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Abstract:

A lattice model with a spatial dispersion corresponding to a power-law type is suggested. This model serves

as a microscopic model for elastic continuum with power-law non-locality. We prove that the continuous
limit maps of the equations for the lattice with the power-law spatial dispersion into the continuum equations
with fractional generalizations of the Laplacian operators. The suggested continuum equations, which are
obtained from the lattice model, are fractional generalizations of the integral and gradient elasticity models.
These equations of fractional elasticity are solved for two special static cases: fractional integral elasticity

and fractional gradient elasticity.
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1. Introduction

The integration and differentiation of any arbitrary or-
der have a long history since 1695 [1-4]. The theory of
equations with derivatives and integrals of non-integer
orders [3-5] is powerful tool to describe the behavior of
media and systems with spatial non-locality and mem-
ory of a power-law type. Fractional differential equations
have a vast applications in physics and mechanics and
form an area called fractional dynamics [6-15]. The frac-
tional calculus allows us to formulate a fractional gener-
alization of non-local elasticity models in two forms: the
fractional differential (gradient) elasticity models (weak

power-law non-locality) and the fractional integral mod-
els (strong power-law non-locality). Fractional integral
elasticity models are considered in [16-21]".

Lattice models are very important in elasticity theory (see
for example [22-28]). In this paper we suggest a lattice
model with a power-law spatial dispersion as a micro-
scopic model of elastic continuum with weak and strong
power-law non-locality. For this purpose, we consider the
models of lattices and their corresponding continuous lim-
its by using the methods suggested in [29, 30] (see also
[31-33]). In [29, 30] we prove that the continuum equa-
tions with fractional Laplacian in the Riesz form [3-5] can
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be directly derived from lattice models with different types
of long-range interactions. In this paper, we show how the
continuous limit for the lattice with a power-law spatial
dispersion gives the corresponding continuum equation of
the fractional integral and gradient elasticity. The contin-
uum equations of fractional elasticity, which are derived
from the lattice model, are solved for two static cases:
fractional integral elasticity and fractional gradient elas-
ticity.

2. Equations for displacement of
lattice particles

Let us consider a lattice model where all particles are dis-
placed in one direction. We assume that the displacement
of particles from its equilibrium position is determined by
a scalar field. It allows us to describe the properties of the
lattice and its continuum Llimit by using simple equations.
Let us consider a lattice model where all particles are dis-
placed in one direction. We assume that the displacement
of particles from its equilibrium position is determined by
a scalar field. It allows us to describe the properties of the
lattice and its continuum Llimit by using simple equations.
The equations of motion for a one-dimensional lattice sys-
tem of interacting particles have the form

where u,(t) = u(n,t) is the displacement of n particle
from its equilibrium position, g is the coupling constant
for interparticle interactions in the lattice, the terms F(n)

|

From Lattice to Continuum

characterize an interaction of the particles with the ex-
ternal on-site force. For simplicity, we assume that all
particles have the same mass M. The elements K(n, m) of
equation (1) describe the interparticle interaction in the
lattice. For an unbounded homogeneous lattice, due to its
homogeneity, K(n, m) has the form K(n, m) = K(n — m).
Equations of motion (1) is invariant with respect to its
displacement of the lattice as a whole, provided external
forces are absent. It should be noted that the noninvariant
terms lead to divergences in the continuous limit [13].

3. Transform operation for lattice
models

In order to define the operation that transforms the lat-
tice equations for u,(t) into the continuum equation for
a scalar field u(x, t), we use the methods suggested in
[29, 30]: We consider u,(t) as Fourier series coefficients
of some function i(k, t) on [—ko/2, ko/2], then we use the
continuous limit ky — oo to obtain (k, t), and finally we
apply the inverse Fourier integral transformation to ob-
tain u(x, t). Diagrammatically this can be written in the
following form.

un(t) —22 Gk, 1) —" s agk, ) ——s u(x, 1)

()
We performed similar transformations for differential
equations to map the lattice equation into an equation
for the elastic continuum. We can represent these sets of
operations in the form of the following diagrams.

