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Abstract: A lattice model with a spatial dispersion corresponding to a power-law type is suggested. This model serves
as a microscopic model for elastic continuum with power-law non-locality. We prove that the continuous
limit maps of the equations for the lattice with the power-law spatial dispersion into the continuum equations
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1. Introduction

The integration and differentiation of any arbitrary or-der have a long history since 1695 [1–4]. The theory ofequations with derivatives and integrals of non-integerorders [3–5] is powerful tool to describe the behavior ofmedia and systems with spatial non-locality and mem-ory of a power-law type. Fractional differential equationshave a vast applications in physics and mechanics andform an area called fractional dynamics [6–15]. The frac-tional calculus allows us to formulate a fractional gener-alization of non-local elasticity models in two forms: thefractional differential (gradient) elasticity models (weak
∗E-mail: tarasov@theory.sinp.msu.ru

power-law non-locality) and the fractional integral mod-els (strong power-law non-locality). Fractional integralelasticity models are considered in [16–21]1.
Lattice models are very important in elasticity theory (seefor example [22–28]). In this paper we suggest a latticemodel with a power-law spatial dispersion as a micro-scopic model of elastic continuum with weak and strongpower-law non-locality. For this purpose, we consider themodels of lattices and their corresponding continuous lim-its by using the methods suggested in [29, 30] (see also[31–33]). In [29, 30] we prove that the continuum equa-tions with fractional Laplacian in the Riesz form [3–5] can
1 P. Cornetti, A. Carpinteri, A. Sapora, M. Di Paola, M.
Zingales, http://porto.polito.it/2307856/
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be directly derived from lattice models with different typesof long-range interactions. In this paper, we show how thecontinuous limit for the lattice with a power-law spatialdispersion gives the corresponding continuum equation ofthe fractional integral and gradient elasticity. The contin-uum equations of fractional elasticity, which are derivedfrom the lattice model, are solved for two static cases:fractional integral elasticity and fractional gradient elas-ticity.
2. Equations for displacement of
lattice particles
Let us consider a lattice model where all particles are dis-placed in one direction. We assume that the displacementof particles from its equilibrium position is determined bya scalar field. It allows us to describe the properties of thelattice and its continuum limit by using simple equations.Let us consider a lattice model where all particles are dis-placed in one direction. We assume that the displacementof particles from its equilibrium position is determined bya scalar field. It allows us to describe the properties of thelattice and its continuum limit by using simple equations.The equations of motion for a one-dimensional lattice sys-tem of interacting particles have the form
M ∂2un(t)

∂t2 = g
+∞∑

m=−∞
m6=n

K (n,m) (un(t)−um(t))+F (n), (1)
where un(t) = u(n, t) is the displacement of n particlefrom its equilibrium position, g is the coupling constantfor interparticle interactions in the lattice, the terms F (n)

characterize an interaction of the particles with the ex-ternal on-site force. For simplicity, we assume that allparticles have the same mass M . The elements K (n,m) ofequation (1) describe the interparticle interaction in thelattice. For an unbounded homogeneous lattice, due to itshomogeneity, K (n,m) has the form K (n,m) = K (n − m).Equations of motion (1) is invariant with respect to itsdisplacement of the lattice as a whole, provided externalforces are absent. It should be noted that the noninvariantterms lead to divergences in the continuous limit [13].
3. Transform operation for lattice
models

In order to define the operation that transforms the lat-tice equations for un(t) into the continuum equation fora scalar field u(x, t), we use the methods suggested in[29, 30]: We consider un(t) as Fourier series coefficientsof some function û(k, t) on [−k0/2, k0/2], then we use thecontinuous limit k0 →∞ to obtain ũ(k, t), and finally weapply the inverse Fourier integral transformation to ob-tain u(x, t). Diagrammatically this can be written in thefollowing form.

un(t) F∆−−−−−→ û(k, t) Lim−−−−−→ ũ(k, t) F−1
−−−−−→ u(x, t)(2)We performed similar transformations for differentialequations to map the lattice equation into an equationfor the elastic continuum. We can represent these sets ofoperations in the form of the following diagrams.

