
Communications in Nonlinear Science and Numerical Simulation 11 (2006) 885–898

www.elsevier.com/locate/cnsns
Fractional dynamics of systems with long-range interaction

Vasily E. Tarasov a,b,*, George M. Zaslavsky b,c

a Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow 119992, Russia
b Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA

c Department of Physics, New York University, 2–4 Washington Place, New York, NY 10003, USA

Received 10 March 2006; accepted 10 March 2006
Available online 24 April 2006
Abstract

We consider one-dimensional chain of coupled linear and nonlinear oscillators with long-range powerwise interaction
defined by a term proportional to 1/jn � mja+1. Continuous medium equation for this system can be obtained in the so-
called infrared limit when the wave number tends to zero. We construct a transform operator that maps the system of large
number of ordinary differential equations of motion of the particles into a partial differential equation with the Riesz frac-
tional derivative of order a, when 0 < a < 2. Few models of coupled oscillators are considered and their synchronized states
and localized structures are discussed in details. Particularly, we discuss some solutions of time-dependent fractional Ginz-
burg–Landau (or nonlinear Schrodinger) equation.
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1. Introduction

Although the fractional calculus is known for more than two hundred years and its developing is an active
area of mathematics, appearance and use of it in physical literature is fairly recent and sometimes is considered
as exotic. In fact, there are many different areas where fractional equations, i.e., equations with fractional inte-
gro-differentiation, describe real processes. Between the most related areas are chaotic dynamics [1], random
walk in fractal space–time [2] and random processes of Levy type [3–6]. The physical reasons for the appear-
ance of fractional equations are intermittancy, dissipation, wave propagation in complex media, long memory,
and others. An important area of the application of long-range interaction includes collective oscillation
and synchronization in physics, chemistry, biology, and neuroscience actively studied recently [7–9], Begin-
ning from the pioneering contributions by Winfree [10] and Kuramoto [11], studies of synchronization in
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populations of coupled oscillators becomes an active field of research in biology and chemistry. The synchro-
nization can also be considered in complex oscillatory medium, where each site (element) performs self-sus-
tained oscillations. A good physical and chemical example is the oscillatory Belousov–Zhabotinsky reaction
[12,13,11] in a medium where different sites can oscillate with different periods and phases.

Complex Ginzburg–Landau equation is canonical model for oscillatory systems with local coupling near
Hopf bifurcation. Recently, Tanaka and Kuramoto [14] have shown how, in the vicinity of the bifurcation,
the description of an array of nonlocally coupled oscillators can be reduced to the complex Ginzburg–Landau
equation. In Ref. [15], a model of population of diffusively coupled oscillators with limit cycles is described by
the complex Ginzburg–Landau equation with nonlocal interaction.

Nonlocal coupling means interaction with oscillators or other objects distanced arbitrary far from each oth-
ers. The corresponding interaction potential could be with a characteristic length Refs. [16,17,15] or without it.
The long-range interaction that decreases as 1/jxja+1 with 0 < a < 2 was considered in Refs. [18–22] with
respect to the system’s thermodynamics and phase transition. It is also shown in [23] that using the Fourier
transform and limit for the wave number k! 0, the long-range term interaction leads under special conditions
to the fractional dynamics.

In the last decade it is found that many physical processes can be adequately described by equations that
consist of derivatives of fractional order. In a fairly short period of time the list of such applications becomes
long and the area of applications is broad. Even in a concise form, the applications include material sciences
[24–27], chaotic dynamics [1], quantum theory [28–30], physical kinetics [1,3,32,31], fluids and plasma physics
[33,34], and many others physical topics related to wave propagation [35], long-range dissipation [36], anom-
alous diffusion and transport theory (see reviews [1,2,24,4,37]). Particularly, fractional Ginzburg–Landau
equation was suggested in [38–40].