‘ Equation for un(t)‘

Fourier series trans/orml

’ Equation for (k, t) ‘

Therefore the transformation operation that maps our lat-
tice model into a continuum model is a sequence of the
following three actions (for details see [29, 30]):

1. The Fourier series transform Fx uy(t) —
Fa{ua(t)} = d(k, t) that is defined by
+00 )
k)= ) un(t) e = Fafun(t)},  (4)

S —
Limit Ax—0

Equation for u(x,t) ‘

Inverse Fourier integral transfarmT (3)

’ Equation for i(k, t) ‘

(

+ko/2 )
uy(t) = l/ dk o(k, t) e® = F ok, 1)}, (5)
ko —ko/2

where x, = nAx, and Ax = 2x/ky is the inter-
particle distance. For simplicity we assume that all
lattice particles have the same inter-particle dis-
tance Ax.

2. The passage to the limit Ax — 0 (ko — o0) denoted
by Lim :  d(k,t) — Lim{a(k, t)} = a(k,t). The
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function @(k, t) can be derived from G(k,t) in the
limit Ax — 0. Note that @I(k, t) is a Fourier integral
transform of the field u(x, t), and 0(k, t) is a Fourier
series transform of u,(t), where we use

2
u,(t) = —u(x,, t
() =7 b0

considering x, = nAx = 2nn/ky — x.

3. The inverse Fourier integral transform F~'
ik, t) = F{a(k, 1)} = u(x, t) is defined by

ok, t) = /M dx e ®u(x, t) = F{lu(x, )}, (6)

u(x, t) = 217 [oo dk e*a(k, t) = F " {a(k, t)}. (7)

Using the suggested notations we can represent diagram
(3) in the following form,

From Particle to Field

un(t) u(x, t)
z| IS (8)

The combination of these three actions F~', Lim, and Fa
allows us to realize the transformation of lattice models
into continuum models [29, 30].

Note that equations (4) and (5) in the limit Ax — 0
(ko — o0) are used to obtain the Fourier integral trans-
form equations (6) and (7), where the sum is changed by
the integral.

Let us give the statement that describes the Fourier se-
ries transform for the equations for displacement of lattice
particles (1). The Fourier series transform F maps the
lattice equations of motion

2u, (1) i

M
ot?

where K(n, m) satisfies the conditions

K(n,m)=K(n—m)=K(m—n), i |K(n)|? < oo,

n=1

(10)
into the continuum equation

oy 0tk 1)

=g (KO = K(kax)) atk, )+ Fa{F(m},

(1)

where a(k, t) = Fa{un(t)}, K(kAx) = Fa{K(n)}, and Fa
is an operator notation for the Fourier series transform.
Here we use the notation

K (kAx) = i e kMY K (). (12)

n#0

Using K(—n) = K{(n), the function (12) can be represented
by

k(kAx) = = K(n) (e*iknAx + eiknAx)
n=1
= ZiK(n)cos(kAx), (13)
n=1
and
KO)= ) Kn) =23 Kn). (14)
"j;gc n=1

For details see [29, 30] and [13].

4. Weak spatial
power-law type

dispersion of

In lattice models, dispersion is associated with different
properties of the wave such as its frequency, wavelength,
wave-number, amplitude and others. Spatial dispersion is
the dependence of the elastic waves on the wave vector.
In the model that is described by equation (1) the spatial
dispersion means the dependence of the kernel K(|k|) on
the wave vector k. This dependence is caused by non-local
interactions in the elastic continuum. The spatial disper-
sion leads to a non-local connection between the stress
tensor gy, and the strain tensor &,. The tensor oy, at any
point r of the continuum is not uniquely defined by the
values of g at this point. It also depends on the values
of &4 at neighboring points r, located near the point r.
Qualitatively describing the process in a lattice with spa-
tial dispersion implies that the fields of the elastic wave
moves particles from their equilibrium positions at a given
point r, which causes an additional shift of the particles in
neighboring and more distant points r’ in some neighbor-
hood region. Therefore, the properties of the continuum,
and hence the stress tensor field oy, depend on the val-
ues of strain tensor field g not only in a selected point,
but also in some neighborhood region. The size Ry of the
area of the mutual influence are usually of the order of
the interparticle distance in the lattice. The wavelength,
A, of elastic waves is several orders larger than the size