Equation for un(t) From Lattice to Continuum−−−−−−−−−−−−−−−−→ Equation for u(x, t)
Fourier series transform

y Inverse Fourier integral transform
x

Equation for û(k, t) −−−−−−→
Limit ∆x→0 Equation for ũ(k, t)

(3)

Therefore the transformation operation that maps our lat-tice model into a continuum model is a sequence of thefollowing three actions (for details see [29, 30]):1. The Fourier series transform F∆ : un(t) →
F∆{un(t)} = û(k, t) that is defined by
û(k, t) = +∞∑

n=−∞ un(t) e−ikxn = F∆{un(t)}, (4)

un(t) = 1
k0
∫ +k0/2
−k0/2 dk û(k, t) eikxn = F−1∆ {û(k, t)}, (5)

where xn = n∆x , and ∆x = 2π/k0 is the inter-particle distance. For simplicity we assume that alllattice particles have the same inter-particle dis-tance ∆x .2. The passage to the limit ∆x → 0 (k0 →∞) denotedby Lim : û(k, t) → Lim{û(k, t)} = ũ(k, t). The
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Lattice model with power-law spatial dispersion for fractional elasticity

function ũ(k, t) can be derived from û(k, t) in thelimit ∆x → 0. Note that ũ(k, t) is a Fourier integraltransform of the field u(x, t), and û(k, t) is a Fourierseries transform of un(t), where we use
un(t) = 2π

k0 u(xn, t)
considering xn = n∆x = 2πn/k0 → x .

3. The inverse Fourier integral transform F−1 :
ũ(k, t)→ F−1{ũ(k, t)} = u(x, t) is defined by
ũ(k, t) = ∫ +∞

−∞
dx e−ikxu(x, t) = F{u(x, t)}, (6)

u(x, t) = 12π
∫ +∞
−∞

dk eikx ũ(k, t) = F−1{ũ(k, t)}. (7)
Using the suggested notations we can represent diagram(3) in the following form,

un(t) From Particle to Field−−−−−−−−−−−−−→ u(x, t)
F∆
y xF−1

û(k, t) −−−−−−→Lim ∆x→0 ũ(k, t) .
(8)

The combination of these three actions F−1, Lim, and F∆allows us to realize the transformation of lattice modelsinto continuum models [29, 30].Note that equations (4) and (5) in the limit ∆x → 0(k0 → ∞) are used to obtain the Fourier integral trans-form equations (6) and (7), where the sum is changed bythe integral.Let us give the statement that describes the Fourier se-ries transform for the equations for displacement of latticeparticles (1). The Fourier series transform F∆ maps thelattice equations of motion
M ∂2un(t)

∂t2 = g
+∞∑

m=−∞
m6=n

K (n,m) (un(t)−um(t))+F (n), (9)
where K (n,m) satisfies the conditions
K (n,m) = K (n − m) = K (m− n), ∞∑

n=1 |K (n)|2 < ∞,
(10)into the continuum equation

M ∂2û(k, t)
∂t2 = g

(
K̂ (0)− K̂ (k∆x)) û(k, t) + F∆{F (n)},(11)

where û(k, t) = F∆{un(t)}, K̂ (k∆x) = F∆{K (n)}, and F∆is an operator notation for the Fourier series transform.Here we use the notation
K̂ (k∆x) = +∞∑

n=−∞
n6=0

e−ikn∆xK (n). (12)
Using K (−n) = K (n), the function (12) can be representedby

K̂ (k∆x) = +∞∑
n=1 K (n) (e−ikn∆x + eikn∆x)

= 2 +∞∑
n=1 K (n) cos (k∆x) , (13)

and
K̂ (0) = +∞∑

n=−∞
n6=0

K (n) = 2 ∞∑
n=1 K (n). (14)

