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a b s t r a c t

Relativistic particle subjected to a general four-force is considered
as a nonholonomic system. The nonholonomic constraint in four-
dimensional space–time represents the relativistic invariance by
the equation for four-velocity ulul + c2 = 0, where c is the speed
of light in vacuum. In the general case, four-forces are non-poten-
tial, and the relativistic particle is a non-Hamiltonian system in
four-dimensional pseudo-Euclidean space–time. We consider
non-Hamiltonian and dissipative systems in relativistic mechanics.
Covariant forms of the principle of stationary action and the Ham-
ilton’s principle for relativistic mechanics of non-Hamiltonian sys-
tems are discussed. The equivalence of these principles is
considered for relativistic particles subjected to potential and
non-potential forces. We note that the equations of motion which
follow from the Hamilton’s principle are not equivalent to the
equations which follow from the variational principle of stationary
action. The Hamilton’s principle and the principle of stationary
action are not compatible in the case of systems with nonholonom-
ic constraint and the potential forces. The principle of stationary
action for relativistic particle subjected to non-potential forces
can be used if the Helmholtz conditions are satisfied. The Hamil-
ton’s principle and the principle of stationary action are equivalent
only for a special class of relativistic non-Hamiltonian systems.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

The interest in non-Hamiltonian and dissipative systems has been growing continually during the
last few years. Non-Hamiltonian systems have found many applications in recent studies in physics. In
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a fairly short period of time, the list of such applications has become long. It includes statistical
mechanics [1–5], kinetic theory [6], plasma physics [7–9], astrophysics [10], celestial mechanics
[11], quantum mechanics [12–15], and nonequilibrium molecular dynamics [16–19]. In this paper,
we discuss dynamics of relativistic non-Hamiltonian systems. The relativistic particles are described
as systems with nonholonomic constraint in the four-dimensional pseudo-Euclidean space–time.
The principle of stationary action and the Hamilton’s principle are discussed for the relativistic parti-
cles subjected to non-potential four-forces.

It is well known that components of the four-velocity ul = dxl/ds (l = 1,2,3,4 and s is a proper
time) are not independent. The components of the four-velocity are connected by the equation
ulul + c2 = 0, where c is the speed of light in vacuum. This equation allows us to consider the relativ-
istic particle as a system with constraints in four-dimensional space–time. This constraint is a nonlin-
ear nonholonomic (nonintegrable) constraint. The relativistic invariance for point particles can be
considered as a nonholonomic constraint. Therefore any relativistic particle in the four-dimensional
space–time can be described as a nonholonomic system.

We may note that only mechanics of relativistic particles can be considered as a mechanics with
nonholonomic constraint. The relativistic invariance in the field theory cannot be considered as a non-
holonomic constraint. At the same time, nonholonomic constraints can be used in the field theory. For
example, the higher spin fields are connected with nonholonomic constraints [23] and the gauge fix-
ing conditions for non-abelian gauge fields can be described as nonholonomic constraints [24]. The
Euler–Lagrange and Hamilton equations for nonholonomic systems in classical field theory are sug-
gested in [25].

In Ref. [20], the geometric theory of nonholonomic systems on fibred manifolds is applied to de-
scribe the motion of a particle within the relativistic mechanics. Equations of motion for relativistic
particles subjected to potential forces are suggested in [20] (see also [21,22]). In Refs. [20–22], general-
ized non-potential four-forces and non-Hamiltonian systems are not discussed within the framework
of relativistic mechanics.

In this paper, a relativistic particle subjected to a general four-force Fl is considered as a nonhol-
onomic system. The nonholonomic constraint in four-dimensional space–time represents the relativ-
istic invariance by the equation for four-velocity ulul + c2 = 0, where c is the speed of light in vacuum.
The consideration is partially based on the results of Krupkova and Musilova [20,21] (see also [22]).
The main objects of [20,21] are relativistic particles subjected to the potential forces. In the general
case, the four-force Fl is non-potential, and the relativistic particle is a non-Hamiltonian system in
four-dimensional pseudo-Euclidean space–time. We consider non-Hamiltonian and dissipative sys-
tems in relativistic mechanics to take into account an interaction between the system and the envi-
ronment. Note that relativistic particle with dissipation is discussed in [33,34]. In Refs. [33,34], the
Lagrangian and Hamiltonian functions for one-dimensional relativistic particles with linear dissipa-
tion are suggested. In general, non-Hamiltonian and dissipative n-dimensional systems with n > 1 can-
not be described by the Hamiltonian or Lagrangian since the Helmholtz’s conditions for these systems
are not satisfied [15]. In this paper, we consider relativistic particles as n-dimensional non-Hamilto-
nian and dissipative systems with n > 1.

It is well known that holonomic variational principles cannot be used for non-Hamiltonian and dissi-
pative systems. Covariant forms of the principle of stationary action and the Hamilton’s principle for rel-
ativistic mechanics are discussed in this paper. The equivalence of these principles is considered for
relativistic particles subjected to potential and non-potential forces. The analysis of these principles is
based on the results of the classic papers by Rumiantsev [26,27] (see also [28–31]). We note that the equa-
tions of motion which follow from the d’Alembert–Lagrange principle are not equivalent to the equations
which follow from the principle of stationary action. In Refs. [26–28,31], the authors give proofs that the
solutions to the equations of motion which follow from the d’Alembert–Lagrange principle and the Ham-
ilton’s principle do not in general satisfy the equations which follow from the action principle with non-
holonomic constraints. In general, the Hamilton’s principle and the principle of stationary action are not
equivalent in the case of systems with nonholonomic constraints. In this paper, these results are applied to
a nonholonomic approach to relativistic dynamics of non-Hamiltonian systems.