Vasily E. Tarasov

of this region, so for a region of size Ry the values of the
field of the elasticity wave do not change. In other words,
the wavelength A usually holds kRy ~ Ry/A < 1. In such
a lattice the spatial dispersion is weak.

To describe the dynamics of the lattice it is enough to
know the dependence of the function K(|k|) for small val-
ues of k = |k| only. Therefore we can replace this function
by the Taylor polynomial. The weak spatial dispersion in
the media with a power-law type of non-locality cannot
be described by the usual Taylor approximation. The frac-
tional Taylor series can be very useful for approximating
non-integer power-law functions [34]. This is due to the
fact that the usual Taylor series for the power-law func-
tion has an infinite number of terms. Using the fractional
Taylor’s formula we obtain a finite number of terms.

For an isotropic linear medium with the weak spatial dis-
persion the function k(|k|) can be represented in the form

N
Kkl & K(0) + > ag k%, (15)
j=1

where the frequency dispersion is neglected, and thus
k(O), and ag (j = 1,...,N) do not depend on the fre-
quency w.

If o = jfor all j € N, we can use the usual Taylor’s
formula. In this case we have a well-known weak spatial
dispersion. In general, we should use a fractional gener-
alization of the Taylor's series [3, 4, 35-39]. The orders
of the fractional Taylor series approximation should be
correlated with the orders of power-laws of weak spatial
dispersions, which are experimentally determined. In this
case the fractional Taylor series approximation of K(|k|)
will be the best approximation.

We consider models of lattices with weak spatial disper-
sion and their continuous limits by using the methods sug-
gested in [29, 30].
Laplacian in the Riesz's form since the inverse Fourier’s
integral transform of |k|* gives the fractional Laplacian
(=A)?2. Note that some equivalence of lattice-type net-

In this limit we obtain the fractional

works with long-range interactions and continuum models
for elasticity theory is considered in [40], where the Mar-
chaud fractional derivatives are used.

For a > 0 and x € R”, the fractional Laplacian in the
Riesz's form is defined in terms of the Fourier transform
F by

()20 = 7 (IK“FNK). (16)

For a > 0, the fractional Laplacian in the Riesz's form
usually is defined in the form of the hyper-singular inte-
gral by

1 m
dn(m,a)/ |z|e*n Aie) dz

(=2)f)(x) =

where m > a, and (AJ'f)(z) is a finite difference of order m
of a function f(x) with a vector step z € R” and centered
at the point x € R":

= ZO k'(m—k)' f(x — kz).

The constant d,(m, a) is defined by

7T1+"/2Am(a)

oM. @) = S A T a2 (]2 + a/2) sin(ral2)’

where

Anla) = Z( D i

Note that the hgper—stngular integral ((—A)??f)(x) does
not depend on the choice of m > a. The Fourier transform
F of the fractional Laplacian is given by

(F(=L)2h) (k) = |k|“(F1)(k

This equation is valid for Lizorkin space [3, 4] and the
space C*(R") of infinitely differentiable functions on R”
with compact support.

5. Fractional elasticity equation
from lattice model

In the continuous limit the equations for lattices with weak
spatial dispersion of a power-law type gives the continuum
equation for the fractional elasticity model.