In this paper we would like to strength the state that the one-dimensional chain of particles with long-range
power type interaction can be asymptotically described by the continuous medium equation with fractional
space derivative. We introduce, under some conditions, a corresponding transform operator that map the sys-
tem of large number ordinary differential equations of particles motion into the equation with partial and frac-
tal derivatives. It is worthwhile to mention that possibility of such an operation has an immediate physical
consequence: fractional dynamics equation has solutions that describe coherent structures with power-like tails.

In Section 2, we introduce the transform operator. In Section 3, some particular solutions are derived with a
constant wave number for the fractional Ginzburg–Landau (FGL) equation that can be interpreted as syn-
chronization in the oscillatory medium. In Section 4, we consider forced FGL equation for isochronous case.
In Section 5, we derive solutions of the fractional Ginzburg–Landau equation near a limit cycle. These solu-
tions are interpreted as coherent structures in the oscillatory medium with long-range interaction.

2. Long-range interaction of oscillators

Consider a system with Hamiltonian
H ¼
Xþ1

n¼�1

1

2
_u2

n þ
1

2
g0

Xþ1
m¼�1

m6¼n

1

jn� mj1þa unum þ V ðunÞ

264
375; ð1Þ
where g0 and a are some constants, and un = un(t). The corresponding equations of motion are
o2un

ot2
þ g0

Xþ1
m¼�1

m6¼n

1

jn� mj1þa um þ V 0ðunÞ ¼ 0 ð2Þ
with V 0(u) = oV(u)/ou. Let us introduce notations
H int �
1

2
g0

Xþ1
m¼�1

m6¼n

jn� mj�ð1þaÞunum ð3Þ
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and
bT aun �
Xþ1

m¼�1
m6¼n

jn� mj�ð1þaÞum: ð4Þ
The standard transformation from the set of equations (2) to the continuous medium equations is in
replacements
unðtÞ � uðxn;tÞ ! uðx;tÞ; xn ¼ nDx; ð5Þ

where n is a positive integer number, Dx is a distance between particles, and the limit Dx! 0 is applied.

A specific form of Hint and the corresponding term bT a in the equation of motion (2) create a possibility to
present the continuous medium equations in a form that consists of fractional derivatives. For this goal, we
use the notation
uðx;tÞ ¼ 1

2p

Z þ1

�1
dk ~uðk;tÞeikx �F�1f~uðk;tÞg;

~uðk;tÞ ¼
Z þ1

�1
dxuðx;tÞe�ikx �Ffuðx;tÞg;

ð6Þ
where Ffuðx;tÞg is Fourier transform of u(x, t) with respect to x. Then, replacing (5) in (2), we obtainbT aunðtÞ ! bT auðx;tÞ, and after applying Fourier transform to (2),
o2uðk;tÞ
ot2

þ g0½T aðkÞ � T að0Þ�uðk;tÞ þFfV 0ðuðx;tÞÞg ¼ 0; ð7Þ
where
T aðkÞ ¼ 2Cð�aÞ cosðpa=2Þjkja þ 2
X1
n¼0

fðaþ 1� 2nÞ
ð2nÞ! ð�k2Þn; jkj < 1; a 6¼ 0;1; 2; 3; . . . ; ð8Þ
and Ta(0) = 2f(1 + a) and f is the Riemann zeta-function. Function Ta(k) can also be presented in the form
T aðkÞ ¼
Xþ1

n¼�1
n6¼0

e�ikn 1

jnjaþ1
¼ 2

X1
n¼1

cosðknÞ
n1þa

¼ Liaþ1ðeikÞ þ Liaþ1ðe�ikÞ; ð9Þ
where Lia(z) is a polylogarithm function [46]
LibðezÞ ¼ Cð1� bÞð�zÞb�1 þ
X1
n¼0

fðb� nÞ
n!

zn; jzj < 2p; b 6¼ 1;2;3; . . . ð10Þ
After substitution of (8) into (7) obtain
o
2~uðk;tÞ
ot2