In Section 2, the nonholonomic constraint in four-dimensional space–time for relativistic particle
and some notations are considered. In Sections 3 and 4, we discuss the d’Alembert–Lagrange principle
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and the Lagrange equations for relativistic particle that is considered as a nonholonomic system. In
Section 5, the equations of motion for relativistic systems with nonholonomic constraint are repre-
sented as equations for holonomic systems. In Section 6, the conditions for relativistic particle to be
a non-Hamiltonian or dissipative system are considered. In Sections 7 and 8, the Hamilton’s principle,
the principle of stationary action and the equivalence of these principles are discussed. Finally, a short
conclusion is given in Section 9.

2. Nonholonomic constraint

2.1. Four-vector representation

Let us consider a four-dimensional pseudo-Euclidean space–time of points with coordinates xl:
x1 = x, x2 = y, x3 = z, x4 = ct. The point coordinates in the four-dimensional space–time can be consid-
ered as components radius four-vector of the point particle, ~R ¼ ðx1; x2; x3; x4Þ ¼ ðx; y; z; ctÞ. The square
of the elementary radius four-vector in the four-dimensional space–time is defined by

ðd~RÞ2 ¼ glm dxl dxm ¼ dx2 þ dy2 þ dz2 � c2 dt2
:

Here and later we mean the sum on the repeated indices l and m from 1 to 4. The coefficients glm de-
fine a metric of pseudo-Euclidean space–time. This metric is a diagonal tensor such that
g11 = g22 = g33 = 1 and g44 = �1. Note that xl is not equal to xl, since xl = glmxm and x1 = x1, x2 = x2,
x3 = x3, and x4 = �x4.

Assume that we have two radius four-vectors~R and~R0 with coordinates xl and x0l of two reference
frames to describe a relativistic particle. If the coordinate transformation x0l ¼ al

m xm, where al
m are con-

stant values, satisfies the invariant condition:

ðd~R0Þ2 ¼ ðd~RÞ2 : glm dx0l dx0m ¼ gab dxa dxb
; ð1Þ

then this transformation is a Lorenz transformation. The invariance under the Lorenz transformations
is a main postulate of relativistic mechanics.

The coordinates of the radius four-vector in the proper reference frame are ~R0 ¼ ð0;0;0; csÞ, where
s is a proper time. Condition (1) leads us to the relation

ðd~RÞ2 ¼ ðd~R0Þ2 : glm dxl dxm ¼ �c2 ds2; ð2Þ

or d~r2 � c2 dt2 ¼ �c2 ds2. Using the definition of three-velocity ~v ¼ d~r=dt, we get

dt ¼ cds; c ¼ ð1� v2=c2Þ�1=2
: ð3Þ

Four-velocity of the point particle is defined as a derivative of the radius four-vector with respect to
proper time:

~V ¼ d~R
ds

: ul ¼ dxl

ds
:

The components of the four-velocity ~V ¼ ðc~v ; ccÞ are

uk ¼ dxk

ds
¼ dt

ds
dxk

dt
¼ c

dxk

dt
¼ cvk ðk ¼ 1;2;3Þ;

u4 ¼ dx4

ds
¼ c

dt
ds
¼ cc:

Note that rest particles ð~v ¼ 0Þ have u4 = c.
Eq. (2) leads to the relation

d~R
ds

 !2

¼ d~R0

ds

 !2

: glm
dxl

ds
dxm

ds
¼ �c2;

which means that square of the four-velocity is a constant value: ~V2 ¼ �c2. Therefore we have the con-
straint equation
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glmulum þ c2 ¼ 0: ð4Þ

As a result, a relativistic particle in the covariant formulation of relativistic mechanics is a system with
the nonholonomic constraint. The constraint (4) is nonholonomic since it depends on velocity. Rela-
tivistic mechanics can be considered as nonholonomic mechanics in the four-dimensional space.

2.2. Generalized coordinate representation

If we have holonomic constraints for the relativistic system, then we should use generalized coor-
dinates. Let us consider generalized coordinates qk, where k = 1, . . . ,n (n 6 4), to describe a relativistic
particle in the four-dimensional space–time. We have n < 4 for the case of additional holonomic con-
straints. Then xl are the functions of the proper time s and the generalized coordinates qk, i.e.,
xl = xl(q,s). Using these functions, constraint equation (4) with ul = dxl/ds has the form

f ð _q; q; sÞ ¼ 0; ð5Þ

where

f ð _q; q; sÞ ¼ gklðq; sÞ _qk _ql þ 2gkðq; sÞ _qk þ gðq; sÞ þ c2:

Here and later we mean the sum on the repeated indices k and l from 1 to n. We use the notations

gklðq; sÞ ¼ glm
@xl

@qk

@xm

@ql
; gkðq; sÞ ¼ glm

@xl

@qk

@xm

@s
; gðq; sÞ ¼ glm

@xl

@s
@xm

@s
; ð6Þ

and _qk ¼ dqk
=ds. Eq. (5) is a constraint equation for generalized coordinates qk and the velocities _qk.

2.3. Constraint as simplification

It is known that constraints in mechanics are some simplifications of real particle interactions. The
constraints are caused by neglect of some properties and particle interactions. (Note that this state-
ment is not correct in the field theory. For example, the constraints in electrodynamics are not con-
nected with some neglect of particle interactions.) For example, if we consider the pendulum then
we usually neglect the forces of thread deformation. It is interesting to understand the neglected prop-
erties and interactions for constraint (4), which defines the relativistic invariance. If we use the non-
holonomic constraint (4), then we neglect the gravity interaction between particles. Let us consider
the deformation of Eqs. (2)–(4) in general theory of relativity [36]. In the approximation of weak grav-
ity fields, we have

ðd~RÞ2 ¼ glm dxl dxm � 2udt2 ¼ �c2 ds2;

where

dt ¼ c0 ds; c0 ¼ 1þ 2u
c2 �

v2

c2

� ��1=2

;

and u is a classical (Newtonian) gravity potential. As a result, we have

glmulum þ c2 ¼ 2uc02:

Therefore nonholonomic constraint (4), which defines the relativistic invariance, is connected with the
neglect of the gravity interaction, u = 0, in the framework of the general theory of relativity.

