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Abstract. In this paper we consider the gravitational field of fractal distribution of par-
ticles. To describe fractal distribution, we use the fractional integrals. The fractional
integrals are considered as approximations of integrals on fractals. Using the fractional
generalization of the Gauss’s law, we consider the simple examples of the fields of homo-
geneous fractal distribution. The examples of gravitational moments for fractal distribu-
tion are considered.
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1. Introduction

The aim of this paper is to consider the general properties of gravitational
field that is generated by a fractal distribution of particles. This problem is
nowadays particularly relevant. In fact, there is a general agreement that gal-
axy distribution exhibits fractal behavior up to a certain scale (Coleman and
Pietronero, 1992; Sylos Labini et al., 1998). The eventual presence of a tran-
sition scale towards homogeneity and the exact value of the fractal dimen-
sion are still matters of debate. Moreover it has been observed that cold gas
clouds of the interstellar medium has a fractal structure, with 1.5 � D � 2
in a large range of length scales (Larson, 1981; Scalo, 1987). Derivatives
and integrals of fractional order (Samko et al., 1993) have found many
applications in recent studies of fractal structures. Fractional analysis can
have numerous applications: kinetic theories (Zaslavsky, 1998, 2002; Tarasov
and Zaslavsky, 2005; Tarasov, 2005b); statistical mechanics (Tarasov,
2004, 2005a,c); dynamics in complex media (Nigmatullin, 1986; Tarasov,
2005d,e,f,g); and many others. The new type of problem has increased rap-
idly in areas in which the fractal features of a process or the medium
impose the necessity of using non-traditional tools in “regular” smooth
physical equations. In order to use fractional derivatives and fractional
integrals for fractal distribution, we must use some continuous medium
model (Tarasov, 2005d,f,g).
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We propose to describe the fractal distribution by a “fractional” con-
tinuous medium (Tarasov, 2005d), where all characteristics and fields are
defined everywhere in the volume but they follow some generalized equa-
tions which are derived by using fractional integrals. In many problems the
real fractal structure of medium can be disregarded and the fractal dis-
tribution can be replaced by some “fractional” continuous mathematical
model. Smoothing of microscopic characteristics over the physically infin-
itesimal volume transforms the initial fractal distribution into “fractional”
continuous model (Tarasov, 2005d) that uses the fractional integrals. The
order of fractional integral is equal to the fractal dimension of distribu-
tion. The fractional integrals allow us to take into account the fractality
of the distribution. Fractional integrals are considered as an approxima-
tion of integrals on fractals (Le Mehaute et al., 1998; Ren et al., 2003).
It was proved in Ren et al. (2003) that integrals on net of fractals can be
approximated by fractional integrals. In Tarasov (2004, 2005a), we proved
that fractional integrals can be considered as integrals over the space with
fractional dimension up to numerical factor. In order to prove, we use the
formulas of dimensional regularizations (Collins, 1984).

In this paper, we consider gravitational field of fractal distribution of
particles. Fractal distribution is described by fractional continuous medium
model (Tarasov, 2005d,f,g; Tarasov and Zaslavsky, 2005). In the general
case, the fractal distribution of particles cannot be considered as continu-
ous medium. There are points and domains that are not filled of particles.
In Tarasov (2005d,f), we suggest to consider the fractal distributions as spe-
cial (“fractional”) continuous media. We use the procedure of replacement
of the distribution with fractal mass dimension by some continuous model
that uses fractional integrals. This procedure is a fractional generalization of
Christensen approach (Christensen, 1979). Suggested procedure leads to the
fractional integration and differentiation to describe fractal distribution.

In Section 2, the density of fractal distribution of mass is considered.
In Section 3, we consider the simple examples of the gravitational field of
homogeneous fractal distribution. In Section 4, the examples of gravita-
tional quadrupole moments for fractal distribution are considered. Finally,
a short conclusion is given in Section 5.