Statement. In the continuous limit Ax — 0, the lattice
equations
0u,(t &
M atz( b oS Kn-m) (n() = untt)) + F(n),
Tt

(17)
with weak spatial dispersion of the form (15) gives the
fractional continuum equation

1
afz 0 - an,( NP u)(x )+ 0, (18)

with the fractional Laplacian (—A)%'? of order a;. Here the
variables x and Ax are dimensionless, f(x) = F(x)/A|Ax]|,
p = MIJA|Ax|), A is the cross-sectional area of the
medium, and

g aq, 1047

Gy = — 1,

(=1, N) (19)

are finite parameters.
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Proof.
of this statement. Here we use the methods from [29, 30]

Let us describe the main points in the proof

and [13]. The Fourier series transform F, of equation (17)
gives (11). After division by the cross-sectional area of the
medium A and the inter-particle distance |Ax|, the limit
Ax — 0 for equation (11) gives

2 N

0 g |Ax|% R 1
ﬁu(k,t):z o Ke, (k) u(k,t)+;]—'A{f(n)},

j=1

(20)
where p = MJA|Ax| is the mass density, f(n) =
F(n)/A|Ax| is the force density, |Ax| is the inter-particle
distance, A is the cross-sectional area of the material, and

Kayalk) = —aq|k|.

Here we use (15), with G, (j =1, ..., N) are finite param-
eters that are defined by (19). The expression IACaj,A(k)
can be considered as a Fourier series transform of the in-
teraction term. Note that gag — 00 for the limit Ax — 0,
if Gg; are finite parameters.

In the limit Ax — 0, equation (20) gives

QRalk,t) < . 1
% = ; Go, Ko, (k) ik, 1) + ;f{f(x)}, 1)

where IACaj(k) = L'LmIACL,/.,A(k) = —aq|k|9. The inverse
Fourier transform of (20) gives (18). Here, we use the
connection between the Riesz fractional Laplacian and its
Fourier transform [3-5] in the form |k|% «— (=A)%/2. O

To illustrate this Statement we give a few examples.
Example 1. If we can use the weak spatial dispersion in
the form

K (k) = K(0) + a, k2, (22)

then we obtain the well-known one-dimensional equation
for elastic continuum

d%u(x, t) 1
FIo G, Au(x, t) + ; f(x), (23)
where
GZ = 79 az |AX|2 = E,
MA P

Here E = K|Ax|/A is Young's modulus, K = ga; is the
spring stiffness, and p = M/A|Ax| is the mass density.
The corresponding dispersion relation is w?(k) = Gyk?.
Example 2. If the spatial dispersion law has the form

K(k) = K(0) + a2 k* + a4 k*, (24)

then we derive the equation of the gradient elasticity [41]
as

d%u(x, 1)

1
— _ 2 _
Fre Gy Au(x, t) — Ga ATu(x, t) + - f(x), (25)

where the constant of phenomenology model is associated
with the lattice constants by

_gaq|Ax]t ag EJAX|?

G
¥ MA ap

The correcponding dispersion relation is thus w?(k) =
Gyk? + G4k?. Note that the parameter [? of the gradi-
ent elasticity is related with the coupling constants of the
lattice by the equation

_Jas] 1Ax?

lZ
|as|

(26)
The sign of the second-gradient term is defined by
sgn(as/ay). Note that earlier it was thought that a phe-
nomenological model of the gradient elasticity with a mi-
nus sign does not have the appropriate microscopic model,
and it is thus considered one of its main weaknesses [41].
The proposed lattice model radically changes the situa-
tion.

Example 3. If we can use the fractional spatial dispersion
law in the form

A

K (k) = K(0) + a2 k> + aq k°, (27)

then the fractional elasticity equation is

d%u(x, 1) " 1
T = Gl 1= G (0)Pulx, 1)+ 1), (28)
where
G - 9% |AX|® aq E|Ax]*2
T MA T axp ’

The correcponding dispersion relation is w?(k) = G,k? +
Gq|k|*. Equation (28) define the fractional elasticity
model for the one-dimensional case (x € R).

