
orem and canonical Gibbs distribution. However, the Gaussian central limit theorem
is non-unique. Levy and Khintchin have generalized the Gaussian central limit the-
orem to the case of summation of independent, identically distributed random vari-
ables which are described by long tailed distributions. In this case, non-Gaussian
distributions replace the Gaussian in the generalized limit theorems. It is interesting
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to find statistical mechanics and thermodynamics that is based on non-Gaussian and
non-canonical distributions [21–24].

The aim of this paper is the description of non-Hamiltonian and dissipative sys-
tems with (canonical and non-canonical) distributions that are defined by Hamil-
tonian. This class can be described by the non-holonomic (non-integrable)
constraint: the velocity of the elementary phase volume change must be directly
proportional to the power of non-potential forces. The coefficient of this propor-
tionality is determined by the Hamiltonian. These distributions can be derived ana-
lytically as solutions of the Liouville equation for non-Hamiltonian systems. The
special constraint allows us to derive solutions for the system, even in far-from
equilibrium states. This class of the non-Hamiltonian systems is characterized by
the distribution functions that are determined by the Hamiltonian. The constant
temperature systems [2–6,9], the canonical–dissipative systems [12,13], and the Fer-
mi–Bose classical systems [13] are the special cases of suggested class of non-Ham-
iltonian systems.

In Section 2, the definitions of the non-Hamiltonian and dissipative systems,
mathematical background and notations are considered. In Section 3, we consider
the condition for the non-potential forces. We formulate the proposition that allows
us to answer the following question: Is this system a canonical non-Hamiltonian sys-
tem? We derive the solution of the N-particle Liouville equation for the non-Ham-
iltonian systems with non-holonomic constraint. In Section 4, we consider the
non-holonomic constraint for non-Hamiltonian systems. We formulate the proposi-
tion which allows us to derive the canonical non-Hamiltonian systems from the
equations of non-Hamiltonian system motion. The non-Hamiltonian systems with
the simple Hamiltonian and the simple non-potential forces are considered. In
Section 5, we derive the class of non-Hamiltonian systems with canonical Gibbs
distribution as a solution of the Liouville equation. In Section 6, we consider the
non-Gaussian distributions as solutions of the Liouville equations for the non-Ham-
iltonian systems. In Section 7, we derive the analog of thermodynamics laws for
the non-Hamiltonian systems with the distributions that are defined by Hamiltonian.
Finally, a short conclusion is given in Section 8.
2. Definitions of non-Hamiltonian, dissipative, and canonical non-Hamiltonian systems

Let us consider the definitions of non-Hamiltonian and dissipative classical
systems [25], which are used for the formulation of our results.

Usually a classical system is called a Hamiltonian system if the equations of motion
are determined by Hamiltonian. The more consistent definition of the non-Hamilto-
nian system is connected with Helmholtz condition for the equation of motion.

Definition 1. A classical system which is defined by the equations

dqi
dt

¼ Gi;
dpi
dt

¼ F i; ð1Þ
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where i = 1, . . .,N, is called Hamiltonian system if the right-hand sides of Eq. (1) sat-
isfy the Helmholtz conditions for the phase space

oGi

opj
� oGj

opi
¼ 0;

oF i

opj
þ oGj

oqi
¼ 0;

oF i

oqj
� oF j

oqi
¼ 0: ð2Þ

Here Gi = Gi (q,p), Fi = Fi (q,p,a, t), where a is a set of external parameters.
If the Helmholtz conditions are satisfied, then the equations of motion for the

system (1) can be represented as canonical equations

dqi
dt

¼ oH
opi

;
dpi
dt

¼ � oH
oqi

; ð3Þ

which are completely characterized by the Hamiltonian H = H (q,p,a). In this case,
the forces, which act on the particles are potential forces.

If the functions Gi for the non-Hamiltonian system (1) are determined by the
Hamiltonian

Gi ¼
oH
opi

ð4Þ

and the Hamiltonian is a smooth function on the momentum space, then the first
condition (2) is satisfied

o2H
opiopj

� o2H
opjopi

¼ 0:

In this case, the second condition (2) has the form

oF i

opj
þ o2H
oqiopj

¼ 0: ð5Þ

In general, the second term does not vanish. For example, in the non-linear one-di-
mensional sigma-model [27] the second term of the left-hand side of Eq. (5) is defined
by the metric.
Definition 2. A mechanical system is called non-Hamiltonian if at least one of con-
ditions (2) is not satisfied.