2. Mass and Balance of Mass for Fractal Distribution

2.1. MASS OF FRACTAL DISTRIBUTION

Let us consider a fractal distribution of particles. For example, we can
assume that particles with a constant density are distributed over the
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fractal. In this case, the number of particles N enclosed in a volume with
characteristic size R satisfies the scaling law

N(R)∼RD, (1)

whereas for a regular n-dimensional Euclidean object we have N(R)∼Rn.
For distribution of particles with number density n(r, t), we have that

the mass density can be defined by

ρ(r, t)=mn(r, t), (2)

where m is the mass of a particle. The total mass of region W is then given
by the integral

M(W)=
∫

W

ρ(r, t)dV3 (3)

or M(W)=mN(W), where N(W) is a number of particles in the region W .
The fractional generalization of this equation can be written in the follow-
ing form:

M(W)=
∫

W

ρD(r, t)dVD, (4)

where D is a mass fractal dimension of the distribution, and dVD is an ele-
ment of D-dimensional volume such that

dVD =C3(D, r)dV3. (5)

For the Riesz definition of the fractional integral (Samko et al., 1993), the
function C3(D, r) is defined by the relation

C3(D, r)= 23−D�(3/2)

�(D/2)
|r|D−3. (6)

The initial points of the fractional integral are set to zero. The numeri-
cal factor in Equation (6) has this form in order to derive usual integral
in the limit D → (3 − 0). Note that the usual numerical factor γ −1

3 (D) =
�(1/2)/2Dπ3/2�(D/2), which is used in Samko et al. (1993) leads to
γ −1

3 (3−0)=1/[4π3/2] in the limit D → (3−0).
For the Riemann–Liouville fractional integral (Samko et al., 1993), the

function C3(D, r) is defined by

C3(D, r)= |xyz|D/3−1

�3(D/3)
. (7)

Here we use Cartesian’s co-ordinates x, y, and z. In order to have the usual
dimensions of the physical values, we can use vector r, and co-ordinates x,
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y, z as dimensionless values. Therefore the density ρD has the dimension of
mass.

Note that the interpretation of fractional integration is connected with
fractional dimension (Tarasov, 2004, 2005a). This interpretation follows
from the well-known formulas for dimensional regularizations (Collins,
1984). The fractional integral can be considered as an integral in the frac-
tional dimension space up to the numerical factor �(D/2)/(2πD/2�(D)).

If we consider the ball region W ={r : |r|�R}, and the spherically sym-
metric distribution of particles (nD(r, t)=nD(r)), then we have

N(R)=4π
23−D�(3/2)

�(D/2)

∫ R

0
nD(r)rD−1 dr, M(R)=mN(R). (8)

For the homogeneous (nD(r)=n0) fractal distribution, we get

N(R)=4πn0
23−D�(3/2)

�(D/2)

RD

D
∼RD. (9)

Fractal distribution of particles is called a homogeneous fractal distribution
if the power law N(R)∼RD does not depend on the translation of the region.
The homogeneity property of the distribution can be formulated in the fol-
lowing form: for all regions W and W ′ such that the volumes are equal
V (W) = V (W ′), we have that the number of particles in these regions are
equal too, N(W)=N(W ′). Note that the wide class of the fractal media sat-
isfies the homogeneous property. In many cases, we can consider the porous
media (Bale and Schmidt, 1984; Pfeifer and Avnir, 1983), polymers (Schaefer
and Keefer, 1984), colloid aggregates (Schaefer et al,. 1984a,b), and aerogels
(Fricke, 1985) as homogeneous fractal media. In Tarasov (2005d,f), the con-
tinuous medium model for the fractal distribution was suggested. Note that
the fractality and homogeneity properties can be realized for the fractional
continuous model in the following forms:

(1) Homogeneity: the local number density of homogeneous fractal distri-
bution is translation invariant value that has the form n(r)=n0 =const.

(2) Fractality: the number of particles in the ball region W obeys a power
law relation ND(W)∼RD, where D<3, and R is the radius of the ball.