3. d’Alembert–Lagrange principle

3.1. Four-vector representation

Let m0 be the rest mass of a point relativistic particle. The four-momentum of the particle is defined
by

~P ¼ m0
~V ¼ ðm0c~v ;m0ccÞ:
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The components of the four-momentum are pl = m0ul. Eq. (4) gives

glmplpm þm2
0c2 ¼ 0; ð7Þ

where m0c~v is a three-momentum ~p ¼ m0c~v .
The ‘‘time component” p4 of the four-momentum has the form p4 = m0cc = E/c, where E = m0cc2 is

an energy of the relativistic particle. As a result, the components of the four-momentum are
~P ¼ ð~p; E=cÞ, where ~p ¼ m0c~v and E = m0cc2.

In relativistic mechanics the Newtonian equations are replaced by some generalization, which is
invariant under the Lorenz transformations [35,36]. The Newtonian equations are satisfied in the
proper reference frame. The four-vector analog of the Newtonian equations is

d~P
ds ¼

~F ð~R;~PÞ; ð8Þ

where ð~PÞ2 ¼ �c2m2
0, which is condition (7). Eq. (8) is postulated as a main equation of relativistic

dynamics. This equation describes a relativistic particle subjected to a four-force ~F ¼ ~Fð~P;~RÞ. Eq.
(8) can be presented in the Hamiltonian form

dxl

ds
¼ 1

m0
pl;

dpl

ds
¼ Flðx;pÞ; glmplpm þm2

0c2 ¼ 0: ð9Þ

It is known that the general principle, which allows us to derive equations of motion with holo-
nomic and nonholonomic constraints, is the d’Alembert–Lagrange principle. In the pseudo-Euclidean
four-dimensional space–time this principle leads to the variation equation

d~P
ds
� Fð~R;~PÞ; d~R

 !
¼ 0 :

dðm0 _xlÞ
ds

� Flðx;pÞ
� �

glm dxm ¼ 0: ð10Þ

Multiplying Eq. (9) with the variation dxl = glmdxm and summing over l, we obtain variational equa-
tion (10).

3.2. Generalized coordinate representation

In the case of holonomic constraints for coordinates xl, we should use generalized coordinates qk,
where k = 1, . . . ,n (n 6 4), to describe a relativistic particle. We have n = 4 � s for the case of s holonom-
ic constraints. Using the generalized coordinates qk, where k = 1, . . . ,n (n 6 4), and the functions
xl = xl(q,s), we obtain

dxl ¼ @xl

@qk
dqk: ð11Þ

Substitution of (11) into Eq. (10) gives

dðm0 _xlÞ
ds

glm
@xm

@qk
� Flglm

@xm

@qk

� �
dqk ¼ 0: ð12Þ

Here and later we mean the sum on the repeated indices k and l from 1 to n in the generalized coor-
dinate representation. Note that we mean the sum on the repeated indices k and l from 1 to 3 for
three-vector representation. We define a generalized force Qk by the equation

Q k ¼ Flglm
@xm

@qk
:

By the usual transformations (see Section 6.1 in [38]) of the form

dðm0ulÞ
ds

glm
@xm

@qk
¼ d

ds
@

@ _qk

m0

2
glmulum

� �
� @

@qk

m0

2
glmulum

� �
;
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we derive the variational equation

d
ds

@T
@ _qk
� @T
@qk
� Q kð _q; q; sÞ

� �
dqk ¼ 0; ð13Þ

where T is a scalar of the energy [39] in the pseudo-Euclidean space–time, which is defined by

T ¼ m0

2
glmulum ¼ m0

2
ðgklðq; sÞ _qk _ql þ 2gkðq; sÞ _qk þ gðq; sÞÞ: ð14Þ

Note that we cannot use constraint equation (5) for T and f in variational equation (13) before the par-
tial derivatives are taken. The functions gkl(q,s), gk(q,s), and g(q,s) are defined in Eq. (6).

4. Lagrange equations

4.1. Generalized coordinate representation

In order to construct an analytical theory we must define variations. The variations of generalized
coordinates dqk, k = 1, . . . ,n (n 6 4), are defined by the relation of the ideal constraint

Rk dqk ¼ 0; ð15Þ

where Rk are components of the constraint force vector. Rk can be considered as a contribution of the
reaction associated with the constraint to the generalized force Qk. Because a reaction force does no
work in a virtual movement that is consistent with the corresponding kinematical restriction, we con-
clude that R must be perpendicular to any dq that satisfies the constraint equation. Thus, if dq satisfies
constraint equation, we have Rkdqk = 0. We now consider which condition dq must be realized in order
to satisfy a constraint equation. We can derive the usual relativistic equations of motion only under
the condition (15). For nonholonomic systems a definition of the variations was suggested by Tchetaev
[40,41]. The variations dqk are defined by the condition:

@f
@ _qk

dqk ¼ 0: ð16Þ

Using (15) and (16), we have the functions Rk as linear combinations of @f=@ _qk, i.e., Rk ¼ k@f=@ _qk,
where k is a Lagrange multiplier.