Let us consider the time evolution of the classical state which is defined by the
distribution function qN (q,p,a, t). The N-particle distribution function in the
Hamilton picture (for the Euler variables) is normalized by the conditionZ

qN ðq; p; a; tÞdNqdNp ¼ 1: ð6Þ

The evolution equation of the distribution function qN (q,p,a, t) is Liouville equation
in the Hamilton picture

dqNðq; p; a; tÞ
dt

¼ �Xðq; p; a; tÞqN ðq; p; a; tÞ: ð7Þ

This equation describes the change of the distribution function qN along the trajec-
tory in the 6N-dimensional phase space. Here, X is defined by
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Xðq; p; a; tÞ ¼ oF i

opi
þ oGi

oqi
: ð8Þ

Here and later we mean the sum on the repeated index i from 1 to N. Derivative d/dt
is a total time derivative

d

dt
¼ o

ot
þ Gi

o

oqi
þ F i

o

opi
: ð9Þ

If the vector function Gi is defined by Eq. (4), then

Xðq; p; a; tÞ ¼ oF i

opi
þ o

2H
oqiopi

:

In general, the second term does not vanish, for example, in the non-linear one-di-
mensional sigma-model [27].

In the Liouville picture (for the Lagrange variables) the function X defines the
velocity of the phase volume change [26]

dV phða; tÞ
dt

¼
Z

Xðq; p; a; tÞdNqdNp:

Definition 3. If X 6 0 for all phase space points (q,p) and X < 0 for some points of
phase space, then the system is called a dissipative system.

We can define dissipative system using a phase density of entropy

Sðq; p; a; tÞ ¼ �k ln qN ðq; p; a; tÞ:

This function usually called the Gibbs phase. Eq. (7) leads to the equation for the
entropy density (Gibbs phase)

dSðq; p; a; tÞ
dt

¼ kXðq; p; a; tÞ: ð10Þ

It is easy to see that the function X is proportional to the velocity of the phase en-
tropy density change. Therefore, the dissipative systems can be defined by the follow-
ing equivalent definition.
Definition 4. A system is called a generalized dissipative system if the velocity of the
entropy density change does not equal to zero.

Let us define the special class of the non-Hamiltonian systems with distribution
functions that are completely characterized by the Hamiltonian. These distributions
can be derived analytically as stationary solutions of the Liouville equation for the
non-Hamiltonian system.
Definition 5. A non-Hamiltonian system will be called a canonical non-Hamiltonian
system if the distribution function is determined by the Hamiltonian, i.e., qN (q,p,a)
can be written in the form

qN ðq; p; aÞ ¼ qN ðHðq; p; aÞ; aÞ; ð11Þ
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where a is a set of external parameters.
Examples of the canonical non-Hamiltonian systems:

(1) The constant temperature systems [2–6,9] that have the canonical distribution. In
general, these systems can be defined by the non-holonomic constraint, which is
suggested in [11].

(2) The Fermi–Bose canonical–dissipative systems [13] which are defined by the dis-
tribution functions in the form

qN ðHðq; p; aÞÞ ¼ 1

expðbðHðq; p; aÞ � lÞ þ sÞ : ð12Þ

(3) The classical system with the Breit–Wigner distribution function is defined
by

qN ðHÞ ¼ k

ðH � EÞ2 þ ðC=2Þ2
: ð13Þ
3. Distribution as a solution of the Liouville equation

3.1. Formulation of the results

Let us formulate the proposition that allows us to answer the following question:
Is this system a canonical non-Hamiltonian system?

Let us consider the N-particle non-Hamiltonian systems which are defined by the
equations

dri
dt

¼ oH
opi

;
dpi
dt

¼ � oH
ori

þ F
ðnÞ
i : ð14Þ

The power of non-potential forces is defined by

Pðr; p; aÞ ¼ F
ðnÞ
i

oH
opi

: ð15Þ

If the power of the non-potential forces is equal to zero ðP ¼ 0Þ and oH/ot = 0, then
classical system is called a conservative system. The velocity of an elementary phase
volume change X is defined by the equation

Xðr; p; aÞ ¼ oFi

opi
þ o2H
oriopi

¼ oF
ðnÞ
i

opi
: ð16Þ

We use the following notations for the scalar product:

oAi

oai
¼
XN
i¼1

oAxi

oaxi
þ oAyi

oayi
þ oAzi

oazi

� �
:

The aim of this section is to prove the following result.
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Proposition 1. If the non-potential forces F
ðnÞ
i of the non-Hamiltonian system (14)

satisfy the constraint condition

gðHÞFðnÞ
i

oH
opi

� oF
ðnÞ
i

opi
¼ 0; ð17Þ

then this system is a canonical non-Hamiltonian system with the distribution func-

tion

qN ðr; p; aÞ ¼ ZðaÞ expð�LðHðr; p; aÞÞÞ; ð18Þ

where the function L (H) is defined by the equation

gðHÞ ¼ oLðHÞ
oH

: ð19Þ

The condition (17) can be formulated in other words: If velocity of the elementary

phase volume change X is directly proportional to the power P of non-potential forces

F
ðnÞ
i of the non-Hamiltonian system (14) and coefficient of this proportionality is a

function g (H) of Hamiltonian H, i.e.,

Xðr; p; tÞ � gðHÞPðr; p; tÞ ¼ 0; ð20Þ

then this system is a canonical non-Hamiltonian system.
Note that any non-Hamiltonian system with the non-holonomic constraint (20) or
(17) is a canonical non-Hamiltonian system.

