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Abstract:

A dynamical system governed by equations with derivatives of non-integer order, such as the fractional

oscillator, can be considered as an open (non-isolated) system with memory. Fractional equations of motion
are obtained from the interaction between the system and the environment with power-law spectral density.
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1. Introduction

Fractional calculus [1] and fractional equations [2, 3] have
found many applications in recent studies in mechanics
and physics (for example, see books [4-14]) The interest
in fractional equations has been growing continually dur-
ing the last few years. More often fractional equations for
dynamics or kinetics appear as some phenomenological
models. Recently, the method to obtain fractional ana-
logues of equations of motion was considered for prob-
lems related to sets of coupled particles that interact by
a long-range power-law [15-19].

In this paper, we describe the interaction between simple
classical systems and some environments. These systems
can be considered as open systems with memory. Under-
standing dissipative dynamics of open systems remains a
challenge in mathematical physics. This problem is rele-
vant in various areas of fundamental and applied physics.
As a model of the environment, we consider an infinite

*E-mail: tarasov@theory.sinp.msu.ru

set of harmonic oscillators coupled to the system. This
is an independent-oscillator model, since the oscillators
are not interacting with each other. Power-law spectral
densities (PLSD) for the environment lead us to power-
laws for memory functions. Note that a power-law memory
has been detected for fluctuation within a single protein
molecule [20]. We obtain fractional equations from the
interaction between the system and the PLSD environ-
ment. It allows us to use fractional differential equations
for non-Markovian dynamics of a wide class of open and
non-Hamiltonian systems. The linear fractional oscilla-
tor (LFO) is considered as an open system, i.e. a system
that interacts with the PLSD environment. Note that the
LFO has been the subject of numerous investigations [35—
51, 61] because of its different applications. The LFO can
be considered as a simple model of fractional generaliza-
tion of classical mechanics [52-60].
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2. Interaction between system and
environment

As a model of environment, we consider an infinite set of
harmonic oscillators coupled to a system. This model is
called the independent-oscillator model, since the oscil-
lators do not interact with each other. Let Q and P be the
coordinate and momentum of the system respectively, and
gx and p; describe those of the environment. The usual
Poisson brackets are

{QIP}:1I {qnlpk}:6nk1 (1)

and all other brackets vanish.
The total Hamiltonian H of the system and the environ-
ment is composed of the system part

PZ

H, =
2M

+V(Q), ()

the environment Hamiltonian

and the interaction part

:—QZan—i-QZZZm = (4)

where C, are the coupling constants between the system
and the environment. As a result, the total Hamiltonian
H = Hs + H. + H; has the form

P? Mg maw? G ’
H—W+V(Q)+§ |:2mn + 5 (Qn_mo) .
()
Note that the function (5) with V(Q) = (MQ?/2)Q? is
called the Caldeira-Legget Hamiltonian. The infinity of
choices for m, and w, give this model its great generality.

3. Equations of motion for open
systems

Using (5) we can derive Hamiltonian equations of motion
for the system and the environment. For the system these
are

9 _tomy=m

dP , C?
— (P H} =~V o)+Z(an— o). o
n=1 My
The equations for the environment are
djn ={qn, H} = m, Pn,
dp,
Lft = {pn, H} = =m,w;q, + G, Q. (7)

Eliminating the momenta variables P and p,, n =1, ..., N,
we can write Egs. (6) and (7) in the form

PO oy S &
Mg V=3 (e so) . @
d’q,
M2 +m,w2q, = C,Q. 9)
The solution of Eq. (9) has the form
4 pa(0)
Gn(t) =q,(0) cos(w,t) + . sin(w, t)+

(t—1)drT, (10)

where g,(0) and p,(0) are the initial coordinate and mo-
mentum of the environment n-th oscillators. We suppose
that for t = 0 the environment is not perturbed, ie.
g.(0) = 0 and p,(0) = 0. Integration by parts of the
last term in Eq. (10) gives

/Q( )sin w,(t — 7)d —/ Q(t)d cos w,(t — 1) =

1 1 .
= w—nQ(t)—;nQ(O) cos(wnt)_lo %

cos w,(t—T1)dT.

