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1. Introduction

A new quantum dissipation model based on memory mechanism is suggested. Dynamics of
open and closed quantum systems with power-law memory is considered. An example of quantum
oscillator with linear friction and power-law memory is considered. The processes with power-law
memory are described by using integration and differentiation of non-integer orders, by methods of
fractional calculus [1,2]. Fractional calculus is a theory of integrals and derivatives of any arbitrary
real (or complex) order. It has a long history from 30 September 1695, when the derivatives of order
o« = 1/2 has been described by Leibniz in a letter to L’'Hospital [3,4]. The fractional differentiation and
fractional integration go back to many great mathematicians such as Leibniz, Liouville, Riemann, Abel,
Riesz, Weyl. There are the special journals: “Fractional Calculus and Applied Analysis”; “Fractional
Differential Calculus”; “Communications in Fractional Calculus”. The first book dedicated specifically
to the theory of fractional integrals and derivatives, is the book by Oldham and Spanier [5] published in
1974. There exists the remarkably comprehensive encyclopedic-type monograph by Samko et al. [1],
which was published in Russian in 1987 and in English in 1993. In 2006 Kilbas et al. published a very
important and remarkable book [2], where one can find a modern encyclopedic, detailed and rigorous
theory of fractional differential equations. Applications of fractional calculus in physics are described
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in the books [6-14]. In general, many usual properties of the ordinary (first-order) derivative D, are
not realized for fractional derivative operators Df. For example, a product rule, chain rule, semigroup
property have strongly complicated analogs for the operators D .

The fractional calculus is a powerful tool to describe physical systems that have long-time mem-
ory. Fractional differentiation with respect to time is characterized by long-term memory effects that
correspond to intrinsic dissipative processes in the physical systems [15-18]. The memory effects to
discrete maps mean that their present state evolution depends on all past states. Note that a power-
law memory has been detected for fluctuation within a single protein molecule [19]. The nonholo-
nomic systems with generalized constraints to describe a long-time memory are considered [20]. The
electrodynamics of dielectric media is described as a fractional temporal electrodynamics [21-23].
The discrete maps with memory are obtained from the fractional differential equations of classical
dynamical systems [24-27].

2. Derivatives and integrals of non-integer order

There are many different definitions of fractional integrals and derivatives of non-integer orders
[1,2].

2.1. A generalization of Cauchy’s differentiation formula

Let G be an open subset of the complex plane C, and f : G — C is a holomorphic function:

n! f@)
™ (x) = d 1
Jre = 2711¢L(z—x)"+1 & (D
A generalization of (1) has been suggested by Sonin and Letnikov in 1872 in the form
F(a + 1) f f@)
D¢ dz, 2
“f (o) = e (2)

wherea € Rand « ;é —1, —2,—3,...(see Theorem 22.1 in the book by Samko et al. [1]). Expression
(2)is also called Nishimoto derivative.

2.2. A generalization of finite difference

The differentiation of integer order n can be defined by

D1y 0 = lim 2, @
h—0
where A} is a finite dlfference of integer order n:
. n
A0 =Y (=¥ () Fx— k. (4
k=0

The difference of a fractional order & > 0 is defined by the infinite series

8360 = Y (=1, ) Fx = k), (5)
k=0

where the binomial coefficients are
(ot) _ I'a+1) ' (6)
p rg+nra@—-pg+1
The left-and right-sided Griinwald-Letnikov derivatives of order « > 0 are defined by

Vi @
he

“p* f(x) = 11m
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If
FeOl <c(I+1xD7", u> o]

then the series (5) can be used for « < 0 and Eq. (7) defines Griinwald-Letnikov fractional integral. If
f(x) € L,(R),where 1 <p < 1/eand 0 < @ < 1, then (7) can be represented by

GL o« Cfx) —-f(xF2)
DY f(x) = ra —05)/0 dz.

z(¥+1

2.3. A generalization by Fourier transform

If we define the Fourier transform operator ¥ by

+o0o

1 ‘
(FH(w) = - f(oe d, (8)

then the Fourier transform of derivative of integer order n is
(FDif) (@) = (iw)"(Ff)(w).