Example. Let us consider g (H) = 3Nb (a), where b (a) = 1/kT (a). This case
is considered in [11]. If we consider the N-particle system with the Hamiltonian

Hðr; p; aÞ ¼
XN
i¼1

p2i
2m

þ Uðr; aÞ ð21Þ

and a linear friction, which is defined by the non-potential forces

F
ðnÞ
i ¼ �cpi; ð22Þ

then the non-holonomic constraint (17) has the form

XN
i¼1

p2i
m

¼ kT ðaÞ; ð23Þ

i.e., the kinetic energy of the system must be a constant. The constraint (23) is a non-
holonomic minimal Gaussian constraint [11,9].

If the function g (H) is defined by g (H) = 3Nb (a), then the non-Hamiltonian
system can have the canonical Gibbs distribution [11]. The classical systems that are
defined by Eqs. (21)–(23) are canonical non-Hamiltonian systems.



400 V.E. Tarasov / Annals of Physics 316 (2005) 393–413
3.2. Proof of the result

Solving the Liouville equation with the non-holonomic constraint (17), we can
obtain the (canonical and non-canonical) distributions that are defined by the
Hamiltonian.

Let us consider the Liouville equation for the N-particle distribution function
qN = qN(r,p,a, t). This distribution functionqN express a probability that a phase space
point (r,p) will appear. The Liouville equation for this non-Hamiltonian system

oqN

ot
þ o

ori
ðGiqN Þ þ

o

opi
ðFiqN Þ ¼ 0 ð24Þ

expresses the conservation of probability in the phase space. Here, we use

Gi ¼
oH
opi

; Fi ¼ � oH
ori

þ F
ðnÞ
i :

We define a total time derivative along the phase space trajectory by

d

dt
¼ o

ot
þGi

o

ori
þ Fi

o

opi
: ð25Þ

Therefore Eq. (24) can be written in the form (7)

dqN

dt
¼ �XqN ; ð26Þ

where the omega function is defined by Eq. (16). In classical mechanics of Hamilto-
nian systems the right-hand side of the Liouville equation (26) is zero, and the dis-
tribution function does not change in time. For the non-Hamiltonian systems (14),
the omega function (16) does not vanish. For this system, the omega function is de-
fined by Eq. (16). For the canonical non-Hamiltonian systems, this function is de-
fined by the constraint (17) in the form

X ¼ gðHÞFðnÞ
i

oH
opi

:

In this case, the Liouville equation has the form

dqN

dt
¼ �gðHÞFðnÞ

i
oH
opi

qN : ð27Þ

Let us consider the total time derivative of the Hamiltonian. Using equations of
motion (14), we have

dH
dt

¼ oH
ot

þ oH
opi

oH
ori

þ � oH
ori

þ F
ðnÞ
i

� �
oH
opi

¼ oH
ot

þ F
ðnÞ
i

oH
opi

:

If oH/ot = 0, then the power P of non-potential forces is equal to the total time
derivative of the Hamiltonian

F
ðnÞ
i

oH
opi

¼ dH
dt

:



V.E. Tarasov / Annals of Physics 316 (2005) 393–413 401
Eq. (27) can be written in the form

dqN

dt
¼ �gðHÞ dH

dt
qN : ð28Þ

Let us consider the following form of this equation:

d ln qN

dt
¼ �gðHÞ dH

dt
: ð29Þ

If g (H) is an integrable function, then this function can be represented as a derivative

gðHÞ ¼ oLðHÞ
oH

: ð30Þ

In this case, we can write Eq. (29) in the form

d ln qN

dt
¼ � dLðHÞ

dt
: ð31Þ

As a result, we have the following solution of the Liouville equation:

qN ðr; p; aÞ ¼ ZðaÞ expð�LðHðr; p; aÞÞÞ: ð32Þ

The function Z (a) is defined by the normalization condition. It is easy to see that the
distribution function of the non-Hamiltonian system is determined by the Hamilto-
nian. Therefore, this system is a canonical non-Hamiltonian system.