Setting Q(0) = 0 for simplicity, we obtain

qn(t) = & o(t) — G, /t do(r) cos w,(t — T)dT.
0

m,w? m,w? dr
(1

Substituting (11) into (8) gives the equation

d*Q ) ——
MW+/M dr+V'(Q)=0, (12)

where

5 cos(w, t) (13)
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is a memory kernel. As a result, we have the non-
Markovian equation of motion for the system. The inter-
action between the system and the independent-oscillator
environment allows us to describe the dynamics with a
memory.

In general (g,(0) # 0, p,(0) # 0, Q(0) +# 0) the right-hand
side of equation (12) is not zero. It is equal to the function
F(t) of the form

N
Z (C Gn(0) cos(w,t) + C,,p,,w(O) sin(w, t)—

2
G 5 Q(0) cos(w,t) | - (14)

m,w?

The function (14) can be interpreted as a stochastic force.
The stochastic interpretation of the function can be ap-
plied since the initial states of the environment are uncer-
tain and it can be determined by a distribution of initial
states g,(0) and p,(0). For example, if the initial state
of the environment is an equilibrium state, then the dis-
tribution of environment oscillators, described by F(t), is
Gaussian. In this paper, we assume that the initial states
are equal to zero for simplicity.

4. Memory and fractional calculus

Let us consider the evolution of a dynamical system in
which some quantity K(t) is related to Q’(t) through a
memory function M(t):

mn:AAw—ﬂamw, (15)

where Q'(1) = dg(t)/dt. Equation (15) means that the
value K(t) is related with Q’(t) by the convolution opera-
tion

K(t) = M(t) * Q'(t).

Equation (15) is a typical non-Markovian equation ob-
tained in the study of systems coupled to an environment,
with environmental degrees of freedom being averaged.
We consider special cases of Eq. (15). We can con-
sider the memory effects and limiting cases widely used in
physics: (a) absence of the memory, (b) complete memory,
and (c) power-like memory.

(A) For a system without memory, we have the Markov
processes, and the time dependence of the memory func-
tion is

M(t—1)=d(t— 1), (16)

where d(t — 1) is the Dirac delta-function. The absence
of the memory means that the function K(t) is defined

by Q’(t) only at instant t. For this limiting case, the
system loses all its states except for one with infinitely
high density. Using (15) and (16), we have

Flr) = jo St —Q(Mdr = Q). (17)

Expression (17) corresponds to the process with complete
absence of memory. This process relates all subsequent
states to previous states through the single current state
at each time t.

(B) If memory effects are introduced into the system the
delta-function turns into some function, with the time in-
terval during which Q’(t) influences the function K(t). Let
M(t) be the step function

M(t—r):{t1' 0O<t<t; (18)

0, T>t

The factor ¢t~ is chosen to get normalization of the mem-
ory function to unity:

/OIM(T)dT =

Then in the evolution process the system passes through
all states continuously without any loss. In this case,

(N
Z?[OQ(T)dT

and this corresponds to complete memory.
(C) Let us consider the power-like memory function

M(t—T1)=A(t— 1)~ (19)

The function indicates the presence of the fractional
derivative or integral. Substitution of (19) into (15) gives
the temporal fractional derivative of order B:

0<B <),

K= g [ e "

where I'(1— B) is the Gamma function, and A = (1= B)A.
The parameter A can be regarded as the strength of the
perturbation induced by the environment of the system.

)7 Q'(1)d,

The physical interpretation of the fractional derivative is
an existence of a memory effect with power-like memory
function. The memory determines an interval t during
which the function Q'(7) affects the function K(t).
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Equation (15) is a special type of equations for K(t) and
Q'(t), where K is directly proportional to M(t)* Q'(t). In
our case, we have equation (12) of the form

MQ'(t) + M(1)+ Q1) + VI(Q) =0.  (21)

Equation (21) is a fractional equation for the dynamical
system. This equation describes the processes with mem-
ory. As a result, we can use the fractional calculus [2] to
describe dynamics of classical and quantum systems with
memory.