Therefore
Dif (x) = F (i) (FF) (@)},

For f(t) € Li(R), the left- and right-sided Liouville fractional integrals and derivatives can be
defined (see Theorem 7.1 in [1] and Theorem 2.15 in [2]) by the relations

o _ —1 1
I%)(x0) = F ( i (?'f)(a))>, (9)
(DL () = F~ ((iiw)“(f‘”f)(w)), (10)

where 0 < o < 1and
. iam
(fiw)* = |w|* exp (:I:sgn(a))T).
The Liouville fractional integrals (9) can be represented by

o _ 1 oo a—1
(Iif)(x)_—l“(a)/o 2" f(x F z2)dz. (11)

The Liouville fractional derivatives (10) are

(D) (x) = DRI ) (%).
Therefore

n

(DLf)(x) = T / 2T (x F 2)dz, (12)
0

(n—a)ﬁ

where n = [a] + 1.

2.4. Caputo derivative

We can define the derivative of fractional order « by
Dif(t) = I (DIF)(1).
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For x € [a, b] the left-sided Caputo fractional derivative of order « > 0 is defined by
1 Y dt D (7)
rn—a) ), (t—r1)entl’

wheren — 1 < o < n,and (I is the left-sided Riemann-Liouville fractional integral of order &« > 0
that is defined by

CDYf(t) = oI D}f (t) =

(13)

o f(odr
r@) J, (=o'’

The Riemann-Liouville fractional derivative has some notable disadvantages in applications such
as nonzero of the fractional derivative of constants,

TR
I'l—a)

which means that dissipation does not vanish for a system in equilibrium. The Caputo fractional
differentiation of a constant results in zero

SD2C = 0.

aI;xf(t) =

(a<t).

OD?C =

b

The desire to use the usual initial value problems
f(to) = Co, (D{f)(to) = Cy, (D¥f)(ty) = Gy, . ...

lead to the application Caputo fractional derivatives instead of the Riemann-Liouville derivative.
If f(t) be a function for which the Caputo derivatives of order « exist together with the Rie-
mann-Liouville derivatives, then these fractional derivatives are connected by the relation

SDEf () = D“f(t)—nfﬂf“‘)(w (14)
AT s A r'k—a+1) ‘

k=0

The second term of the right hand side of Eq. (14) regularizes the Caputo fractional derivative to avoid
the potentially divergence from singular integration at t = 0.

3. Power-law memory and fractional derivatives

A physical interpretation of equations with derivatives and integrals of non-integer order with
respect to time is connected with the memory effects.

Let us consider the evolution of a dynamical system in which some quantity A(t) is related to
another quantity B(t) through a memory function M(t) by

A(t) = / M(t — t)B(t)dr. (15)
0

This operation is a particular case of composition products suggested by Vito Volterra. In mathematics,
Eq. (15) means that the value A(t) is related with B(t) by the convolution operation

A(t) = M(t) = B(t).

Eq. (15) is a typical equation obtained for the systems coupled to an environment, where
environmental degrees of freedom being averaged.

Let us consider the limiting cases widely used in physics: (1) the absence of the memory; (2) the
complete memory; (3) the power-like memory. As a result, we have the following special cases of
Eq. (15).

(1) The absence of the memory: For a system without memory, the time dependence of the memory
function is

M(t — 7) = M(t) 8(t — 1), (16)
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where §(t — 7) is the Dirac delta-function. The absence of the memory means that the function A(t)
is defined by B(t) at the only instant t. In this case, the system loses all its values of quantity except
for one. Using (15) and (16), we have

t
At) = f M(t)8(t — 7)B(t)dt = M(t)B(t). (17)
0

Expression (17) corresponds to the well-known physical process with complete absence of memory.
This process relates all subsequent values to previous values through the single current value at each
time t.