For details see [29, 30] and [13].
4. Weak spatial dispersion of
power-law type
In lattice models, dispersion is associated with differentproperties of the wave such as its frequency, wavelength,wave-number, amplitude and others. Spatial dispersion isthe dependence of the elastic waves on the wave vector.In the model that is described by equation (1) the spatialdispersion means the dependence of the kernel K̂ (|k|) onthe wave vector k. This dependence is caused by non-localinteractions in the elastic continuum. The spatial disper-sion leads to a non-local connection between the stresstensor σkl and the strain tensor εkl. The tensor σkl at anypoint r of the continuum is not uniquely defined by thevalues of εkl at this point. It also depends on the valuesof εkl at neighboring points r′, located near the point r.Qualitatively describing the process in a lattice with spa-tial dispersion implies that the fields of the elastic wavemoves particles from their equilibrium positions at a givenpoint r, which causes an additional shift of the particles inneighboring and more distant points r′ in some neighbor-hood region. Therefore, the properties of the continuum,and hence the stress tensor field σkl depend on the val-ues of strain tensor field εkl not only in a selected point,but also in some neighborhood region. The size R0 of thearea of the mutual influence are usually of the order ofthe interparticle distance in the lattice. The wavelength,
λ, of elastic waves is several orders larger than the size
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of this region, so for a region of size R0 the values of thefield of the elasticity wave do not change. In other words,the wavelength λ usually holds kR0 ∼ R0/λ � 1. In sucha lattice the spatial dispersion is weak.To describe the dynamics of the lattice it is enough toknow the dependence of the function K̂ (|k|) for small val-ues of k = |k| only. Therefore we can replace this functionby the Taylor polynomial. The weak spatial dispersion inthe media with a power-law type of non-locality cannotbe described by the usual Taylor approximation. The frac-tional Taylor series can be very useful for approximatingnon-integer power-law functions [34]. This is due to thefact that the usual Taylor series for the power-law func-tion has an infinite number of terms. Using the fractionalTaylor’s formula we obtain a finite number of terms.For an isotropic linear medium with the weak spatial dis-persion the function K̂ (|k|) can be represented in the form
K̂ (|k|) ≈ K̂ (0) + N∑

j=1 aαj |k|
αj , (15)

where the frequency dispersion is neglected, and thus
K̂ (0), and aαj (j = 1, ..., N) do not depend on the fre-quency ω.If αj = j for all j ∈ N, we can use the usual Taylor’sformula. In this case we have a well-known weak spatialdispersion. In general, we should use a fractional gener-alization of the Taylor’s series [3, 4, 35–39]. The ordersof the fractional Taylor series approximation should becorrelated with the orders of power-laws of weak spatialdispersions, which are experimentally determined. In thiscase the fractional Taylor series approximation of K̂ (|k|)will be the best approximation.We consider models of lattices with weak spatial disper-sion and their continuous limits by using the methods sug-gested in [29, 30]. In this limit we obtain the fractionalLaplacian in the Riesz’s form since the inverse Fourier’sintegral transform of |k|α gives the fractional Laplacian(−∆)α/2. Note that some equivalence of lattice-type net-works with long-range interactions and continuum modelsfor elasticity theory is considered in [40], where the Mar-chaud fractional derivatives are used.For α > 0 and x ∈ Rn, the fractional Laplacian in theRiesz’s form is defined in terms of the Fourier transform
F by ((−∆)α/2f )(x) = F−1(|k|α (Ff )(k)). (16)
For α > 0, the fractional Laplacian in the Riesz’s formusually is defined in the form of the hyper-singular inte-gral by

((−∆)α/2f )(x) = 1
dn(m, α)

∫
Rn

1
|z|α+n (∆m

z f )(z)dz,

where m > α , and (∆m
z f )(z) is a finite difference of order mof a function f (x) with a vector step z ∈ Rn and centeredat the point x ∈ Rn:

(∆m
z f )(z) = m∑

k=0 (−1)k m!
k!(m− k)! f (x − kz).

The constant dn(m, α) is defined by
dn(m, α) = π1+n/2Am(α)2αΓ(1 + α/2)Γ(n/2 + α/2) sin(πα/2) ,

where
Am(α) = m∑

j=0 (−1)j−1 m!
j!(m− j)! jα .

Note that the hyper-singular integral ((−∆)α/2f )(x) doesnot depend on the choice of m > α . The Fourier transform
F of the fractional Laplacian is given by

(F (−∆)α/2f )(k) = |k|α (Ff )(k).
This equation is valid for Lizorkin space [3, 4] and thespace C∞(Rn) of infinitely differentiable functions on Rnwith compact support.
5. Fractional elasticity equation
from lattice model
In the continuous limit the equations for lattices with weakspatial dispersion of a power-law type gives the continuumequation for the fractional elasticity model.
Statement. In the continuous limit ∆x → 0, the lattice
equations

M ∂2un(t)
∂t2 = g

+∞∑
m=−∞
m6=n

K (n − m) (un(t)− um(t)) + F (n),
(17)

with weak spatial dispersion of the form (15) gives the
fractional continuum equation

∂2u(x, t)
∂t2 = − N∑

j=1 Gαj ((−∆)αj /2u)(x, t) + 1
ρ f (x), (18)

with the fractional Laplacian (−∆)αj /2 of order αj . Here the
variables x and ∆x are dimensionless, f (x) = F (x)/A|∆x|,
ρ = M/(A|∆x|), A is the cross-sectional area of the
medium, and