2.2. FLOW OF FRACTAL MEDIUM

For distribution of particles with number density n(r, t) flowing with veloc-
ity u =u(r, t), the resulting density J(r, t) is given by

J(r, t)=mn(r, t)u, (10)
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where m is the mass of a particle. Measuring the field J(r, t) passing
through a surface S = ∂W gives the flow (flux of mass)

I (S)=�J (S)=
∫

S

(J,dS2), (11)

where J = J(r, t) is the flow field vector, dS2 =dS2n is a differential unit
of area pointing perpendicular to the surface S, and the vector n =nkek is
a vector of normal. The fractional generalization of this equation for the
fractal distribution can be written in the following form:

I (S)=
∫

S

(J(r, t),dSd), (12)

where we use

dSd =C2(d, r)dS2, C2(d, r)= 22−d

�(d/2)
|r|d−2. (13)

Note that C2(2, r)= 1 for d = 2. In general, the medium on the boundary
∂W has the dimension d. In the general case, the dimension d is not equal
to 2 and is not equal to (D −1).

2.3. EQUATION OF CONTINUITY FOR FRACTAL DISTRIBUTION

The change of mass inside a region W bounded by the surface S = ∂W is
always equal to the flux of mass through this surface. This is known as
the law of mass conservation or the equation of balance of mass (Tarasov,
2005f). If we denote by J(r, t) the flow density, then mass conservation is
written

dM(W)

dt
=−I (S) (14)

or, in the form:

d
dt

∫
W

ρD(r, t)dVD =−
∮

∂W

(J(r, t),dSd). (15)

In particular, when the surface S = ∂W is fixed, we can write

d
dt

∫
W

ρD(r, t)dVD =
∫

W

∂ρD(r, t)
∂t

dVD. (16)

Using the fractional generalization of the mathematical Gauss’s theorem
(see Appendix A), we have∮

∂W

(J(r, t),dSd)=
∫

W

C−1
3 (D, r)

∂

∂xk

(
C2(d, r)Jk(r, t)

)
dVD. (17)
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Substituting the right-hand sides of Equations (16) and (17) in Equation
(15), we find the equation of balance of mass in differential form:

C3(D, r)
∂ρD(r, t)

∂t
+ ∂

∂xk

(
C2(d, r)Jk(r, t)

)
=0. (18)

This equation can be considered as a continuity equation for fractal distri-
bution of particles (Tarasov, 2005f).

3. Gravitational Field of Fractal Distribution

3.1. GRAVITATIONAL FIELD

For a point mass M at position r′ the gravitational field F at a point r is
defined by

F =GM
r′ − r

|r′ − r|3 , (19)

where G is a gravitational constant.
For a continuous distribution ρ(r′) of mass, the gravitational field F at

a point r is given by

F3(r)=G

∫
W

r′ − r
|r′ − r|3 ρ(r′)dV ′

3. (20)

The fractional generalization of this equation for a fractal distribution of
mass is given by the equation

FD(r)=G

∫
W

r′ − r
|r′ − r|3 ρD(r′)dV ′

D, (21)

where dV ′
D = C3(D, r′)dV ′

3. Equation (21) can be considered as Newton’s
law written for a fractal distribution of particles.

Measuring the gravitational field passing through a surface S =∂W gives
the gravitational filed flux

�F (S)=
∫

S

(F,dS2), (22)

where F is the gravitational field vector, and dS2 is a differential unit of
area pointing perpendicular to the surface S.
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3.2. GAUSS’S LAW FOR FRACTAL DISTRIBUTION

The Gauss’s law tells us that the total flux �F (S) of the gravitational field
F through a closed surface S =∂W is proportional to the total mass M(W)

inside the surface:

�F (∂W)=4πGM(W). (23)

For the fractal distribution, Gauss’s law states∫
S

(FD,dS2)=4πG

∫
W

ρD(r)dVD, (24)

where F = F(r) is the gravitational field, and ρD(r) is the mass density,
dVD =C3(D, r)dV3, and G is the gravitational constant.

Gauss’s law by itself can be used to find the gravitational field of a point
mass at rest, and the principle of superposition can then be used to find the
gravitational field of an arbitrary fractal mass distribution.