(2) Complete memory: If memory effects are introduced into the system, then the delta-function
turns into some function with the time interval during which B(t) affects on the function A(t). Let
M (t) be the step function

M(t —1) =t '[6(r) — 0(t — 1)], (18)

where 6 (t) is the Heaviside function, also called the unit step function. The Heaviside function 8(t) is
a discontinuous function whose value is zero for negative argument and one for positive argument. In
Eq. (18), the factor t ! is chosen to get normalization of the memory function to unity:

/ M(z)dr = 1.

Then in the evolution process the system passes through all states continuously without any loss. In
this case,

-1 t
A(t) = ?/ B(t)dr,
0

and this corresponds to a complete memory.
(3) Power-law memory: The power-like memory function is defined by

M(t — 1) =M (t — 7)1, (19)

where My is a real parameter. This function indicates the presence of the fractional derivative or
integral. Substitution of (19) into (15) gives the temporal fractional integral of order &:

t
A(t) = AIFB(t) = %/ (t—1) 'B(r)dr, O0<e <1, (20)
0

where A = I'(&)Mp. The parameter A can be regarded as the strength of the perturbation induced by
the environment of the system. The physical interpretation of the fractional integration is an existence
of a memory effect with power-like memory function. The memory determines an interval [0, t]
during which B(t) affects A(t).

Eq. (20) is a special case of relation for A(t) and B(t), where A(t) is directly proportional to
M (t) = B(t).In a more general case, the values A(t) and B(t) can be related by the equation

f(A@®), M(t) = D{B(t)) = 0, (21)

where f is a smooth function. In this case Eq. (21) gives the relation f (A(t), SD‘;‘B(t)) = 0 with Caputo
fractional derivatives.
Note that Leibnitz rule for fractional derivatives has the form of infinite series

i T+ 1)

o _ o —k k
O% W =3 o ey O @Dl

for analytic functions on (a, b) (see Theorem 15.1 in [1, p. 216]). This sum has the fractional integral
of fractional order for k > [a] + 1.
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4. Quantum dynamics with power-law memory

4.1. Time fractional Lindblad equation

The dynamics of open quantum systems can be described in terms of the infinitesimal change of the
system. This change is defined by some form of infinitesimal generator. The most general explicit form
of the infinitesimal superoperator was suggested by Gorini et al. in [28-30]. There exists a one-to-one
correspondence between the completely positive norm continuous semigroups and the completely
dissipative generating superoperators.

In order to take into account a power-law memory, we can consider a generalization of Lindblad
equation for quantum observables in the form

SDYA; = —LyA, (22)

where SD‘Q‘ is the Caputo fractional derivative with respect to time ¢t (dimensionless variable), and Ly
is defined by
1 1 /., .
LyAe = —[H, Al = = 3 (VETA Vid + [V AV ). (23)
ih 2h =
For « = 1 we have the usual Lindblad equation [28-30]. If « is non-integer, then Eq. (22) defines the
quantum processes with power-law memory.
If all operators Vj are equal to zero (V, = 0), then we have a generalization of the Heisenberg
equation for Hamiltonian system with memory

Cno 1
oD/ Ay = _E[H’At]' (24)

Note that the form of £y is not uniquely defined. The transformations

1 = * k
Vi Vitad, H—H+ ’;(akvk —aqV)),
where q; are arbitrary complex numbers, preserve the form of Eq. (22).
For the density operator, we have
1 1 = * * %
it o = 5 2 (Vo = puVivie— Vivin) (25)
Eq. (25) describes dynamics of quantum state of open systems with memory. The memory means that
the present state evolution depends on all past states.