¼FfV 0ðuðx;tÞÞg � g0aajkja~uðk;tÞ � 2g0

X1
n¼1

fðaþ 1� 2nÞ
ð2nÞ! ð�k2Þn~uðk;tÞ; ð11Þ
where
aa ¼ 2Cð�aÞ cosðpa=2Þ; a 6¼ 0;1; 2; . . . ð12Þ

From Eq. (11) we obtain the equation for the field u(x, t) using the definition (6)
o2uðx;tÞ
ot2

¼ V 0ðuðx;tÞÞ þ g0aa
oa

ojxja uðx;tÞ � 2g0

X1
n¼1

fðaþ 1� 2nÞ
ð2nÞ!

o2n

ox2n
uðx;tÞ ða 6¼ 0;1; 2; . . .Þ: ð13Þ
Here, we use the connection between Riesz fractional derivative and its Fourier transform [43]
jkja $ � oa

ojxja ; k2 $ � o2

ojxj2
: ð14Þ
Such construction that leads to the equation with fractional derivative appears also in [23].
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The properties of the Riesz derivative can be found in [43–45]. Its another expression is
o
a

ojxja uðx;tÞ ¼ � 1

2 cosðpa=2Þ Da
þuðx;tÞ þDa

�uðx;tÞ
� �

; ð15Þ
where a 5 1,3,5, . . . and Da
� are Riemann–Liouville left and right fractional derivatives
Da
þuðx;tÞ ¼ 1

Cðn� aÞ
on

oxn

Z x

�1

uðn;tÞdn

ðx� nÞa�nþ1
;

Da
�uðx;tÞ ¼ ð�1Þn

Cðn� aÞ
o

n

oxn

Z 1

x

uðn;tÞdn

ðn� xÞa�nþ1
;

ð16Þ
where n � 1 < a < n.
The obtained expressions (11) and (13) can be simplified in the so-called infrared approximation k! 0.

Then Eq. (11) can be rewritten as
o

ot
~uðk;tÞ ¼FfV 0ðuðx;tÞÞg þ g0TaðkÞ~uðk;tÞ; k ! 0 ð1 < a < 3Þ; ð17Þ
where we use TaðkÞ as an approximation expression for Ta(k)
TaðkÞ ¼ 2Cð�aÞ cosðpa=2Þjkja � fða� 1Þk2 ð1 < a < 2Þ; ð18Þ
T2ðkÞ ¼ const ln k2 ða ¼ 2Þ;
TaðkÞ ¼ �fða� 1Þk2 ða > 2Þ:
The expression for TaðkÞ can be considered as a Fourier transform of an operator cTaðxÞ
cTaðxÞ ¼F�1fTaðkÞg ¼ aa
o

a

ojxja þ fða� 1Þ o
2

ox2
: ð19Þ
Applying inverse Fourier transform to (17), we also obtain
o2

ot2
uðx;tÞ ¼ V 0ðuðx;tÞÞ þ g0

cTaðxÞuðx;tÞ ð1 < a < 2Þ: ð20Þ
This equation can be considered as an equation for continuous oscillatory medium with 1 < a < 2 in the infra-
red (k! 0) approximation.

Let us note that (18) has a scale l0
l�1
0 � j2Cð�aÞ cosðpa=2Þ=fða� 1Þj1=ð2�aÞ ð21Þ
such that nontrivial expression TaðkÞ � jkja appears for k� k0. In the following, we consider the case k� k0,
i.e.
 cTaðxÞ � aa

oa

ojxja : ð22Þ
The expression (8) for Ta(k) maps the system (2) for large number of oscillators into the continuous medium
equation (7) in the limit (5). The approximate expression TaðkÞ (18) for Ta(k) is used to construct an operatorcTaðxÞ that stands instead of bT a in (4) and that appears in the final approximate equation (20). We will callcTaðxÞ the transform operator. The reason for that is that it can be used for in more broad sense than just
for the Hamiltonian (1). Here are few examples.