If we consider the spherically symmetric fractal distribution ρD(r) =
ρD(r), and the ball region W ={r : |r|�R}, then we have

M(W)=4π

∫ R

0
ρD(r)C3(D, r)r2 dr, (25)

where C3(D, r) is defined in Equation (6), i.e.,

M(W)=4π
23−D�(3/2)

�(D/2)

∫ R

0
ρD(r)rD−1 dr. (26)

Using the sphere S ={r : |r|=R} as a surface S = ∂W , we get

�F (∂W)=4πR2FD(R). (27)

Substituting Equations (26) and (27) in Gauss’s law (23), we get the equa-
tion for gravitational field. As the result, the Gauss’s law for fractal distri-
bution with spherical symmetry leads us to the equation for gravitational
field

FD(R)= πG25−D�(3/2)

R2�(D/2)

∫ R

0
ρD(r)rD−1 dr. (28)

For example, the gravitational field of homogeneous (ρD(r)=ρ0) spherically
symmetric fractal distribution of mass is defined by

FD(R)=ρ0
πG25−D�(3/2)

D�(D/2)
RD−2 ∼RD−2. (29)
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4. Multipole Moments for Fractal Distribution

4.1. MULTIPOLE EXPANSION

A multipole expansion is a series expansion of the effect produced by a
given system in terms of an expansion parameter which becomes small as
the distance away from the system increases. Therefore, the leading one of
the terms in a multipole expansion are generally the strongest. The first-
order behavior of the system at large distances can therefore be obtained
from the first terms of this series, which is generally much easier to com-
pute than the general solution. Multipole expansions are most commonly
used in problems involving the gravitational field of mass aggregations, the
gravity and magnetic fields of mass and flow distributions, and the propa-
gation of electromagnetic waves.

To compute one particular case of a multipole expansion, let R =Xkek

be the vector from a fixed reference point to the observation point; r=xkek

be the vector from the reference point to a point in the distribution; and
d =R − r be the vector from a point in the distribution to the observation
point. The law of cosines then yields

d2 =R2
(

1+ r2

R2
−2

r

R
cos θ

)
, (30)

where d =|d|, and cos θ = (r,R)/(rR), so

d =R

√
1+ r2

R2
−2

r

R
cos θ. (31)

Now define ε = r/R, x = cos θ , then

1
d

= 1
R

(
1−2εx + ε2

)−1/2
. (32)

But
(

1−2εx + ε2
)−1/2

is the generating function for Legendre polynomials
Pn(x) as follows:

(
1−2εx + ε2

)−1/2
=

∞∑
n=0

εnPn(x), (33)

so, we have the equation

1
d

= 1
R

∞∑
n=0

( r

R

)n

Pn(cos θ). (34)
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The gravitational potential U (F = −∇U ) obeys (1/d) law. Therefore, this
potential can be expressed as a multipole expansion

U =−G

∞∑
n=0

1
Rn+1

∫
W

rnPn(cos θ)ρD(r)dVD. (35)

The n=0 term of this expansion can be pulled out by noting that P0(x)=
1, so

U =−G

R

∫
W

ρD(r)dVD −G

∞∑
n=1

1
Rn+1

∫
W

rnPn(cos θ)ρD(r)dVD. (36)

The nth term

Un =− G

Rn+1

∫
W

rnPn(cos θ)ρD(r)dVD (37)

is commonly named multipole, and for n=2 – quadrupole.

4.2. GRAVITATIONAL MOMENT OF FRACTAL DISTRIBUTION

Gravitational moments describe the nonuniform distribution of mass. The
gravitational quadrupole term is given by

U2 =− G

R3

∫
W

r2P2(cos θ)ρD(r)dVD, (38)

=− G

2R3

∫
W

r2(3 cos2 θ −1)ρD(r)dVD, (39)

=− G

2R3

∫
W

(
3
R2

(R, r)2 − r2
)

ρD(r)dVD. (40)

The quadrupole is the third term in a gravitational multipole expansion,
and can be defined by

U2 =− G

2R3

3∑
k,l=1

XkXl

R2
Mkl, (41)

where G is the gravitational constant, R is the distance from the fractal dis-
tribution of mass, and Mkl is the gravitational quadrupole moment, which
is a tensor.