Gαj = gaαj |∆x|αj
M (j = 1, ..., N) (19)

are finite parameters.
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Proof. Let us describe the main points in the proofof this statement. Here we use the methods from [29, 30]and [13]. The Fourier series transform F∆ of equation (17)gives (11). After division by the cross-sectional area of themedium A and the inter-particle distance |∆x|, the limit∆x → 0 for equation (11) gives
∂2
∂t2 û(k, t) = N∑

j=1
g |∆x|αj
M K̂αj ,∆(k) û(k, t) + 1

ρF∆{f (n)},
(20)where ρ = M/A|∆x| is the mass density, f (n) =

F (n)/A|∆x| is the force density, |∆x| is the inter-particledistance, A is the cross-sectional area of the material, and
K̂αj ,∆(k) = −aαj |k|αj .

Here we use (15), with Gαj (j = 1, ..., N) are finite param-eters that are defined by (19). The expression K̂αj ,∆(k)can be considered as a Fourier series transform of the in-teraction term. Note that gaαj →∞ for the limit ∆x → 0,if Gαj are finite parameters.In the limit ∆x → 0, equation (20) gives
∂2ũ(k, t)
∂t2 = N∑

j=1 Gαj K̂αj (k) ũ(k, t) + 1
ρF{f (x)}, (21)

where K̂αj (k) = Lim K̂αj ,∆(k) = −aαj |k|αj . The inverseFourier transform of (20) gives (18). Here, we use theconnection between the Riesz fractional Laplacian and itsFourier transform [3–5] in the form |k|αj ←→ (−∆)αj /2.
To illustrate this Statement we give a few examples.
Example 1. If we can use the weak spatial dispersion inthe form

K̂ (k) ≈ K̂ (0) + a2 k2, (22)
then we obtain the well-known one-dimensional equationfor elastic continuum

∂2u(x, t)
∂t2 = G2 ∆u(x, t) + 1

ρ f (x), (23)
where

G2 = ga2 |∆x|2
M A = E

ρ ,Here E = K|∆x|/A is Young’s modulus, K = ga2 is thespring stiffness, and ρ = M/A|∆x| is the mass density.The corresponding dispersion relation is ω2(k) = G2k2.
Example 2. If the spatial dispersion law has the form

K̂ (k) ≈ K̂ (0) + a2 k2 + a4 k4, (24)

then we derive the equation of the gradient elasticity [41]as
∂2u(x, t)
∂t2 = G2 ∆u(x, t)−G4 ∆2u(x, t) + 1

ρ f (x), (25)
where the constant of phenomenology model is associatedwith the lattice constants by

G4 = ga4 |∆x|4
M A = a4 E |∆x|2

a2 ρ .

The correcponding dispersion relation is thus ω2(k) =
G2k2 + G4k4. Note that the parameter l2 of the gradi-ent elasticity is related with the coupling constants of thelattice by the equation

l2 = |a4| |∆x|2
|a2| . (26)

The sign of the second-gradient term is defined bysgn(a4/a2). Note that earlier it was thought that a phe-nomenological model of the gradient elasticity with a mi-nus sign does not have the appropriate microscopic model,and it is thus considered one of its main weaknesses [41].The proposed lattice model radically changes the situa-tion.
Example 3. If we can use the fractional spatial dispersionlaw in the form

K̂ (k) ≈ K̂ (0) + a2 k2 + aα kα , (27)
then the fractional elasticity equation is
∂2u(x, t)
∂t2 = G2 ∆u(x, t)−Gα (−∆)α/2u(x, t)+ 1

ρ f (x), (28)
where

Gα = gaα |∆x|α
M A = aα E |∆x|α−2

a2 ρ .