As a result, we have the variational equation

d
ds

@T
@ _qk
� @T
@qk
� Q kðq; _qÞ � k

@f
@ _qk

� �
dqk ¼ 0: ð17Þ

Using definition (16) of coordinate variations, we can consider d _qa, where a = 1,2,3 (if n = 4), as inde-
pendent variations. The variation d _q4 is not an independent variable. Suppose that the Lagrange mul-
tiplier k satisfies the following condition. The bracket of (17) with d _q4 is equal to zero:

d
ds

@T
@ _q4 �

@T
@q4 � Q 4 � k

@f
@ _q4 ¼ 0:

We note that variations d _qa, where a = 1,2,3 are independent and the sum is separated on three equa-
tions. As a result, variational equation (17) is equivalent to the Lagrange equations

d
ds

@T
@ _qk
� @T
@qk
¼ Qk þ k

@f
@ _qk

ðk ¼ 1;2;3;4Þ: ð18Þ

We cannot use constraint equation (5) for functions T and f in variational equation (13) before the par-
tial derivatives on qk and _qk are taken.

The system of Eqs. (18) and (5) is a closed system of n + 1 equations in the same number of un-
knowns. Using these equations, we can find the multiplier k as a function k ¼ kð _q; q; sÞ. Substituting
this function into (18), we get the equations for generalized coordinates qk. Note that Eq. (18) can
be derived by Jourdain’s variational equation [42].
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Using (5) and (14), we have

@f
@ _qk
¼ 2gklðq; sÞ _ql þ 2gkðq; sÞ; ð19Þ

@T
@ _qk
¼ m0gklðq; sÞ _ql þm0gkðq; sÞ; ð20Þ

@T
@qk
¼ m0

2
@glm

@qk
_ql _qm þ 2

@gl

@qk
_ql þ @gðq; sÞ

@qk

� �
: ð21Þ

Substitution of (19)–(21) into (18) gives

d
ds
ðm0gkl _q

l þm0gkÞ �
m0

2
@glm

@qk
_ql _qm þ 2

@gl

@qk
_ql þ @g

@qk

� �
¼ Q k þ 2kðgkl _q

l þ gkÞ; ð22Þ

where gkl = gkl(q,s), gk = gk(q,s) and g = g(q,s). Eqs. (22) and (5) form a system of n + 1 equations in n + 1
unknown k and qk, where k = 1, . . . ,n 6 4. The solutions of these equations describe a particle motion in
relativistic mechanics as a motion of system with the nonlinear nonholonomic constraint (5) which
defines the relativistic invariance.

4.2. Three-vector representation

If we use coordinates xl and Eq. (4), then condition (16) has the form

glmul dxm ¼ 0:

For four-vector representation Eq. (22) is the Lagrange equation

d
ds
ðm0ulÞ ¼ Fl þ 2kul; ulul þ c2 ¼ 0; ð23Þ

where ul = dxl/ds. Eqs. (23) form a system of five equations in five unknowns xl and k. In the three-
dimensional notations Eqs. (23) have the form

d~p
dt
¼~F þ 2k~v; ð24Þ

dE
dt
¼ ð~F;~vÞ þUþ 2kc2; ð25Þ

ð~pÞ2 � E2

c2 þm2
0c2 ¼ 0: ð26Þ

Here we use [35] the component F4 of the four-force ~F in the form F4 ¼ ðc=cÞð~F;~vÞ þ ðc=cÞU, where
the function U describes an energy exchange with an external medium [35]. Using Eq. (25), we define
the Lagrange multiplier k by

k ¼ 1
2c2

dE
dt
� ð~F;~vÞ �U

� �
: ð27Þ

Substituting (27) into (24), we have

d~p
dt
¼~F þ~v 1

c2

dE
dt
� ð~F;~vÞ �U

� �
: ð28Þ

Differentiation of (26) with respect to proper time s gives

c~v d~p
ds
� c

dE
ds
þ c2 dm0

ds
¼ 0: ð29Þ

Substituting (28) into (29) gives

dE
dt
¼ ð~F;~vÞ þ c2c

dm0

dt
� v2

c2 c2U; ð30Þ
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where energy E = m0cc2. The energy change is caused by the power of~F, by the change of mass m0, and
by the energy exchange with external media U.

If particle rest mass m0 is a constant (m0 = const) and the energy exchange with external medium is
zero (U = 0), then Eqs. (30) and (28) lead to the usual equations [35] for the relativistic particle

d~p
dt
¼~F; dE

dt
¼ ð~F;~vÞ;

where the energy E = m0cc2 and the momentum ~p ¼ m0c~v are connected by Eq. (26).

5. Nonholonomic systems as holonomic systems

5.1. Generalized coordinate representation

Using results of [37], we represent the equation of motion for a system with nonholonomic con-
straint as a motion of some holonomic system.

We can rewrite constraint equation (5) by using the canonical coordinates qk and the momentum

pk ¼
@T
@ _qk
¼ m0gklðq; sÞ _ql þm0gkðq; sÞ: ð31Þ

Eq. (31) with det[gkl(q,s)] – 0 can be presented as

dql

ds
¼ gkl m�1

0 pk � gkðq; sÞ
� �

; ð32Þ

where gkl is an inverse of the metric gkl, i.e., gklglm ¼ dk
m. Substitution of (32) into constraint equation

(5) gives

~f ðp; q; sÞ ¼ 0; ð33Þ

where

~f ðp; q; sÞ ¼ gklðq; sÞpkpl þm2
0~gðq; sÞ þm2

0c2

and the functions gk, g are defined by (6),

~gðq; sÞ ¼ g � gklgkgl:

The derivative of the function (33) with respect to proper time s is equal to zero d~f=ds ¼ 0, i.e.,

@~f
@pk

_pk þ
@~f
@qk

_qk þ @
~f
@s
¼ 0: ð34Þ

Using (31), the Lagrange equations (18) has the form

dpk

ds
¼ @T
@qk
þ Q k þ k

@f
@ _qk

ðk ¼ 1; . . . ;nÞ: ð35Þ

Substituting (35) into Eq. (34), we find the Lagrange multiplier

kð _q; q; sÞ ¼ � @~f
@pk

@f
@ _qk

 !�1
@~f
@pk

@T
@qk
þ Q k

� �
þ @~f
@qk

_qk þ @
~f
@s

 !
: ð36Þ

The generalized force of reaction Rk of the nonholonomic constraint (33) is defined by

Rk ¼ kð _q; q; sÞ @f
@ _qk

;

where kð _q; q; sÞ is defined by (36), and k = 1, . . . ,n. This force is a function of ð _qk; qk; sÞ. As a result,
Lagrange equations (18) are
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d
ds

@T
@ _qk
� @T
@qk
¼ Q k þ Rk; ð37Þ

where k = 1, . . . ,n. In general, Qk and Rk are non-potential forces, and the system cannot be considered
as Hamiltonian.