6. Solution of fractional elasticity
equations

Using the same methods as above, we can derive a general
model of three-dimensional lattice with fractional weak
spatial dispersion of the form

N
K(k) = K(0)+ ) aq|k|. (29)
j=1
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Then the continuum equation for fractional elasticity
model has the form

> N
T == AR+ 5, (0

j=

where we use ¢; as a new notation for the constants in-
stead of Ga], used in the one-dimensional case. Note that
r and r = |r| are dimensionless.

6.1. Static equation and its solution

Let us consider the statics (Ju(r, t)/dt = 0, L.e. u(r, t) =
u(r)) in the suggested fractional elasticity model. Then
equation (30) gives

N

Z (=) u)( r)—;u. (31)

Equation (30) has a particular solution u(r) for the case
ay > 1 and cy # 0 (see Section 5.5.1. pages 341-344 in
[5]). The particular solution is represented in the form of
the convolution of the functions G2 (r) and f(r) as follow

. [ Gh(r—r)f(r)d"r, (32)
P Jrn

where n = 1,2,3 and the function GJ(r) is the Green
function that is given by

-1
N

ao = | (kaw

j=1

et d"k,  (33)

where @ = (&, ..., an). The Green function (33) can be
simplified by using the relation (Lemma 25.1 of [3, 4]) of
the form

[ e timnar= B [ )22 s 00
R [r|"=272 J

(34)
Here J, is the Bessel function of the first kind. As a result,
the Fourier transform of a radial function is also a radial
function. Using relation (34), the Green function (33) can
be represented (see Theorem 5.22 in [5]) in the form of an
integral with respect to one parameter A,

-1
|r|@-n)12

) N
Calr) = (271)2 /0 ];Cf)‘a’ A" Jin—2y2(Alr]) dA

(35)
am), and _I(,-,,z)/z is the
Bessel function of the first kind, which can be represented
as Ji2(z) = V2[nz sin(z) for the 3-dimensional case.

where n =1,2,3 and a = (o, ...,

6.2. Thomson’s problem for fractional inte-
gral and gradient elasticity

If we have the dispersion law in the form
K(K)) = K(0) + aq]k|* + az]k|?, (36)

where @ > 0, then we obtain the fractional elasticity

equation
c2u(r) = co (=A)Pu)(r) + ~ f(r) (37)
where
E  gay|Ax|? g aq |Ax|®
g oL =22 38
2= v ¢ M (38)

If @ = 4 we have the well-known static equation of the
gradient elasticity [41]:

e Au(r) — caDN?u(r) + % f(r) =0, (39)

where

C4=i[

4
% _gaildxt o)

M

The second-gradient term is preceded by the sign that is
defined by sgn(g a4), where g a, > 0.

Equation (37) with n = 3 has the particular solution [5]
of the form

_1 3(p _ o e
—p/R3Ca(r ) f(r) d’r, (41)

where the Green type function is given by

Ir| 7"

Gl = e

/ (cad® + ol AP) ™ 232 Jip(A]r]) dA
(42)
Here J;2 is the Bessel function of the first kind.
Let us consider W. Thomson (1848) problem [42] for the
fractional elasticity model described by equation (37).
This problem implies that we should determine the de-
formation of an infinite elastic continuum, when a force is
applied to a small region in it. If we consider the defor-
mation at distances |r|, which are larger compared to the
size of the region, we can assume that the force is applied
at a point, Le.

f(r) = fo &(r) = fo 6(x)6(y)0(2). (43)
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Then the displacement field u(r) of fractional elasticity has
a simple form of the particular solution that is proportional
to the Green's function

fo

u(r) = » Gglr). (44)

As a result the displacement field for the force that is
applied at a point (43) has the form

1 £
27 plr]

A sin(Alr])

= S0 da 4
u(r) sy (45)

We can distinguish the following two cases: (1) Weak
power-law spatial dispersion with a < 2; (2) Weak power-
law spatial dispersion with @ > 2. This is due to the
fact that in nonlocal elasticity theory usually distinguish
the following two cases: (1) Fractional integral elasticity
(a < 2); (2) Fractional gradient elasticity (a > 2).