5. Memory function for open sys-
tems

To describe dissipative systems by Eq. (12), we must de-
fine the conditions for the frequencies w,, the number of
environment oscillators N, and the coupling constants C,.
The memory function M(t) describes dissipation if M(t)
is positive definite and decreases monotonically. These
conditions are achieved if N — oo and if C?/(m,w?) and
w, are sufficiently smooth functions of the index n. For
N — oo, we replace the sum in Eq. (13) by the integral

M(t) = /Ooo g(w)C(w) cos(wt) dw, (22)

where g(w) is a density of states. We assume that the
oscillator environment contains an infinite number of os-
cillators with a continuous spectrum.

The spectral density J(w) is related with the memory func-
tion M(t) by

J(w) = w/ M(t)cos(wt)dt (23)
0
or by the inverse equation
A e C)
M(t) = - [m " cos(wt)dw. (24)

Using equations (22) and (23), we have

Tw
J(w) = —-g(w)C(w). (25)
For the spectral density
N
Tw c?
Jw) = = ; paprs 5w — wy), (26)

equation (24) gives the memory function (13). If we con-
sider the Cauchy distribution

a
J(w) = PR (27)
then Eq. (24) gives the exponential memory kernel
M) = Se . (28)

For a wide class of environments, we can consider a
power-law for the spectral density.

6. Fractional equations for open
systems

To derive a fractional differential equation for the open
system, we consider a power-law for the spectral density
(PLSD):

J(w) = Awf, 0<B<1, (29)

where A > 0. Equation (29) can be achieved by a variety
of combinations of coupling coefficients C(w) and density
of states g(w) in Eq. (25). The density (29) leads to the
power-law for the memory function M(t) ~ t=#.

Let us obtain an explicit form of equation (12) for the
spectral density (29). Using the Fourier cosine-transform
(see Sec. 1.3.1. in [62])

o - T e
[0 X" cos(xy)dx = 2l (a) cos(]ra/Z)y '
0<a<), )

and equations (29), (24), we have

_ A -8
M) = (1 — B) cos(x(1 —B)/Z)t ' S
Substitution of (31) into (12) gives
2
me2 A Dforvio=0. (32

dt2  cos(n(1—B)/2)

This equation is a fractional equation with the Caputo

fractional derivative
1 /’ Q'(1)dt
r1—8)Jo (t—1p’

0<B<1, (33)

oDF O(t) =0l P D} Q(t) =

where D! Q(t) = Q'(t) = dO(t)/dt. As a result, we ob-
tain a fractional differential equation from the interaction
between the system and the environment with power-law
spectral density. Note that fractional equations of motion
can be derived from the variational principle that has been
suggested by Agrawal in [64, 65].
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7. Fractional friction for open sys-
tems

We can consider an environment with an interaction with
system different to that considered in (4). The simplest
Hamiltonian for the interaction between the system and
the environment has the bilinear form

N
H =-Q) Ciqn. (34)

This is Hamiltonian (4) without the quadratic term. We
consider the total Hamiltonian of the system and the en-
vironment

H = Hs + He. + H,

where H; is defined by (2) and the environment Hamilto-
nian H, is (3). In this case, the equations of motion for
the system are

dQ o
o = {0.Hy =M

dP .
= {(PH) :—V’(Q)+Zqun. (35)

Eliminating the momentum P, we have

2o ., "
MZZ+V(Q) =3 G (36)

The equations for the environment are (7). The corre-
sponding solutions are presented by (10). If we integrate
by parts the last term in Eq. (10), then

m,w?