If the coordinates xl of the radius four-vector are not dependent on a proper time s, i.e., xl = xl(q),
then Eq. (37) has the form

d
ds
ðm0gkl _q

lÞ ¼ Q k þm0
@glm

@qk
_ql _qm þ 1

2c2 gkl _q
l m0

@gjm

@qi
_qi _qj _qm þ 2 _qmQm þ 2

m0

ds
c2

� �
:

Eqs. (37) are equations of some holonomic system with n degrees of freedom. For any trajectory of
the point particle in the four-dimensional space–time we have f ð _q; q; sÞ ¼ const. If the initial values of
qk(0) and _qkð0Þ satisfy the constraint condition

f ðqð0Þ; _qð0Þ; s0Þ ¼ 0;

then the solution of Eq. (37) described a motion of the nonholonomic system.
Using Eq. (37), we get the Hamilton’s variational principleZ s1

s0

ðdTð _q; q; sÞ þ ðQ k þ RkÞdqkÞds ¼ 0: ð38Þ

We note that the variations dqk, k = 1,2,3,4, are holonomic, and condition (16) is not satisfied. There-
fore condition (15), which describes an ideal constraint, is not satisfied, i.e., Rkdqk – 0.

We define the generalized force

Kkð _q; q; sÞ ¼ Q k þ Rk;

which depends on the generalized velocities _qk, generalized coordinates qk and the proper time s. If
the Helmholtz conditions

@Kk

@ _qm
þ @Km

@ _qk
¼ 0; ð39Þ

@Kk

@qm þ
@Km

@qk
¼ 1

2
d

ds
@Kk

@ _qm
� @Km

@ _qk

� �
; ð40Þ

are satisfied, then a generalized potential U ¼ Uð _q; q; sÞ exists and

d
ds

@U
@ _qk
� @U
@qk
¼ Kk:

In this case, the Hamilton’s variational principle (38) has the form of the stationary action principle

d
Z s1

s0

Lð _q; q; sÞds ¼ 0; ð41Þ

where L = T � U.
We note that nonholonomic constraint (5) and the non-potential generalized force Qk can be com-

pensated such that the generalized force Kk is a generalized potential force, and the system is a
Lagrangian (and non-dissipative) system with holonomic constraints.

5.2. Four-vector representation

Let us consider the coordinates xl and constraint equation (33) in the form

glmplpm þm2
0c2 ¼ 0: ð42Þ

Differentiating (42) with respect to s, we obtain:

glm
dpl

ds
pm þm0

dm0

ds
c2 ¼ 0: ð43Þ
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Substituting (43) into Eq. (23) with m0ul = pl, we get

glmF
lpm þ 2kglmulpm þm0

dm0

ds
c2 ¼ 0:

Using the constraint equation glmulum = �c2 and the four-momentum pl = m0ul, we obtain the
Lagrange multiplier

k ¼ 1
2c2 ðglmF

lumÞ þ 1
2

dm0

ds
:

As a result, we have Eq. (23) in the form

dpl

ds
¼ Fl þ 1

c2 ulðF mumÞ þ ul dm0

ds
:

Using pl = m0ul, these equations can be presented as

m0
dul

ds
¼ Fl þ 1

c2 ulðF mumÞ: ð44Þ

These equations define a holonomic system subjected to the force ðF þ RÞl ¼ Fl þ Rl. If initial dates
satisfy constraint equation (4), then the solution of Eq. (44) describes a motion of the relativistic point
particle as a holonomic system.

Note that the four-momentum pl is a constant (dpl/ds = 0) if the conditions

Fl þ 1
c2 ulðF mumÞ ¼ 0;

dm0

ds
¼ 0 ð45Þ

are satisfied. For any four-force Fl, which is proportional to four-velocity, Fl ¼ Zðu; xÞul, stationary
conditions (45) are satisfied.

Let us consider the four-force Fl as the sum

Fl ¼ Gl þPl; ð46Þ

where

ðGlulÞ ¼ 0; ðPlulÞ– 0:

Substitution of (46) into (44) gives

m0
dul

ds
¼ Gl þPl þ 1

c2 ulðPmumÞ:

The four-force Gl is usually called [35] a real mechanical force, which satisfies the orthogonal condi-
tion ulGl = 0. The Lorenz force Fl ¼ ðe=cÞFlmum, where Flm is the electromagnetic field tensor, is an
example of a real mechanical force. The four-vector Pl describes the energy–momentum exchange
between the point particle and the medium. The components of Pl are

Pl ¼ ðc~P; ðc=cÞUÞ;

where ~P and U are momentum and energy, respectively, which are transmitted by convection per
unit time. For the heat transfer, three-momentum d~p and energy dQ transmitted per time ds are
defined by the formulas d~p ¼ ~Pdt and dQ = Udt. The components of dQl are

dQl ¼ Pl ds ¼ d~p;
1
c

dQ
� �

¼ c~Pds; c
c
Uds

� �
;

where dQl is a four-vector of the heat energy–momentum, which is transmitted per time ds. The value
U0 defined by