Note that N is an arbitrary natural number since we do not use the condition
N � 1 or N fi 1.
4. Non-holonomic constraint for non-Hamiltonian systems

4.1. Formulation of the result

Let us formulate the proposition which allows us to derive the canonical non-
Hamiltonian systems from any equations of motion of non-Hamiltonian systems.

The aim of this section is to prove the following result.

Proposition 2. For any non-Hamiltonian system which is defined by the equation

dri
dt

¼ oH
opi

;
dpi
dt

¼ Fi; ð33Þ

where Fi is the sum of potential and non-potential forces

Fi ¼ � oH
ori

þ F
ðnÞ
i ; ð34Þ

there exists a canonical non-Hamiltonian system that is defined by the equations

dri
dt

¼ oH
opi

;
dpi
dt

¼ Fnew
i ; ð35Þ
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where the non-potential forces Fnew
i are defined by

Fnew
i ¼ AkAkdij � AiAj

AkAk
Fj �

AiBj

AkAk

oH
opj

: ð36Þ

The vectors Ai and Bi are defined by the equations

Ai ¼
ogðHÞ
oH

oH
opi

oH
opj

F
ðnÞ
j þ gðHÞ

oF
ðnÞ
j

opi

oH
opj

þ gðHÞFðnÞ
j

o2H
opiopj

�
o2F

ðnÞ
j

opiopj
ð37Þ

and

Bi ¼
ogðHÞ
oH

oH
ori

oH
opj

F
ðnÞ
j þ gðHÞ

oF
ðnÞ
j

ori

oH
opj

þ gðHÞFðnÞ
j

o
2H

oriopj
�

o2F
ðnÞ
j

oriopj
: ð38Þ

Note that the forces that are defined by Eqs. (36)–(38) satisfy the non-holonomic
constraint (20), i.e.,
gðHÞFnew
j

oH
opj

�
oFnew

j

opj
� o

2H
orjopj

¼ 0: ð39Þ
4.2. Proof. Part I

In this section, we prove Eq. (36).
Let us consider the N-particle classical system in the Hamilton picture. Denote the

position of the ith particle by ri and its momentum by pi.
Suppose that the system is subjected to a non-holonomic (non-integrable) con-

straint in the form

f ðr; pÞ ¼ 0: ð40Þ
Differentiation of Eq. (40) with respect to time gives a relation

Aiðr; pÞ
dpi
dt

þ Biðr; pÞ
dri
dt

¼ 0; ð41Þ

where

Aiðr; pÞ ¼
of
opi

; Biðr; pÞ ¼
of
ori

: ð42Þ

An unconstrained motion of the ith particle, where i = 1, . . .,N, is described by the
equations

dri
dt

¼ Gi;
dpi
dt

¼ Fi; ð43Þ

where Fi is a resulting force, which acts on the ith particle.
The unconstrained motion gives a trajectory which leaves the constraint hypersur-

face (40). The constraint forces Ri must be added to the equation of motion to pre-
vent the deviation from the constraint hypersurface
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dri
dt

¼ Gi;
dpi
dt

¼ Fi þ Ri: ð44Þ

The constraint forceRi for the non-holonomic constraint is proportional to theAi [16]

Ri ¼ kAi; ð45Þ
where the coefficient k of the constraint force term is an undetermined Lagrangian
multiplier. For the non-holonomic constraint (40), the equations of motion (43)
are modified as

dri
dt

¼ Gi;
dpi
dt

¼ Fi þ kAi: ð46Þ

The Lagrangian coefficient k is determined by Eq. (41). Substituting Eq. (44) into
Eq. (41), we get

AiðFi þ kAiÞ þ BiGi ¼ 0: ð47Þ
Therefore, the Lagrange multiplier k is equal to

k ¼ �AiFi þ BiGi

AkAk
: ð48Þ

As a result, we obtain the following equations:

dri
dt

¼ Gi;
dpi
dt

¼ Fi � Ai
AjFj þ BjGj

AkAk
: ð49Þ

These equations we can rewrite in the form (43)

dri
dt

¼ Gi;
dpi
dt

¼ Fnew
i ð50Þ

with the new forces

Fnew
i ¼ AkAkdij � AiAj

AkAk
Fj �

AiBj

AkAk
Gj: ð51Þ

In general, the forces Fnew
i are non-potentials forces (see examples in [11]).

Eq. (49) are equations of the holonomic non-Hamiltonian system. For any trajec-
tory of the system in the phase space, we have f = const. If initial values rk (0) and
pk (0) satisfy the constraint condition f (r(0),p(0)) = 0, then solution of Eqs. (49)
and (51) is a motion of the non-holonomic system.