" /t ) o wo(t—7) dr+Da(t).  (37)

m,w? dt
where
D, (1) =@ (0) cos(wnt) + r’;—(g) sin(w, t)—
Q(0) cos(wy ). (38)

m”wn

If we assume that for t = 0 the environment is not per-
turbed, e, g,(0) =0, p,(0) = 0, and Q(0) = 0 for sim-
plicity, then D,(t) = 0. Substituting (37) into (36) gives

d2
dt? /M(t— )d T+ UQ) = F(t), (39)

where
2

U() = v(0) - @oz, (40)

N
Z 2 (41)
=1

ﬂ

N
F(t) =) GDu(t). (42)
n=1

The memory kernel M(t— 1) in Eq. (39) is defined by Eq.
(13). Equation (39) is the integro-differential equation of
the non-Markovian dynamics of the system. We note that
this equation depends on the environment variables only
through their initial values g,(0) and p,(0) that occur in
the function F(t). If we assume that for t = 0 the environ-
ment is not perturbed, i.e., g,(0) = 0, and p,(0) = 0, then
equation (39) has no dependence on the environment vari-
ables. The memory kernel M(t) and the potential U(Q)
depend on the strength of the environment coupling pa-
rameters C, and the spectrum of frequencies w, of the
environment oscillators. If F(t) # 0, then Eq. (39) can be
considered as a generalized Langevin equation which is
suggested by Mort [21] and Kubo [22].

For N — oo, we replace the sum in Eq. (13) by the
integral (22). Using the spectral density (29) equations
(39) and (31) give

d*Q

A
MG * s = B12)

oDFQ+ U'(Q) = F(1). (43)

This equation defines systems with a fractional friction
term of order B. It is used to describe damping processes
with a fractional damping term [23, 24]. If F(t) # 0, then
Eq. (43) can be considered as a fractional Langevin equa-
tion [25-33] which is a generalized Langevin equation (39)
with a power-law memory kernel. Equation (43) is frac-
tional differential equation of the open dynamical system.
As a result, fractional equations can be obtained from the
interaction between the system and the environment with
power-law spectral density. Fractional calculus is a pow-
erful instrument for the description of open classical and
quantum systems.

8. The linear fractional oscillator as
an open system

The equations of motion for the linear fractional oscillator
can be derived from equations for open system (32) and
(43). If V(Q) =0, then Eq. (32) gives

D’Q+ Q0 yDFQ=0, 0<B<1, (44)
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where
5 A

~ Mecos(n(1— B)I2)’

In general, the operations D' and /'~# in (33) do not com-
mute:

B
D ol{ P Q(t) = ol D} O(1) + =——
For Q(0) = 0, we get
oDPO(t) = D! o1} 7P Q(t) = of, D! Q(t).  (46)

Performing the fractional integration of order B in Eq.
(44), and using I{"172 = 1772, we obtain

oD FO+020=0, (0<B<1). (47)

This equation defines the linear fractional oscillator
(LFO). As a result, the fractional oscillator can be con-
sidered as a free system that interacts with the PLSD
environment. Note that the LFO has been the subject
of numerous investigations [35-39, 42, 43, 45-51, 61] be-
cause of its different applications. As a result, the frac-
tional oscillator can be considered as an open system.
Equation (43) with V(Q) = 0 gives

D0+ 02 oDfO= F(N, 0<B<1),  (48)

where
Qf =0%- Qé.

and Q is defined by (41). Performing the fractional inte-
gration of order B in Eq. (48), we obtain

oDIPQ+QIO=1(1), (0<B<1), (49

where
1 .
f(t) = MO/J BE() + Q20(0).

We note that the function f(t) depends on the strength
of the environment coupling constants C,, the spectrum
of frequencies w, of the environment oscillators, and ini-
tial values g,(0), p,(0), O(0). Equation (49) describes a
fractional oscillator driven by the force f(t).