U0 ¼ �ulPl ¼ �c2ðð~P;~vÞ �UÞ

is a velocity of the convective transmission of incoming energy in the rest reference frame. In the
general case, U0 – (dm0/ds)c2 = dE0/ds. The four-vectors Gl and Pl allow us to describe non-
Hamiltonian and dissipative processes in relativistic mechanics.
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6. Non-Hamiltonian and dissipative relativistic systems

6.1. Generalized coordinate representation

Eqs. (32) and (37) can be presented in the form

dqk

ds
¼ Gkðq; pÞ; dpk

ds
¼ Fkðq;pÞ; ð47Þ

where

Gkðq;pÞ ¼ gkl m�1
0 pl � glðq; sÞ

� �
; ð48Þ

Fkðq;pÞ ¼
@T
@qk
þ Q k þ Rk ð49Þ

and ðq; pÞ 2M. The system is called (locally) Hamiltonian if the right-hand sides of Eqs. (47) satisfy the
Helmholtz conditions [46,47]

@Gk

@pl
� @Gl

@pk
¼ 0;

@Gk

@ql
þ @Fl

@pk
¼ 0;

@Fk

@ql
� @Fl

@qk
¼ 0: ð50Þ

If M is a simply connected region, then a locally Hamiltonian system is globally Hamiltonian. (A re-
gion is simply connected if it is path-connected and every path between two points can be continu-
ously transformed into every other. A region where any two points can be joined by a path is called
path-connected.) In this case, we can rewrite Eqs. (47) in the form

dqk

dt
¼ @H
@pk

;
dpk

dt
¼ � @H

@qk
: ð51Þ

In the general case, the Helmholtz conditions are not satisfied and the system is non-Hamiltonian [15].
If

Xðq;pÞ ¼
Xn

k¼1

@Fkðq;pÞ
@pk

þ @Gkðq;pÞ
@qk

 !
– 0;

then we have a generalized dissipative system [15]. If X(q,p) 6 0 for all points (q,p) and X(q,p) < 0 for
some points (q,p), then the system is a dissipative system.

6.2. Four-vector representation

Using the four-vectors xl and pl, the equations of motion of the relativistic particle subjected to a
non-potential four-force Fl are

dxl

ds ¼
1

m0
pl;

dpl

ds ¼ Flðx;pÞ; glmplpm þm2
0c2 ¼ 0: ð52Þ

According to the results of Section 5.2, we have that Eqs. (52) with dm0/ds = 0 are equivalent to the
equations

dxl

ds
¼ 1

m0
pl;

dpl

ds
¼ Flðx;pÞ þRlðx; pÞ; ð53Þ

where

Rlðx;pÞ ¼ 1
m2

0c2
plðF mðx;pÞpmÞ; ð54Þ

and the initial dates satisfy constraint condition (4). The solution of Eq. (53) describes the motion of
the relativistic particle.
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The Helmholtz conditions for Eq. (53) have the form

@Fl

@pm þ
@Rl

@pm
¼ 0; ð55Þ

@Fl

@xm þ
@Rl

@xm �
@F m

@xl �
@Rm

@xl ¼ 0: ð56Þ

Substitution of (54) into Eqs. (55) and (56) gives

@Fl

@pm þ
1

m2
0c2

@½plðF aðx; pÞpaÞ�
@pm ¼ 0; ð57Þ

@Fl

@xm þ
1

m2
0c2

pl @F a

@xm pa

� �
� @F

m

@xl �
1

m2
0c2

pm @F a

@xl pa

� �
¼ 0: ð58Þ

These equations are the Helmholtz conditions in four-vector representation. If these conditions are
satisfied then the particle is a relativistic Hamiltonian system. The relativistic particle subjected to
a four-force Fl is Hamiltonian if the four-force satisfies the Helmholtz conditions (57) and (58). In
general, these conditions are not satisfied and the system is non-Hamiltonian.

The example of the four-force Fl is a Lorenz force Fl ¼ ðe=m0cÞFlmpm, where Flm is a tensor of the
electromagnetic fields. Using @Fl=@xm ¼ 0, we can see that Eqs. (58) are satisfied. Using Flm = �Fml, we
get Rl ¼ 0 and

@Fl

@pm
¼ e

m0c
Flm:

The conditions (57) are satisfied if Flm = 0. Using Flm = �Fml, we have

Xðx;pÞ ¼ @F
l

@pl ¼
e

m0c
glmFlm ¼ 0:

As a result, we have that the relativistic particle subjected to the Lorenz four-force can be considered
as a non-Hamiltonian non-dissipative system. The Lorenz four-force is a gyroscopic force. It is known
that Lorenz-type four-forces are the only admissible four-forces for a relativistic particle, compatible
with a holonomic variation principle in relativistic mechanics. Note that new forces, which are differ-
ent from the usual Lorentz force, are suggested in [21]. These forces arise due to the nonholonomic
constraint by using the geometric theory of nonholonomic systems on fibred manifolds. Note that a
one-dimensional relativistic particle with dissipation is considered in Refs. [33,34]. The Lagrangian
and Hamiltonian functions for one-dimensional relativistic particles with linear dissipation are
suggested. In general, non-Hamiltonian and dissipative n-dimensional systems with n > 1 cannot be
described by Hamiltonian or Lagrangian since the Helmholtz’s conditions for these systems are not
satisfied [15].

7. Hamilton’s principle

We describe a relativistic particle in pseudo-Euclidean space–time by generalized coordinates qk,
k = 1, . . . ,n, where n 6 4, and generalized velocities _qk ¼ dqk

=ds. Then we have nonlinear nonholonom-
ic constraint (5). The basic variational principle of mechanics is the d’Alembert–Lagrange principle

d
ds

@L
@ _qk
� @L
@qk
� Q k

� �
dqk ¼ 0; ð59Þ

where L = T � U is a Lagrangian, T is a function defined by (14), U is a generalized potential, Qk is a gen-
eralized force, and dqk are variations that satisfy the Tchetaev condition (16).