The dynamical equations can be gain the term of the type (3) in complex dispersive media [26,35,31]. The
corresponding approximate equations with fractional derivatives appear for tracer dynamics in the presence of
convective rolls [41], and for the equation for surface wave interaction in ocean [42]. A specific type of equa-
tions is widely used for the oscillatory media
d

dt
znðtÞ ¼ F ðznÞ þ g0

Xþ1
m¼�1

m6¼n

J aðn� mÞðzn � zmÞ; ð23Þ
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where zn is the position of the nth oscillator in the complex plane, and F is a force. As an example, for the
oscillators with a limit cycle, F can be taken as
F ðzÞ ¼ ð1þ iaÞz� ð1þ ibÞjzj2z: ð24Þ
The nonlocal interaction is given by the power function
J aðnÞ ¼ jnj�a�1
: ð25Þ
Similarly to (4). Using the notations (18) and (19), we can rewrite the approximate equation with fractional
derivative in the form
oZðx;tÞ
ot

¼ F ðZðx;tÞÞ þ g0
cTaðxÞZðx;tÞ ð1 < a < 2Þ; ð26Þ
where we replace zn(t)! Z(x, t) and consider k! 0.
Using, for example F(z) = 0 and expression (22) for cTaðxÞ, we arrive to the fractional kinetic equation
o

ot
Zðx;tÞ ¼ g0aa

oa

ojxja Zðx;tÞ ð1 < a < 2Þ ð27Þ
that describes the fractional superdiffusion [3,31,4]. For F(z) in the form (24), we obtain fractional Ginzburg–
Landau equation suggested in [38–40] that will be considered in the next section.

Finally, consider
H int ¼
1

2
g0

Xþ1
n;m¼�1

n6¼m

1

jn� mj1þa gðunÞgðumÞ; ð28Þ
where g(u) is some function of u, instead of (3). The corresponding generalization of (20) is easily obtained as
o
2uðx;tÞ
ot2

¼ V 0ðuðx;tÞÞ þ g0g0ðuðx;tÞÞcTaðxÞgðuðx;tÞÞ; k ! 0 ð1 < a < 2Þ; ð29Þ
where g 0(u) = og(u)/ou and cTaðxÞ is the same as in (19) or (22).

3. Fractional Ginzburg–Landau (FGL) equation

The one-dimensional lattice of weakly coupled nonlinear oscillators is described by
d

dt
znðtÞ ¼ ð1þ iaÞzn � ð1þ ibÞjznj2zn þ ðc1 þ ic2Þðznþ1 � 2zn þ zn�1Þ; ð30Þ
where we assume that all oscillators have the same parameters. A transition to the continuous medium as-
sumes [8] that the difference zn+1 � zn is of order Dx, and the interaction constants c1 and c2 are large. Setting
c1 = g(Dx)�2 and c2 = gc(Dx)�2, we get
o

ot
Z ¼ ð1þ iaÞZ � ð1þ ibÞjZj2Z þ gð1þ icÞ o2

ox2
Z; ð31Þ
which is a complex time-dependent Ginzburg–Landau equation. The simplest coherent structures for this
equation are plane-wave solutions [8]
Zðx;tÞ ¼ RðKÞ exp½iKx� ixðKÞt þ h0�; ð32Þ
where
RðKÞ ¼ ð1� gK2Þ1=2
; xðKÞ ¼ ðb� aÞ þ ðc� bÞgK2 ð33Þ
and h0 is an arbitrary constant phase. These solutions exist for gK2 < 1. Solution (32) can be interpreted as a
synchronized state [8].
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Let us come back to the equation for nonlinear oscillators (23) with F(z) in Eq. (24) and long-range cou-
pling (25)
d