4.3. Proof. Part II

In this section, we prove Eqs. (37) and (38).
Let us consider the non-Hamiltonian system (43) with

Gi ¼
oH
opi

; Fi ¼ � oH
ori

þ F
ðnÞ
i ð52Þ

and the special form of the non-holonomic constraint (40). Let us assume the follow-
ing constraint: the velocity of the elementary phase volume change X(r,p,a) is directly
proportional to the power Pðr; p; aÞ of the non-potential forces, i.e.,
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Xðr; p; aÞ ¼ gðHÞPðr; p; aÞ; ð53Þ

where g (H) depends on the Hamiltonian H. Therefore, the system is subjected to a
non-holonomic (non-integrable) constraint (40) in the form

f ðr; p; aÞ ¼ gðHÞPðr; p; aÞ � Xðr; p; aÞ ¼ 0: ð54Þ
This constraint is a generalization of the condition which is suggested in [11]. The
power P of the non-potential forces FðnÞ

i is defined by Eq. (15). The function X is de-
fined by Eq. (16).

Eq. (54) for the non-potential forces has the form

gðHÞFðnÞ
j

oH
opj

�
oF

ðnÞ
j

opj
¼ 0:

Let us find the functions Ai and Bi for this constraint. Differentiation of the func-
tion f (r,p,a) with respect to pi gives

Ai ¼
of
opi

¼ o

opi
gðHÞFðnÞ

j
oH
opj

 !
� o

opi

oF
ðnÞ
j

opj
:

Therefore we obviously have (37). Differentiation of the function f (r,p,a) with re-
spect to ri gives

Bi ¼
of
ori

¼ o

ori
gðHÞFðnÞ

j
oH
opj

 !
� o

ori

oF
ðnÞ
j

opj
:

Therefore, we have (38).

4.4. Minimal constraint models

To realize simulation of the classical systems with canonical and non-canonical
distributions, we must have the simple constraints. Let us consider the minimal con-
straint models which are defined by the simplest form of the Hamiltonian and the
non-potential forces

Hðr; p; aÞ ¼ p2

2m
þ Uðr; aÞ; F

ðnÞ
i ¼ �cpi: ð55Þ

where p2 ¼
PN

i¼1p
2
i . For these models, the non-holonomic constraint is defined by the

equation

f ¼ gðHÞ p
2

m
� 3N ¼ 0; ð56Þ

where N is the number of particles. The phase space gradients (37) and (38) of the
constraint can be represented in the form

Ai ¼
ogðHÞ
oH

p2

2m
þ gðHÞ

� �
2pi
m

; Bi ¼
ogðHÞ
oH

oH
or

:

i
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The non-potential forces of the minimal constraint models have the form

Fi ¼ �
p2dij � pipj

p2
oU
orj

þ
pipj

2p2ððp2=2mÞðogðHÞ=oHÞ þ gðHÞÞ
ogðHÞ
oH

oU
orj

:

It is easy to see that all minimal constraint models have the potential forces.
For the minimal Gaussian constraint model

ogðHÞ
oH

¼ 0;

we have the non-potential forces in the form

Fi ¼ � oU
orj

p2dij � pipj

p2
:

This model describes the constant temperature systems [2–6,9,11].

4.5. Minimal Gaussian constraint model

Let us consider the N-particle system with the Hamiltonian

Hðr; p; aÞ ¼ p2

2m
þ Uðr; aÞ; ð57Þ

the function g (H) = 3N/kT, and the linear friction

F
ðnÞ
i ¼ �cpi; ð58Þ

where i = 1, . . .,N. Note that N is an arbitrary natural number. Substituting Eq. (58)
into Eqs. (15) and (16), we get the power P and the omega function X:

P ¼ � c
m
p2; X ¼ �3cN :

The non-holonomic constraint has the form

p2

m
¼ kT ðaÞ; ð59Þ

i.e., the kinetic energy of the system must be a constant. Note that Eq. (59) has not
the friction parameter c.

For the N-particle system with friction (58) and non-holonomic constraint (59),
we have the following equations of motion:

dri
dt

¼ pi
m
;

dpi
dt

¼ � oU
ori

� cpi þ k
of
opi

; ð60Þ

where the function f is defined by

f ðr; pÞ ¼ 1
2
ðp2 � mkT Þ : f ðr; pÞ ¼ 0: ð61Þ

Eq. (60) and condition (61) define 6N + 1 variables (r,p,k).
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Let us find the Lagrange multiplier k. Substituting Eq. (61) into Eq. (60), we get

dpi
dt

¼ � oU
ori

þ ðk� cÞpi: ð62Þ

Using df/dt = 0 in the form

pi
dpi
dt

¼ 0 ð63Þ

and substituting Eq. (62) into Eq. (63), we get the Lagrange multiplier k in the form

k ¼ 1

mkT
pj
oU
orj

þ c:

As a result, we have the holonomic system that is defined by the equations

dri
dt

¼ pi
m
;

dpi
dt

¼ 1

mkT
pipj

oU
orj

� oU
ori

: ð64Þ

This system is equivalent to the non-holonomic system (60). For the classical N-par-
ticle system (64), condition (59) is satisfied. If the time evolution of the N-particle sys-
tem is defined by Eq. (64) or Eqs. (60) and (61), then we have the canonical
distribution function in the form

qðr; p; a; T Þ ¼ exp
1

kT
ðFða; T Þ � Hðr; p; aÞÞ: ð65Þ

For example, the N-particle system with the forces

Fi ¼
x2ðaÞ
kT

pipjrj � mx2ðaÞri ð66Þ

can have canonical distribution (65) of the linear harmonic oscillator with

Uðr; aÞ ¼ mx2ðaÞr2
2

:

5. Canonical distributions

In this section, we consider the subclass of the canonical non-Hamiltonian system
that is described by canonical distribution. This subclass of the canonical non-Ham-
iltonian N-particle system is defined by the simple function g (H) = 3Nb (a) in the
non-holonomic constraint (20).

Proposition 3. If velocity of the elementary phase volume change is directly propor-

tional to the power of non-potential forces, then we have the usual canonical Gibbs

distribution as a solution of the Liouville equation.
In other words, the non-Hamiltonian system with the non-holonomic
constraint

X ¼ bðaÞP ð67Þ
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can have the canonical Gibbs distribution

qN ¼ exp bðaÞ FðaÞ � Hðr; p; aÞð Þ
as a solution of the Liouville equation. Here, the coefficient b (a) does not depend on
(r,p, t), i.e.,

dbðaÞ=dt ¼ 0:

For the non-Hamiltonian systems, the omega function (16) does not vanish.
Using Eq. (15), we have

X ¼ bðaÞFðnÞ
i

oH
opi

: ð68Þ

In this case, the Liouville equation has the form

dqN

dt
¼ �bðaÞFðnÞ

i
oH
opi

qN : ð69Þ

Let us consider the total time derivative for the Hamiltonian

dH
dt

¼ oH
ot

þ F
ðnÞ
i

oH
opi

: ð70Þ

If oH/ot = 0, then the energy change is equal to the power P of the non-potential
forces FðnÞ

i . Eq. (69) can be written in the form

dqN

dt
¼ �bðaÞ dH

dt
qN : ð71Þ

Therefore, the Liouville equation can be rewritten in the form

d ln qN ðr; p; a; tÞ
dt

þ bðaÞ dHðr; p; aÞ
dt

¼ 0:

Since coefficient b (a) is a constant (db (a)/dt = 0), we have

d

dt
ðln qNðr; p; a; tÞ þ bðaÞHðr; p; aÞÞ ¼ 0;

i.e., the value (lnqN + bH) is a constant along the trajectory of the system in 6N-dimen-
sional phase space. Let us denote this constant value by bðaÞFðaÞ. Then, we have

ln qN ðr; p; a; tÞ þ bðaÞHðr; p; aÞ ¼ bðaÞFðaÞ;
where dFðaÞ=dt ¼ 0. It follows that:

ln qN ðr; p; a; tÞ ¼ bðaÞðFðaÞ � Hðr; p; aÞÞ:
As a result, we have a canonical distribution function

qN ðr; p; a; tÞ ¼ exp bðaÞðFðaÞ � Hðr; p; aÞÞ
in the Hamilton picture. The value FðaÞ is defined by the normalization condition
(40).

Therefore the distribution of this non-Hamiltonian system is a canonical distribu-
tion.
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Note that N is an arbitrary natural number since we do not use the condition
N � 1 or N fi 1.
6. Non-canonical distributions

The well-known non-Gaussian distribution is the Breit–Wigner distribution. This
distribution has a probability density function in the form

qðxÞ ¼ 1

pð1þ x2Þ : ð72Þ

The Breit–Wigner distribution is also known in statistics as Cauchy distribution. The
Breit–Wigner distribution is a generalized form originally introduced [28] to describe
the cross-section of resonant nuclear scattering in the form

qðHÞ ¼ k

ðH � EÞ2 þ ðC=2Þ2
: ð73Þ

This distribution can be derived from the transition probability of a resonant state
with known lifetime [29–31].

If the function g (H) of the non-holonomic constrain is defined by

gðHÞ ¼ 2ðH � EÞ
ðH � EÞ2 þ ðC=2Þ2

; ð74Þ

then we have non-Hamiltonian systems with the Breit–Wigner distribution as a solu-
tion of the Liouville equation.