D¢ pr =

4.2. Cauchy-type problem

If we consider the Cauchy-type problem for Eq. (22) in which the initial condition is given at the
time t = 0 by Ag, then its solution can be represented [31] in the form

At = Pe(a)Ag, (t=0),

where
D () = Ey[—t*Ly]. (26)
Here E, [£] is the Mittag-Leffler function with the superoperator argument
o
1
E[£] =Y ———£k
al L] kzz(; I'(ak+1)

Note that the relation
DY Ey[A(t — @)*] = A Eq[A(t — @)]
holdsforA € C,t > a,a € R,and ¢ > 0 (see Lemma 2.23 in [2]).
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4.3. Quantum dynamical groupoid

The superoperators @;(«), t > 0, describe dynamics of open quantum systems with power-law
memory. The superoperator £, can be considered as a generator of the one-parameter groupoid
@, («) on operator algebra of quantum observables:

SDY®; (o) = —Ly D (ax).

The set {®;(x)|t > 0}, will be called a quantum dynamical groupoid. Note that the following
properties are realized

¢[’ (Q)I = Ia
(D ()A)* = (o)A
for self-adjoint operators A (A* = A), and

lim &.(a) = L,
t—0+

where L; is an identity superoperator (L;A = A). As a result the superoperators @;(«), t > 0, are real
and unit preserving maps on operator algebra of quantum observables.
For « = 1, we have

@ (1) = Eq[—tLy] = exp{—tLy}.
The superoperators @; = &(1) form a semigroup such that
O Ds = Dpy, (t,5>0), ®y = 1.
This property holds since
exp{—tLy} exp{—sLy} = exp{—(t + s)Ly}.
For o ¢ N we have
Eo[—t*Ly] Eg[—s"Lv] # Eg[—(t + )" Lv].
Therefore the semigroup property is not satisfied for non-integer values of «:

D () Ds(a) # Prys(@),  (t,5>0).

As a result, the superoperators @;(«) with « ¢ N cannot form a semigroup. This property
means that we have a quantum processes with memory. The superoperators @; (o) describe quantum
dynamics of open systems with memory. The memory effects to dynamical maps mean that their
present evolution of A(t) = &;(a)Ag depends on all past values of A(t) for T < t.

5. Linear oscillator with friction and memory

Let us consider an oscillator with linear friction and power-like memory. In this example, the basic
assumption is that the general form of a bounded completely dissipative superoperator holds for an
unbounded superoperator L£y. We assume that the operators H, and Vj, are functions of the operators
Q and P such that the obtained model is exactly solvable [32,33] (see also [34,35]). Therefore we
consider V, = Vi (Q, P) as the first-degree polynomials in Q and P, and the Hamiltonian H = H(Q, P)
as a second degree polynomial in Q and P:

1, me? 5 M
H=_—P"4+—Q"+ = (PQ + QP), (27)
2m 2 2

Vi = arP + biQ,

where ay, and by, k = 1, 2, are complex numbers. These assumptions mean that the friction force is
proportional to the velocity.
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Using the definition of £y and the canonical commutation relations for operators Q and P, we
obtain
1

—LyQ = EP +u1Q —2Q,

—LyP = —mw*Q — uP — AP,
where A = Im (albj‘ + albj‘). Let us consider the generalized Lindblad equation (22) for Q; and P; in
the form

0DfQ = —LyQ,  GDYP = —LyP, (28)

where SD‘;‘ is the Caputo fractional derivative with respect to time t, which is dimensionless variable.
We define the matrices

Q w4 m™!
A= M= . 29
(P>’ ( mo? = — A 2
Then Egs. (28) for quantum observables have the matrix representation

SDYA, = MA,, (30)

where —LyA; = MA;.
If we consider the Cauchy-type problem for Eq. (30) in which the initial condition is given at the
time t = 0 by Ag, then its solution can be represented [31] in the form

At = D (a)Ao,
where (see Eq. (26))
& (o) = E,[t*M].
The Mittag-Leffler function with the matrix argument is defined by
o0 the