The gravitational quadrupole moment is defined by the equation

Mkl =
∫

W

(3xkxl − r2δkl)ρD(r)dVD, (42)
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where xk =x, y, or z. From this definition, it follows that:

Mkl =Mlk, and
3∑

k=1

Mkk =0. (43)

Therefore, we have Mzz =−Mxx −Myy . In order to compute the values

M(D)
xx =

∫
W

[2x2 −y2 − z2]ρD(r)dVD, (44)

M(D)
yy =

∫
W

[−x2 +2y2 − z2]ρD(r)dVD, (45)

M(D)
zz =

∫
W

[−x2 −y2 +2z2]ρD(r)dVD, (46)

we consider the following expression:

M(α,β, γ )=
∫

W

[αx2 +βy2 +γ z2]ρD(r)dVD, (47)

where we use the Riemann–Liouville fractional integral (Samko et al.,
1993), and the function C3(D, r) in the form

C3(D, r)= |xyz|a−1

�3(a)
, a =D/3. (48)

Using Equation (47), we have

M(D)
xx =M(2,−1,−1), M(D)

xx =M(−1,2,−1), M(D)
zz =M(−1,−1,2).

(49)

4.3. QUADRUPOLE MOMENT OF FRACTAL PARALLELEPIPED

Let us consider the example of gravitational quadrupole moment for the
homogeneous (ρD(r)=ρ0) fractal distribution in the parallelepiped region

W ={(x;y; z) : 0�x �A, 0�y �B, 0� z�C}. (50)

If we consider the region W in the form (50), then we get (47) in the form:

M(α,β, γ )= ρ0(ABC)a

(a +2)a2�3(a)
(αA2 +βB2 +γC2). (51)

The total mass of this region W is

M(W)=ρ0

∫
W

dVD = ρ0(ABC)a

a3�3(a)
. (52)
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Therefore, we have the following equation:

M(α,β, γ )= a

a +2
M(W)(αA2 +βB2 +γC2), (53)

where a =D/3. If D =3, then we have

M(α,β, γ )= 1
3
M(W)(αA2 +βB2 +γC2). (54)

As the result, we get gravitational quadrupole moments M
(D)
kk of fractal dis-

tribution in the region W :

M
(D)
kk = 3D

D +6
M

(3)
kk , (55)

where M
(3)
kk are moments for the usual homogeneous distribution (D = 3).

By analogy with these equations, we can derive M
(D)
kl for the case k �= l.

These quadrupole moments are

M
(D)
kl = 4D2

(D +3)2
M

(3)
kl , (k �= l). (56)

Using 2<D �3, we get the relations

0.75<
3D

D +6
�1, 0.64<

4D2

(D +3)2
�1. (57)

Quadrupole moment of fractal ellipsoid is considered in Appendix A.

5. Conclusion

The fractional continuous models for fractal distribution of particles can
have a wide application. This is due in part to the relatively small numbers
of parameters that define a random fractal distribution of great complexity
and rich structure. In many cases, the real fractal structure of matter can be
disregarded and the distribution of particles can be replaced by some frac-
tional continuous model (Tarasov, 2005d,f). In order to describe the dis-
tribution with non-integer dimension, we must use the fractional calculus.
Smoothing of the microscopic characteristics over the physically infinitesi-
mal volume transforms the initial fractal distribution into fractional contin-
uous model that uses the fractional integrals. The order of fractional inte-
gral is equal to the fractal dimension of the distribution. The fractional
continuous model for the fractal distribution allows us to describe dynam-
ics of a wide class of fractal media (Tarasov and Zaslavsky, 2005; Tarasov,
2005f,g).
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The suggested results can have a wide application to galactic dynamics
and cosmology. In particular, there is strong evidence that the distribution
of mass beyond the scale of clusters of galaxies is fractal, with D � 1.2,
corresponding to a power-law two-point correlation function with expo-
nent equal to −1.8. Fractal distributions may also be present within grav-
itational systems of a smaller scale, for example, galaxies. However, the
results are incomplete in the following aspect: it is known that the frac-
tal distribution of mass in the Universe is characterized by large density
fluctuations, even within the fractal volume, therefore it is far from homo-
geneous. The nonhomogeneity of the fractal distribution can be described
by the suggested fractional continuous model (Tarasov, 2005d). The fluc-
tuation deviation from homogeneity can be parametrized by the so-
called n-point correlation functions, with n>2 (Gabrielli et al., 1999, 2004;
Pietronero et al., 2002; Sylos Labini and Gabrielli, 2004). Such density fluc-
tuations are important in that they produce terms in the force field which
can be described only statistically. An elementary example is the random
distribution of particles in a three-dimensional sphere. Although the distri-
bution can be considered as uniform when viewed at the scale of the sphere
(with D =3), the Poisson noise of the density field will cause gravitational
clustering in small scales that will finally prevail the overall evolution of the
system, i.e., the latter will be quite a different from the evolution of a per-
fectly homogeneous sphere.