dt
zn ¼ ð1þ iaÞzn � ð1þ ibÞjznj2zn þ g0

X
m 6¼n

1

jn� mjaþ1
ðzn � zmÞ; ð34Þ
where zn = zn(t) is the position of the nth oscillator in the complex plane, 1 < a < 2. The corresponding equa-
tion in the continuous limit and infrared approximation can be obtained in the same way as (20)
o

ot
Z ¼ ð1þ iaÞZ � ð1þ ibÞjZj2Z þ gð1þ icÞ oa

ojxja Z; ð35Þ
where g(1 + ic) = g0aa, and 1 < a < 2. Eq. (35) is a fractional generalization of complex time-dependent Ginz-
burg–Landau equation (31) (compare to (20)). Here, this equation is derived in a specific approximation for
the oscillatory medium.

We seek a particular solution of (35) in the form
Zðx;tÞ ¼ AðK;tÞeiKx; ð36Þ

Eq. (36) represents a particular solution of (35) with a fixed wave number K.

Substitution of (36) into (35) gives
o

ot
AðK;tÞ ¼ ð1þ iaÞA� ð1þ ibÞjAj2A� gð1þ icÞjKjaA: ð37Þ
Rewriting this equation in polar coordinates
AðK;tÞ ¼ RðK;tÞeihðK;tÞ; ð38Þ

we obtain
dR
dt
¼ ð1� gjKjaÞR� R3;

dh
dt
¼ ða� cgjKjaÞ � bR2: ð39Þ
The limit cycle here is a circle with the radius
R ¼ ð1� gjKjaÞ1=2
; gjKja < 1: ð40Þ
Solution of (39) with arbitrary initial conditions R(K, 0) = R0, h(K, 0) = h0 is
RðtÞ ¼ R0ð1� gjKjaÞ1=2ðR2
0 þ ð1� gjKja � R2

0Þe�2ð1�gjKjaÞtÞ�1=2
; ð41Þ

hðtÞ ¼ � b
2

ln½ð1� gjKjaÞ�1ðR2
0 þ ð1� gjKja � R2

0Þe�2atÞ� � xaðKÞt þ h0; ð42Þ
where
xaðKÞ ¼ ðb� aÞ þ ðc� bÞgjKja; 1� gjKja > 0: ð43Þ

This solution can be interpreted as a coherent structure in nonlinear oscillatory medium with long-range
interaction.

If R2
0 ¼ 1� gjKja, gjKja < 1, then Eqs. (41) and (42) give
RðtÞ ¼ R0; hðtÞ ¼ �xaðKÞt þ h0: ð44Þ

Solution (44) means that on the limit cycle (40) the angle variable h rotates with a constant velocity xa(K). As
the result, we have the plane-wave solution
Zðx;tÞ ¼ ð1� gjKjaÞ1=2eiKx�ixaðKÞtþih0 ; 1� gjKja > 0 ð45Þ

which can be interpreted as synchronized state of the oscillatory medium.

The plane-wave solution (45) is stable if parameters a, b, c and g satisfy
0 < 1� gjKja < a=b� ðc=bÞgjKja < 3ð1� gjKjaÞ: ð46Þ

Condition (46) defines the region of parameters for plane waves where the synchronization exists.
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For initial amplitude that deviates from (40), i.e., R2
0 6¼ 1� gjKja, an additional phase shift occurs due to the

term which is proportional to b in (42). The oscillatory medium can be characterized by a single generalized
phase variable. To define it, let us rewrite (39) as
d

dt
ln R ¼ ð1� gjKjaÞ � R2;

d

dt
h ¼ ða� cgjKjaÞ � bR2: ð47Þ
From (47), we obtain
d

dt
/ ¼ �xaðKÞ; ð48Þ
where
/ðR;hÞ ¼ h� b ln R ð49Þ

is the generalized phase [8], and xa(K) is defined by (43).