If the function g (H) of the non-holonomic constrain has the form

gðHÞ ¼ bðaÞ
1þ a exp bðaÞH ; ð75Þ

then we have classical non-Hamiltonian systems with Fermi–Bose distribution (12)
considered by Ebeling [13]. This distribution can be derived as a solution of the Liou-
ville equation. Note that Ebeling derives the Fermi–Bose distribution function as a
solution of the Fokker–Planck equation. It is known that Fokker–Planck equation
can be derived from the Liouville equation [14].

If the non-potential forces FðnÞ
i are determined by the Hamiltonian

F
ðnÞ
i ¼ �oGðHÞ=opi; ð76Þ

then we have the canonical non-Hamiltonian systems, which are considered in
[12,13]. These systems are called canonical dissipative systems.

Note that the linear function g (H) in the form

gðHÞ ¼ b1ðaÞ þ b2ðaÞH
leads to the following non-canonical distribution function:

q ¼ ZðaÞ exp�ðb ðaÞH þ 1b ðaÞH 2Þ: ð77Þ
N 1 2 2
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The proof of this proposition can be directly derived from Eqs. (32) and (30).
Let us assume that Eq. (11) can be solved in the form

H ¼ hðaÞhðqNÞ; ð78Þ
where h depends on the distribution qN. The function h (a) is a function of the param-
eters a. In this case, the function g (H) is a composite function

RðqN Þ ¼ �gðhðaÞhðqN ÞÞ: ð79Þ
This function can be defined by

RðqN Þ ¼
1

qN
hðaÞ ohðqN Þ

oqN

� ��1

: ð80Þ

In this case, the Liouville equation for the non-Hamiltonian system has the form

dqN

dt
¼ RðqNÞP: ð81Þ

This equation is a non-linear equation. Note that the classical Fermi–Bose systems
[13] have the function in the form

RðqN Þ ¼ �bðaÞðqN � sq2
N Þ: ð82Þ

The non-linearity of the Liouville equation is not connected with an incorrectly de-
fined phase space. This non-linearity is a symptom of the use of an incorrectly defined
boundary condition. The Bogoliubov principle of correlation weakening cannot be
used for classical Fermi–Bose systems. The classical Fermi–Bose systems can be con-
sidered as a model of open (non-Hamiltonian) system with the special correlation.
Note that the non-linear evolution of statistical systems is considered in [33–39].
7. Thermodynamics laws for non-Hamiltonian systems

Let us define the mean value f (a) of the function f (r,p,a) by the relation

f ðaÞ ¼
Z

f ðr; p; aÞqN ðr; p; aÞdNrdNp ð83Þ

and the variation for this function by

daf ðr; p; aÞ ¼
Xn
k¼1

of ðr; p; aÞ
oak

dak: ð84Þ

The first law of thermodynamic states that the internal energy U (a) may change
because of heat transfer dQ, and work of thermodynamic forces

dA ¼
Xn
k¼1

F kðaÞdak: ð85Þ

The external parameters a = {a1,a2, . . .,an} here act as generalized coordinates. In the
usual equilibrium thermodynamics the work done does not entirely account for the
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change in the internal energy. The internal energy also changes because of the trans-
fer of heat, and so

dU ¼ dQ� dA: ð86Þ
Since thermodynamic forces Fk (a) are non-potential forces

oF kðaÞ
oal

¼ oF lðaÞ
oak

; ð87Þ

the amount of work dA depends on the path of transition from one state in param-
eters space to another. For this reason dA and dQ, taken separately, are not total
differentials.

Let us give a statistical definition of thermodynamic forces for the non-Hamilto-
nian systems in the mathematical expression of the analog of the first thermodynam-
ics law for the mean values. It would be natural to define the internal energy as the
mean value of Hamiltonian

UðaÞ ¼
Z

Hðr; p; aÞqNðr; p; aÞdN rdNp: ð88Þ

It follows that the expression for the total differential has the form:

dUðaÞ ¼
Z

daHðr; p; aÞqN ðr; p; aÞdNrdNpþ
Z

Hðr; p; aÞdaqN ðr; p; aÞdN rdNp:

Therefore

dUðaÞ ¼
Z

oHðr; p; aÞ
oak

dakqN ðr; p; aÞdNrdNp

þ
Z

Hðr; p; aÞdaqNðr; p; aÞdN rdNp: ð89Þ

In the first term on the right-hand side, we can use the definition of phase density
of the thermodynamic force

F ph
k ðr; p; aÞ ¼ � oHðr; p; aÞ

oak
:

The thermodynamic force Fk (a) is a mean value of the phase density of the thermo-
dynamic force

F kðaÞ ¼
Z

F ph
k ðr; p; aÞqN ðr; p; aÞdN rdNp: ð90Þ

Using this equation we can prove the relation (87).
Analyzing these expressions we see that the first term on the right-hand side of Eq.