Appendix A

A.1. FRACTIONAL GAUSS’S THEOREM

In order to realize the representation, we derive the fractional generaliza-
tion of the Gauss’s theorem∫

∂W

(J(r, t),dS2)=
∫

W

div(J(r, t))dV3, (A1)

where the vector J(r, t)=Jkek is a field, and

div(J)= ∂J
∂r

= ∂Jk

∂xk

. (A2)

Here and later we mean the sum on the repeated index k from 1 to 3.
Using Equation (13), we get

∫
∂W

(J(r, t),dSd)=
∫

∂W

C2(d, r)(J(r, t),dS2). (A3)
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Note that we have C2(2, r)=1 for the d =2. Using the usual Gauss’s theo-
rem (A1), we get∫

∂W

C2(d, r)(J(r, t),dS2)=
∫

W

div(C2(d, r)J(r, t))dV3. (A4)

Equations (5) and (6) in the form dV3 =C−1
3 (D, r)dVD allows us to derive

the fractional generalization of the Gauss’s theorem:∫
∂W

(J(r, t),dSd)=
∫

W

C−1
3 (D, r)div

(
C2(d, r)J(r, t)

)
dVD. (A5)

A.2. QUADRUPOLE MOMENT OF FRACTAL ELLIPSOID

Let us consider the example of gravitational quadrupole moment for the
homogeneous (ρD(r)=ρ0) fractal distribution in the ellipsoid region W :

x2

A2
+ y2

B2
+ z2

C2
�1. (A6)

If we consider the region W in the form (A6), then we get (47) in the form

M(α,β, γ )= ρ0(ABC)a

(3a +2)�3(a)
(αA2K1(a)+βB2K2(a)+γC2K3(a)), (A7)

where a =D/3, and Ki(a) (i =1,2,3) are defined by

K1(a)=L(a +1, a −1,2π)L(a −1,2a +1, π), (A8)

K2(a)=L(a −1, a +1,2π)L(a −1,2a +1, π), (A9)

K3(a)=L(a −1, a −1,2π)L(a +1,2a −1, π). (A10)

Here we use the following function:

L(n,m, l)= (2l/π)

∫ π/2

0
dx | cos (x)|n| sin (x)|m

= 1
π

�(n/2+1/2)�(m/2+1/2)

�(n/2+m/2+1)
. (A11)

If D =3, we obtain

M(α,β, γ )= 4π

3
ρ0ABC

5
(αA2 +βB2 +γC2), (A12)

where we use K1 =K2 =K3 =4π/3. The total mass of this region W is

M(W)=ρ0

∫
W

dVD = ρ0(ABC)a

3a�3(a)

2�3(a/2)

�(3a/2)
. (A13)
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If D =3, we have the total mass

M(W)=ρ0

∫
W

dV3 = 4π

3
ρ0ABC. (A14)

Using Equations (A12) and (A13), we get the quadrupole moments (49) for
fractal ellipsoid

M(α,β, γ )= aM(W)

3a +2
(αA2 +βB2 +γC2), (A15)

where a =D/3. If D =3, then we have the well-known relation

M(α,β, γ )= M(W)

5
(αA2 +βB2 +γC2). (A16)
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