It is known that the Hamilton’s principle can be obtained by integrating (59) over proper time with
some constant limits s0 and s1:Z s1

s0

d
ds

@L
@ _qk
� @L
@qk
� Qk

� �
dqk ds ¼ 0; ð60Þ
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where dqk(s) 2 C2[s0,s1], and dqk(s0) = dqk(s1) = 0, k = 1, . . . ,n. Integration by parts givesZ s1

s0

@L
@ _qk

d
ds

dqk þ @L
@qk

dqk þ Q kdqk

� �
ds ¼ 0: ð61Þ

This equation contains the time derivatives of the variations d(dqk)/ds. The variations dqk are not
uniquely defined by Eq. (16). There is an arbitrariness in the definition of ddqk/dt. In analytical
mechanics the two following relations of d(dqk)/ds and d _qk are usually used [43].

According to Hölder definition:

d
ds

dqk ¼ d _qk; k ¼ 1; . . . ;n; ð62Þ

for all generalized coordinates qk.
Using Tchetaev condition (16), the variation of the constraint function f ¼ f ð _q; q; sÞ has the form

df ¼ @f
@qk
� d

ds
@f
@ _qk

� �
dqk: ð63Þ

Note that the right-hand side of Eq. (63) is equal to zero only for a holonomic constraint. For a non-
holonomic constraint (63) the variation df – 0. The condition df = 0 and relation (5) are compatible
only in the case of holonomic systems [26,27].

According to Appel-Suslov definition: The relations (62) are satisfied only for the independent vari-
ations dqk (k = 1, . . . ,n � 1) and the identity df = 0 are realized. These conditions define the variation d _qn

of the variable qn.
If we use Hölder definition (62), then Hamilton’s principle (61) has the formZ t1

t0

ðdLð _q; q; sÞ þ QkdqkÞds ¼ 0: ð64Þ

Eqs. (64) and (16) give the Lagrange equations

d
ds

@L
@ _qk
� @L
@qk
¼ Q k þ k

@f
@ _qk

ðk ¼ 1; . . . ;nÞ ð65Þ

with Lagrange multiplier k. Using the results of Section 5.2, Eq. (65) can be presented in the form

d
ds

@L
@ _qk
� @L
@qk
¼ Q k þ Rk; ð66Þ

where k = 1, . . . ,n. In general, Qk and Rk are non-potential forces, and the system is non-Hamiltonian.
We note that the Hamilton’s principle is described by the nonholonomic variational equation. It

allows us to use this principle to obtain equations of motion of non-Hamiltonian and dissipative sys-
tems. The principle of stationary action is defined by holonomic variational equation. Therefore the
principle of stationary action cannot be used to derive equation of motion of non-Hamiltonian systems
in the general case. Note that the variational Sedov’s equation [48–50] (see also [52,51]) also can be
used for non-Hamiltonian and dissipative systems instead of the principle of stationary action.

8. Principle of stationary action

8.1. Generalized coordinate representation

The conditions under which Hamilton’s principle for nonholonomic systems has the characteristics
of the principle of stationary action were derived in [26,27]. The solutions to the equations of motion
which follow from the Hamilton’s principle do not in general satisfy the equations which follow from
the action principle with nonholonomic constraints. We derive the condition under which the Ham-
ilton’s principle for relativistic particle and the principle of stationary action are equivalent.

Let us consider a Lagrange variational problem of stationary value of the action integral

d
Z t1

t0

Lð _q; q; sÞds ¼ 0
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in the class of curves that satisfy constraint equation (5). The introduction of Lagrange multiplier c(s)
reduces this problem of the conditional extremum to the Lagrange problem of variation

d
Z s1

s0

ðLð _q; q; sÞ þ cðsÞf ð _q; q; sÞÞds ¼ 0; ð67Þ

where f ð _q; q; sÞ is a constraint function defined by (5). The Euler’s equations for (67) are

d
ds

@L
@ _qk
� @L
@qk
¼ cðsÞ @f

@qk
� d

ds
@f
@ _qk

� �
� dc

ds
@f
@ _qk

; ð68Þ

where k = 1, . . . ,n. Note that these equations have a derivative for the multiplier c(s).
In general, Eqs. (65) and (5) with Qk = 0 are not equivalent to Eqs. (68) and (5). There is a possibility

that some solutions of these two systems of equations being the same. If a solution qk(s) of Eqs. (65)
and (5) with Qk = 0 is a solution of Eqs. (68) and (5) for the same initial conditions, then

cðsÞ @f
@qk
� d

ds
@f
@ _qk

� �
¼ kþ dc

ds

� �
@f
@ _qk

: ð69Þ

Multiplying both sides of Eq. (69) by the variations dqk and summing over k from 1 to n, we obtain

@f
@qk
� d

ds
@f
@ _qk

� �
dqk ¼ 0: ð70Þ

Here we use the Tchetaev condition (16). Note that the same condition is derived for the case of
potential forces Qk – 0. Eq. (70) will be called the Rumyantsev condition. This condition is necessary
and sufficient for Eqs. (68), (5) and (65), (5) with a potential force Qk to have the same solution qk(s). In
general, Eq. (70), which allows us to use the principle of stationary action, is not realized.

As a result, we have the following statement. Hamilton’s principle (64) for a relativistic particle
subjected to potential forces is the principle of stationary action (67) if and only if condition (70) is
satisfied.

It is easy to prove that Rumyantsev’s condition (70) for nonholonomic constraint (5) is not satisfied.
As a result, the principle (67) cannot be used for relativistic particles subjected to potential forces. The
principle of stationary action can be used if the Helmholtz’s conditions (39) and (40) for Kkð _q; q; sÞ or
conditions (50) for Gk(q,p) and Fk(q,p) are satisfied. As a result, the Hamilton’s principle and the prin-
ciple of stationary action (67) are equivalent only for a special class of relativistic non-Hamiltonian
systems. In general, we can use nonholonomic variational equations of Hamilton’s principle or Sedov’s
variational equation.