(89) answers for the work (85) of thermodynamic forces (90), whereas the amount of
the heat transfer is given by

dQ ¼
Z

Hðr; p; aÞdaqN ðr; p; aÞdNrdNp: ð91Þ
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We see that the heat transfer term accounts for the change in the internal energy due
not to the work of thermodynamic forces, but rather to change in the distribution
function cased by the external parameters a.

Now let us turn our attention to the analog of the second law for the non-Ham-
iltonian systems.

The second law of thermodynamics has the form

dQ ¼ hðaÞdSðaÞ: ð92Þ
This implies that there exists a function of state S (a) called entropy. The function
h (a) acts as integration factor.

Let us prove that (92) follows from the statistical definition of dQ in Eq. (91). For
Eq. (91), we take the distribution that is defined by the Hamiltonian, and show that
(91) can be reduced to (92).

Let us assume that Eq. (11) can be solved in the form

H ¼ hðaÞhðqNÞ;
where h depends on the distribution qN. The function h (a) is a function of the param-
eters a = {a1,a2, . . .,an}.

We rewrite (91) in the equivalent form

dQ ¼
Z

ðhðaÞhðqðr; p; aÞ; aÞ þ CðaÞÞdaqN ðr; p; aÞdN rdNp: ð93Þ

New term with C (a), which is added into this equation, is equal to zero because of
the normalization condition of the distribution function qN

CðaÞda
Z

qN ðr; p; aÞdNrdNp ¼ CðaÞda1 ¼ 0:

We can write Eq. (93) in the form

dQ ¼ hðaÞda
Z

KðqN ðr; p; aÞÞdN rdNp; ð94Þ

where the function K = K (qN) is defined by

oKðqN Þ
oqN

¼ hðqN Þ þ CðaÞ=hðaÞ: ð95Þ

We see that the expression for dQ is integrable. If we take 1/h (a) for the integra-
tion factor, thus identifying h (a) with the analog of absolute temperature, then, using
(92) and (94), we can give the statistical definition of entropy

SðaÞ ¼
Z Z

KðqN ðr; p; aÞÞdN rdNpþ S0: ð96Þ

Here, S0 is the contribution to the entropy which does not depend on the variables a,
but may depend on the number of particles N in the system. Note that the expression
for entropy is equivalent to the mean value of phase density function

Sphðr; p; aÞ ¼ KðqN ðr; p; aÞÞ=qN ðr; p; aÞ þ CðaÞ: ð97Þ
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Sph is a function of dynamic variables r, p, and the parameters a = {a1,a2, . . .,an}.
The number N is an arbitrary natural number since we do not use the condition
N � 1 or N fi 1. Note that in the usual equilibrium thermodynamics the function
h (a) is a mean value of kinetic energy. In the suggested thermodynamics for the non-
Hamiltonian systems h (a) is the usual function of the external parameters
a = {a1,a2, . . .,an}.
8. Conclusion

The aim of this paper was the extension of the statistical mechanics of conserva-
tive Hamiltonian systems to non-Hamiltonian and dissipative systems. In this paper,
we consider a wide class of non-Hamiltonian statistical systems that have (canonical
or non-canonical) distributions that are defined by Hamiltonian. This class can be
described by the non-holonomic (non-integrable) constraint: the velocity of the ele-
mentary phase volume change is directly proportional to the power of non-potential
forces. The coefficient of this proportionality is defined by Hamiltonian. The special
constraint allows us to derive solution for the distribution function of the system,
even in far-from equilibrium situation. These distributions, which are defined by
Hamiltonian, can be derived analytically as solutions of the Liouville equation for
non-Hamiltonian systems.

The suggested class of the non-Hamiltonian systems is characterized by the distri-
bution functions that are determined by the Hamiltonian. The constant temperature
systems [2–6,9], the canonical–dissipative systems [12,13], and the Fermi–Bose clas-
sical systems [13] are the special cases of suggested class of non-Hamiltonian systems.
For the non-Hamiltonian N-particle systems of this class, we can use the analogs of
the usual thermodynamics laws. Note that N is an arbitrary natural number since we
do not use the condition N � 1 or N fi 1. This allows us to use the suggested class
of non-Hamiltonian systems for the simulation schemes [32] for the molecular
dynamics.

In the papers [40–42], the quantization of the evolution equations for non-Ham-
iltonian and dissipative systems was suggested. Using this quantization it is easy to
derive the quantum Liouville–von Neumann equations for the N-particle statistical
operator of the non-Hamiltonian quantum system [26]. We can derive the canonical
and non-canonical statistical operators that are determined by the Hamiltonian
[17,18]. The condition for non-Hamiltonian systems can be generalized by the quan-
tization method suggested in [40,41].
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