E,[t*M] = —M".
I'(an+1)

n=0

For ¢ = 1, we obtain
o l_n

o=@, =Y —M"=eM, (31)

|
=0 n

Let the matrix M be represented as

M = N7'FN, (32)

where F is a diagonal matrix, and

_(me® p4v
N = (ma)Z w— V) ’ (33)
—(A+v) 0
F = ( 0 O — v)> . (34)

Here we use the complex parameter v, such that v = u? — w?.
Using (32), the one-parameter superoperators @, («) are represented by

o0 no . o0 tna
[0)) — M'=N"— E— L W\
(@) Z F(om—i— oM ; Fan+1)
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As a result, we have
& () = N"VE,[t“F]N. (35)
For o« = 1, we have
@, (1) = N 'e N.
Substitution of (33) and (34) into (35) gives

& (Gl v, t]+ (n/v) SalA, v, t] (1/mv) Sy (A, v, t]
(@) = —(Mw? V) SulA, v, t] Cyl, v, t] — (u/v) Se[r, v, t])

where we use the notations

1
Salh, v, t] = E(Ea[(—x + V)] = Eal(—3 = 0)e]),

CulA, v, t] = %(Ea[(—k + Wt + Eo[(—1 — v)t“]).

As aresult, we obtain A; (o) = @;(«)Ag in the form

Q= (Ca[)», v, t]+ i SalA, v, f])QD + 1 Sal2, v, t]Po, (36)
V myv
mae? m
Pt :_Tsa[)"ava t]QO+ Ca[)\.,]),t]— ;Sa[)‘w v, t] PO' (37)

Fora = 1, we get
Selk, v, t] = e Msinh(vt),  Cy[r, v, t] = e * cosh(vt),
and Eqgs. (36) and (37) give the well-known solutions [33]:

1
Q =e M (cosh(vt) + K sinh(vt))QO + —e* sinh(vt)Py, (38)
1% mv

2

P, = _ MY e sinh(vt)Qg + e~ (cosh(vt) _K sinh(vt))Po, (39)
v

where sinh and cosh are hyperbolic sine and cosine.

Note that for V, = 0 (k = 1, 2), we have closed Hamiltonian system with memory, that is described
by Heisenberg equation (24). The solution of the equation for linear oscillator with Hamiltonian (27)
and a power-law memory is given by (36) and (37), where A = 0.

For non-integer «, the Mittag-Leffler function in Eqs. (36) and (37) can be represented in the form

Eq1(—2t%) = f, (zV/°t) + g, (z"/°t), (40)

where

RO = [
T Jo

r2e 4+ 2r* cos(ra) + 1
2
g, (t) = =6t /@ cos [t sin(rr /)] . (41)
o

The function g, (t) exhibits oscillations with circular frequency §2(«) = sin(7 /), and exponentially
decaying amplitude with rate A(«) = | cos(;r /«)|. The functions f, (t) exhibit an algebraic decay as
t — oo. Therefore the linear oscillator with memory demonstrates power-law decay. Note that we
have power-law decay for open and closed Hamiltonian quantum systems with memory. As a result,
the power-law memory leads to dissipation.
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As a result, generalized Lindblad equation with time fractional derivative describes evolution of
quantum observables of open quantum systems with memory. The quantum processes with power-
law memory (¢ ¢ N) cannot be described by a semigroup. It can be described only as a quantum
dynamical groupoid.

As a result, the long-term memory for open and closed quantum systems can lead to dissipation
with power-law decay.

6. Conclusion

In this paper, we consider simple open and closed quantum systems with the power-law memory.
These systems can be described by differential equations with non-integer derivative with respect to
time. The fractional differential equations describe quantum processes with memory. The fractional
calculus is a powerful instrument to describe a wide class of open classical and quantum systems
[13,36-38]. An open quantum system is a quantum system which is found to be in interaction
with an external quantum system, the environment. The open quantum system can be viewed as
a distinguished part of a larger closed quantum system, the other part being the environment. We
think that fractional differential equations can have found many applications in the theory quantum
processes with power-law memory for closed and open (non-Hamiltonian) systems [39-44].
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