8.2. Four-vector representation

Let us prove that Rumyantsev’s condition (70) for nonholonomic constraint (5) is not satisfied. We
consider the Rumyantsev’s condition (70) in the four-vector representation. Using the variables xl and
ul, Eq. (70) is

@f ðs; x;uÞ
@xl � d

ds
@f ðs; x;uÞ

@ul

� �
dxl ¼ 0: ð71Þ

Substitution of the function

f ðs; x;uÞ ¼ glmulum þ c2 ð72Þ

into Eq. (71) gives

dul

ds
dxl ¼ 0; ð73Þ

where xl = glmxm. Eq. (73) can be rewritten in the form

duk

ds
dxk þ

du4

ds
dx4 ¼ 0: ð74Þ
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The Tchetaevs definition (16) of covariant variations dxl has the form

@f ðs; x;uÞ
@ul dxl ¼ 0: ð75Þ

Substitution of (72) into Eq. (75) gives

ul dxl ¼ 0; ð76Þ

where we mean the sum on the repeated index l from 1 to 4. We present Eq. (76) in the form

uk dxk þ u4 dx4 ¼ 0:

Here we mean the sum on the repeated index k from 1 to 3. This equation gives

dx4 ¼ �
uk

u4 dxk: ð77Þ

Substitution of (77) into (74) gives

duk

ds
� uk

u4

du4

ds

 !
dxk ¼ 0:

In general, the variation dxk, k = 1,2,3, are not equal to zero. Then we have the differential equations

duk

ds
� uk

u4

du4

ds
¼ 0 ðk ¼ 1;2;3Þ:

Integrating these equations, we obtain uk = aku4, where ak are constants. Using uk = cvk and u4 = cc, we
get vk = akc, i.e., the values of the velocity vk are constants.

As a result, we have that Rumyantsev’s condition (71) for the relativistic particle subjected to po-
tential forces is satisfied only for the motion with constant velocity. If relativistic particles is a Ham-
iltonian system, then the Hamiltonian’s principle and the principle of stationary action (67) are not
equivalent.

We also note that the principle of stationary action for relativistic particle subjected to non-poten-
tial forces Flðu; x; sÞ can be used if the Helmholtz’s conditions (57) and (58) are satisfied. The Hamil-
ton’s principle and the principle of stationary action are equivalent only for special forms of the four-
force Flðu; x; sÞ, and for a special class of relativistic non-Hamiltonian systems. This class is defined by
the case of potential properties of the sum of non-potential force Flðx; pÞ and the reaction force
Rlðx; pÞ. Note that nonholonomic constraint and non-potential force can be compensated such that
the resulting force is potential, and the system is a Lagrangian system with holonomic constraints.
The principle of stationary action, which uses the holonomic variational equation, can be used for
non-Hamiltonian and dissipative systems if the suggested generalization of Helmholtz’s conditions
(57) and (58) are satisfied. In the general case, we should use nonholonomic variational equations
of Hamiltons principle or Sedov’s variational equation.

9. Conclusion

We formulate relativistic mechanics of point particle as mechanics of the particle with nonholo-
nomic constraint in the four-dimensional pseudo-Euclidean space–time. The nonholonomic constraint
represents the relativistic invariance by the equation for four-velocity ulul + c2 = 0, where c is the
speed of light in vacuum. We consider relativistic particles subjected to generalized forces. In general,
these forces are non-potential, and the particles are relativistic non-Hamiltonian systems. The condi-
tions on the generalized forces that allow us to consider relativistic particles subjected to non-poten-
tial forces as a Hamiltonian systems are suggested. The nonholonomic constraint, which represents
relativistic invariance, and the non-potential generalized force can be compensated such that the sys-
tem is Hamiltonian (and non-dissipative).

The Hamilton’s principle and the principle of stationary action are considered for relativistic parti-
cles subjected to non-potential forces. We prove that the principle of stationary action can be used
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only if the Helmholtz conditions (39), (40) or (50) are satisfied. The Hamilton’s principle and the prin-
ciple of stationary action are equivalent only for a special class of relativistic non-Hamiltonian sys-
tems. In general, the Hamilton’s principle and nonholonomic variational equations can be used to
describe relativistic non-Hamiltonian and dissipative systems. The variational Sedov’s equation [48–
50] (see also [51,52]), which is nonholonomic equation, can be used for relativistic non-Hamiltonian
and dissipative systems instead of the principle of stationary action. Note that relativistic models of
continuous media with dissipation are considered in [50,52] by using the nonholonomic variational
equations.

The study of plasma systems containing ensembles of particles (dust) is a rapidly developing field
of complex systems research. One of the general features of complex plasma systems is the presence of
non-potential interaction forces between the dust particles due to the dynamic interaction between
the dust particles and the plasma (for example, see [7–9] and references therein). In general, these sys-
tems cannot be described as Hamiltonian, since the energy is not conserved because of the openness of
the systems due to plasma-particle interaction. We hope that dynamics of relativistic particle sub-
jected to non-potential forces and models of relativistic dissipative non-Hamiltonian systems can
be used to describe relativistic complex plasma systems.

Using the suggested approach to relativistic non-Hamiltonian systems, a relativistic generalization
of the Liouville equations for dissipative non-Hamiltonian systems [5] can be obtained. We note that
nonholonomic constraints with power-law memory [44] can be used in relativistic mechanics by
using fractional derivatives [45] with respect to proper time. The covariant formulation of relativistic
non-Hamiltonian mechanics as a mechanics of nonholonomic systems can be used to formulate quan-
tum relativistic mechanics for dissipative systems by the methods suggested in [14,15].
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