For the fractional integral elasticity, the order of the frac-
tional Laplacian is less than the order of the term related
to Hooke’s law. For the fractional gradient elasticity, the
order of the fractional Laplacian is greater then the order
of the Hooke’s term.

6.3. Fractional integral elasticity model

The fractional integral elasticity model is described by
equation (37) with a < 2 of the form

O0<a<?2).

(46)
A)*? is less than

c2Bu(r) = ca((=A)"u)(r) + % f(r) =0,

The order of the fractional Laplacian (—
the order of the first term related to the usual Hooke’s
law. Note that the continuum equation (46) of fractional
integral elasticity is derived from the lattice equations
with weak spatial dispersion in the form (36) with o < 2.
The particular solution of equation (46) for the force that
is applied at a point (43) is the displacement field

_ A sin(Alr])
u(r) = I /O Syt dr (a<2). (47)

Using Section 2.3.1 in the book [43], we can obtain the
asymptotic behavior for (47) for

Gla) — Gla)
u(r) ~ e ZIIQ S (= o00)  (48)

k
foCz

Ce(a) = — / 22~k Gin(z) dz.  (50)
0

2 k+1
22 pck

As a result, the displacement field for the force that is
applied at a point in the continuum with this type of
fractional weak spatial dispersion is given by u(r) =
a)/|r>~¢, where 0 < a < 2, on the long distance
[r] > 1. The asymptotic behavior |r| — O for the fractional
integral elasticity does not depend on the parameter a.

6.4. Fractional gradient elasticity model

The fractional gradient elasticity model is described by
the equation

Au(r) — cal(=A)u)(r) + % fir)=0, (a>2). (51)

This may be derived from the lattice model with the frac-
tional weak spatial dispersion in the form (36) with a > 2.
The order of the fractional Laplacian (—A)%? is greater
than the order of the first term related to the Hooke's
law. If a = 4 equation (51) become the equation (39).
Therefore the case 3 < a < 5 can be considered as close
as possible (o = 4) to the usual gradient elasticity (39).
The continuum equation (51) of fractional gradient elastic-
ity is derived from the lattice equations with weak spatial
dispersion in the form (36) with o > 2.

The particular solution of equation (51) for the force that
is applied at a point (43) is the displacement field

1 A sin(Ar])
u(r) = 720 /0 Ot e di (a>2). (52)

The asymptotic behavior |r| — oo for the fractional gra-
dient elasticity does not depend on the parameter a.
The asymptotic behavior of the displacement field u(r) for
[r| = 0 is given by

. hlMB=ai2) | .
u(r) ~ Da ﬁzfpca 0(/2) |r| 3' (2 <a< 3)'
(53)
f
ulr) = - "M . (a>3). (54)

2napc, sin(37/a)

Note that the asymptotic behavior for 2 < a < 3 does
not depend on c,. The displacement field u(r) of the short
distance is determined only by term with (—A)*? (a > 2)
which can thus be considered as a fractional non-locality
of the gradient type.
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7. Conclusion

We demonstrate the close relation between the discrete
microstructure of a lattice with weak spatial dispersion of
a power-law type and the fractional integral and gradi-
ent elasticity models. We prove that fractional elasticity
models can be directly derived from the lattice models
with power-law spatial dispersion. It has been shown
that a characteristic feature of the behavior of a frac-
tional non-local continuum is the spatial power-tails of
non-integer orders. We assume that fractional elastic me-
dia (and plasma-like media with power-law spatial dis-
persion [34]) should demonstrate a universal behavior in
space by analogy with the universal behavior of low-loss
dielectrics in time [44-48]. Note that the universal behav-
ior in time can be connected with the interaction between
the particles and the environment [49].
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