The correcponding dispersion relation is ω2(k) = G2k2 +
Gα |k|α . Equation (28) define the fractional elasticitymodel for the one-dimensional case (x ∈ R).
6. Solution of fractional elasticity
equations
Using the same methods as above, we can derive a generalmodel of three-dimensional lattice with fractional weakspatial dispersion of the form

K̂ (k) = K̂ (0) + N∑
j=1 aαj |k|

αj . (29)
1584



Auth
or

cop
y

Vasily E. Tarasov

Then the continuum equation for fractional elasticitymodel has the form
∂2u(r, t)
∂t2 = − N∑

j=1 cj ((−∆)αj /2u)(r, t) + 1
ρ f (r), (30)

where we use cj as a new notation for the constants in-stead of Gαj used in the one-dimensional case. Note that
r and r = |r| are dimensionless.
6.1. Static equation and its solution
Let us consider the statics (∂u(r, t)/∂t = 0, i.e. u(r, t) =
u(r)) in the suggested fractional elasticity model. Thenequation (30) gives

N∑
j=1 cj ((−∆)αj /2u)(r) = 1

ρ f (r). (31)
Equation (30) has a particular solution u(r) for the case
αN > 1 and cN 6= 0 (see Section 5.5.1. pages 341-344 in[5]). The particular solution is represented in the form ofthe convolution of the functions Gn

α (r) and f (r) as follow
u(r) = 1

ρ

∫
Rn
Gn
α (r− r′) f (r′)dnr′, (32)

where n = 1, 2, 3 and the function Gn
α (r) is the Greenfunction that is given by

Gn
α (r) = ∫

Rn

 N∑
j=1 cj |k|

αj

−1
e+i(k,r) dnk, (33)

where α = (α1, ..., αN ). The Green function (33) can besimplified by using the relation (Lemma 25.1 of [3, 4]) ofthe form∫
Rn
ei(k,r) f (|k|)dnk = (2π)n/2

|r|(n−2)/2
∫ ∞

0 f (λ) λn/2 Jn/2−1(λ|r|)dλ.(34)Here Jν is the Bessel function of the first kind. As a result,the Fourier transform of a radial function is also a radialfunction. Using relation (34), the Green function (33) canbe represented (see Theorem 5.22 in [5]) in the form of anintegral with respect to one parameter λ,
Gn
α (r) = |r|(2−n)/2(2π)n/2

∫ ∞
0
 N∑

j=1 cjλ
αj

−1
λn/2 J(n−2)/2(λ|r|)dλ,

(35)where n = 1, 2, 3 and α = (α1, ..., αm), and J(n−2)/2 is theBessel function of the first kind, which can be representedas J1/2(z) = √2/πz sin(z) for the 3-dimensional case.

6.2. Thomson’s problem for fractional inte-
gral and gradient elasticity
If we have the dispersion law in the form

K̂ (|k|) ≈ K̂ (0) + aα |k|α + a2|k|2, (36)
where α > 0, then we obtain the fractional elasticityequation

c2∆u(r)− cα ((−∆)α/2u)(r) + 1
ρ f (r) = 0, (37)

where
c2 = E

ρ = ga2 |∆x|2
M , cα = gaα |∆x|α

M . (38)
If α = 4 we have the well-known static equation of thegradient elasticity [41]:

c2 ∆u(r)− c4∆2u(r) + 1
ρ f (r) = 0, (39)

where
c4 = ± l2 Eρ = ga4 |∆x|4

M . (40)
The second-gradient term is preceded by the sign that isdefined by sgn(ga4), where ga2 > 0.Equation (37) with n = 3 has the particular solution [5]of the form

u(r) = 1
ρ

∫
R3 G3

α (r− r′) f (r′)d3r′, (41)
where the Green type function is given by
G3
α (r) = |r|−1/2(2π)3/2

∫ ∞
0
(
cαλα + c2|λ|2)−1 λ3/2 J1/2(λ|r|)dλ.(42)Here J1/2 is the Bessel function of the first kind.Let us consider W. Thomson (1848) problem [42] for thefractional elasticity model described by equation (37).This problem implies that we should determine the de-formation of an infinite elastic continuum, when a force isapplied to a small region in it. If we consider the defor-mation at distances |r|, which are larger compared to thesize of the region, we can assume that the force is appliedat a point, i.e.

f (r) = f0 δ(r) = f0 δ(x)δ(y)δ(z). (43)
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Then the displacement field u(r) of fractional elasticity hasa simple form of the particular solution that is proportionalto the Green’s function
u(r) = f0

ρ G
n
α (r). (44)

As a result the displacement field for the force that isapplied at a point (43) has the form
u(r) = 12π2 f0

ρ |r|

∫ ∞
0

λ sin(λ|r|)
cαλα + c2λ2 dλ. (45)