The linear fractional oscillator (47) can be defined by the
equation

oDIO(t) +Q*0(t) =0, 1<a<2, (50)

where a =2 — B, and 0 < B < 1. The fractional Caputo
derivative oD{ allows us to use the usual initial conditions
3]

The exact solution of Eq. (50) is

Q(t) = Q(0)Eq 1 (—Q%t%) + tQ'(0)E,o(—Q°t%),  (51)

aﬂa=ébﬁgig (52)

is the generalized two-parameter Mittag-Leffler function.
The decomposition of (51) is [35]:

Q(t) =Q(0) [£u0(Q¥1) + guo(Q¥1)] +
QY Q'(0) [£an (Q*78) + g (Q71)] . (53)

Here

(—=1) ]°° w7 Fsin(ra)
for(t) = —— ! ,
(1) T Jo ¢ + 2r@cos(ma) + 1 r

gok(t) = %e“"s(”“’) cos[tsin(n/a) — mk/a], (54)
where kK = 0,1. We note that this function exhibits os-
cillations with angular frequency w(a) = sin(r/a) and
an exponentially decaying amplitude with rate A(a) =
| cos(sr/a)|. The functions f,.(t) exhibit an algebraic de-
cay as t — oo.

To describe this algebraic decay, we consider the integral
representation for the generalized Mittag-Leffler function
of the form

1 FaBes
E, = —
#2) 2mi Jy, &4 =z

dé, (55)

where Ha denotes the Hankel contour, a loop, which starts
from —oo along the lower side of the negative real axis,
encircles the circular disc || < |z|'® in the positive direc-
tion, and ends at —oo along the upper side of the negative
real axis. By the replacement & — & Eq. (55) transforms
into [3, 66]:

1 85(1_8”0(
E, = dé, (1 2), (56
pl2) =5 /y(m) T &L (1<a<?2), (56)

where ma/2 < & < min{xr, ra}. The contour y(a,d) is
defined by two rays S.; = {arg(é) = +0, |¢]| > a}, and
a circular arc G5 = {|¢] = 1,—0 < arg(é) < 6}. Let
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us denote the region on the left from y(a, d) as G~ (a, 9).
Then [66]:

E.plz) = — ; ﬁ z€ G (a,0), (|z| = o0),

(57)
and 8 < |arg(z)] < . In our case, z = —Q%t9, arg(z) =
m, and

t*d

_ 0242 ~
Ear(-117) % Q7 (1—a)

1
~ —Bmt_zﬂg, (58)
In a similar way, we get

. t 1
Eon(—Q%t%) = re—g ° Bt 2B (59)

We can use the asymptotic behavior of the generalized
Mittag-Leffler function (52) for the exact solution of (51).
Then, substitution of (58) and (59) into (51) gives

o) ~ —B%t-w + B%r”ﬁ, (Bt > 1). (60)
As the result, we arrive to the asymptotic (60), which ex-
hibits an algebraic decay for t — oo. This algebraic decay
is the most important effect of the non-integer derivative
in the considered fractional equations, contrary to the ex-
ponential decay of the usual damped-oscillation and re-
laxation phenomena.

9. Conclusion

In this paper, we consider simple open systems in an en-
vironment with power-law spectral density (PLSD). These
systems can be described by fractional differential equa-
tions. The environment is defined as an infinite set of inde-
pendent harmonic oscillators coupled to a system. These
oscillators do not interact with each other. The power-law
spectral density of the environment leads us to a power-
law for the memory function. Equations of motion with
this memory are differential equations with fractional time
derivatives. The fractional differential equations describe
non-Markovian motion of open systems. The fractional
derivatives in the equations describe the interaction with
the PLSD environment. As a result, fractional differential
equations allow us to consider open and non-Hamiltonian
systems with memory.

Fractional calculus can be a powerful instrument to de-
scribe a wide class of open classical and quantum systems.
An open quantum system is a quantum system which is

found to be in interaction with an external quantum sys-
tem, the environment. The open quantum system can be
viewed as a distinguished part of a larger closed quantum
system, the other part being the environment. We hope
that fractional differential equations can find many appli-
cations in the non-Markovian dynamics of quantum open
and non-Hamiltonian systems [67-72].
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