We can distinguish the following two cases: (1) Weakpower-law spatial dispersion with α < 2; (2) Weak power-law spatial dispersion with α > 2. This is due to thefact that in nonlocal elasticity theory usually distinguishthe following two cases: (1) Fractional integral elasticity(α < 2); (2) Fractional gradient elasticity (α > 2).For the fractional integral elasticity, the order of the frac-tional Laplacian is less than the order of the term relatedto Hooke’s law. For the fractional gradient elasticity, theorder of the fractional Laplacian is greater then the orderof the Hooke’s term.
6.3. Fractional integral elasticity model
The fractional integral elasticity model is described byequation (37) with α < 2 of the form
c2∆u(r)− cα ((−∆)α/2u)(r) + 1

ρ f (r) = 0, (0 < α < 2).(46)The order of the fractional Laplacian (−∆)α/2 is less thanthe order of the first term related to the usual Hooke’slaw. Note that the continuum equation (46) of fractionalintegral elasticity is derived from the lattice equationswith weak spatial dispersion in the form (36) with α < 2.The particular solution of equation (46) for the force thatis applied at a point (43) is the displacement field
u(r) = f02π2ρ |r|

∫ ∞
0

λ sin(λ|r|)
c2λ2 + cαλα

dλ (α < 2). (47)
Using Section 2.3.1 in the book [43], we can obtain theasymptotic behavior for (47) for

u(r) ≈ C0(α)
|r|3−α + ∞∑

k=1
Ck (α)

|r|(2−α)(k+1)+1 (|r| → ∞), (48)
where

C0(α) = f02π2 ρ cα Γ(2− α) sin (π2 α) , (49)

Ck (α) = − f0ck22π2 ρ ck+1
α

∫ ∞
0 z(2−α)(k+1)−1 sin(z)dz. (50)

As a result, the displacement field for the force that isapplied at a point in the continuum with this type offractional weak spatial dispersion is given by u(r) ≈
C0(α)/|r|3−α , where 0 < α < 2, on the long distance
|r| � 1. The asymptotic behavior |r| → 0 for the fractionalintegral elasticity does not depend on the parameter α .
6.4. Fractional gradient elasticity model
The fractional gradient elasticity model is described bythe equation
c2∆u(r)− cα ((−∆)α/2u)(r) + 1

ρ f (r) = 0, (α > 2). (51)
This may be derived from the lattice model with the frac-tional weak spatial dispersion in the form (36) with α > 2.The order of the fractional Laplacian (−∆)α/2 is greaterthan the order of the first term related to the Hooke’slaw. If α = 4 equation (51) become the equation (39).Therefore the case 3 < α < 5 can be considered as closeas possible (α ≈ 4) to the usual gradient elasticity (39).The continuum equation (51) of fractional gradient elastic-ity is derived from the lattice equations with weak spatialdispersion in the form (36) with α > 2.The particular solution of equation (51) for the force thatis applied at a point (43) is the displacement field

u(r) = f02π2ρ |r|
∫ ∞

0
λ sin(λ|r|)
c2λ2 + cαλα

dλ (α > 2). (52)
The asymptotic behavior |r| → ∞ for the fractional gra-dient elasticity does not depend on the parameter α .The asymptotic behavior of the displacement field u(r) for
|r| → 0 is given by
u(r) ≈ f0 Γ((3− α)/2)2α π2√π ρ cα Γ(α/2) · |r|α−3, (2 < α < 3),(53)
u(r) ≈ f02π α ρ c1−3/α2 c3/α

α sin(3π/α) , (α > 3). (54)
Note that the asymptotic behavior for 2 < α < 3 doesnot depend on c2. The displacement field u(r) of the shortdistance is determined only by term with (−∆)α/2 (α > 2)which can thus be considered as a fractional non-localityof the gradient type.
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7. Conclusion
We demonstrate the close relation between the discretemicrostructure of a lattice with weak spatial dispersion ofa power-law type and the fractional integral and gradi-ent elasticity models. We prove that fractional elasticitymodels can be directly derived from the lattice modelswith power-law spatial dispersion. It has been shownthat a characteristic feature of the behavior of a frac-tional non-local continuum is the spatial power-tails ofnon-integer orders. We assume that fractional elastic me-dia (and plasma-like media with power-law spatial dis-persion [34]) should demonstrate a universal behavior inspace by analogy with the universal behavior of low-lossdielectrics in time [44–48]. Note that the universal behav-ior in time can be connected with the interaction betweenthe particles and the environment [49].
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