Eq. (48) means that generalized phase /(R,h) rotates uniformly with constant velocity. For gjKja = (b � a)/
(b � c) < 1, we have the lines of constant generalized phase. On (R,h) plane these lines are logarithmic spirals
h � b lnR = const. The decrease of a corresponds to the increase of K. For the case b = 0 instead of spirals we
have straight lines / = h.

Energy propagation can be characterized by the group velocity va,g = oxa(K)/oK. From Eq. (43), we obtain
va;g ¼ aðc� bÞgjKja�1
: ð50Þ
For jKj < K1 = (a/2)2�a, we get jva,gj > jv2,gj. The phase velocity is
va;ph ¼ xaðKÞ=K ¼ ðc� bÞgjKja�1
: ð51Þ
For jKj < K2 = 2a�2, we have jva,phj > jv2,phj. Therefore long-range interaction decreasing as jxj�(a+1) with
1 < a < 2 leads to increase the group and phase velocities for small wave numbers (K! 0). Note that the ratio
va,g/va,ph between the group and phase velocities of plane waves is equal to a.

4. Forced FGL equation for isochronous case

In this section, we consider FGL equation (37) forced by a constant E (the so-called forced isochronous
case (b = 0) [8])
o

ot
A ¼ ð1þ iaÞA� jAj2A� gð1þ icÞjKjaA� iE ðImE ¼ 0Þ; ð52Þ
where A = A(K, t), and we put for simplicity b = 0, and K is a fixed wave number. Our main goal will be tran-
sition to a synchronized states and its dependence on the order a of the long-range interaction.

Numerical solution of Eq. (52) was performed with parameters a = 1, g = 1, c = 70, E = 0.9, K = 0.1, for a
within interval a 2 (1;2). The results are presented in Fig. 1. For a0 < a < 2, where a0 � 1.51. . ., the only stable
solution is a stable fixed point. This is region of perfect synchronization (phase locking), where the synchro-
nous oscillations have a constant amplitude and a constant phase shift with respect to the external force. For
a < a0 the global attractor for (52) is a limit cycle. Here, the motion of the forced system is quasiperiodic. For
a = 2 there is a stable node. When a decreases, the stable mode transfers into a stable focus. At the transition
point it loses stability, and a stable limit cycle appears. As the result, we have that the decrease of order a from
2 to 1 leads to the loss of synchronization (see Fig. 1). For a = 2.00 and a = 1.60, we see that in the synchro-
nization region all trajectories are attracted to a stable node.

In Fig. 1, For a = 2.00 and a = 1.60, we see that in the synchronization region all trajectories are attracted
to a stable node. For a = 1.54, a = 1.52, a = 1.50, we see that a stable limit cycle appears via the Hopf bifur-
cation. For a = 1.54 and a = 1.52, near the boundary of synchronization the fixed point is a focus. For
a = 1.50 and a = 1.4, the amplitude of the limit cycle grows, and synchronization breaks down.

The oscillator medium can be characterized by a single generalized phase variable (49). We can rewrite (49) as
/ðX ;Y Þ ¼ arctanðY =X Þ � b
2

lnðX 2 þ Y 2Þ; ð53Þ
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Fig. 1. Approaching to the bifurcation point a = a0 = 1.51. . . and transformation to the limit cycle of solution of forced FGL equation for
isochronous case with fixed wave number K = 0.1 is represented by real X(K, t) and imaginary Y(K, t) parts of A(K, t). The plots for orders
a = 2.00, a = 1.60, a = 1.54, a = 1.52, a = 1.50, a = 1.40.
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where X and Y are real and imaginary parts of A(K, t). For E = 0, the phase rotates uniformly
d

dt
/ ¼ �xaðKÞ ¼ a� gcjKja; ð54Þ
where xa(K) is given by (43) with b = 0, and can be considered as a frequency of natural oscillations. For
E 5 0, Eqs. (52) and (53) give
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d

dt
/ ¼ �xaðKÞ � E cos /: ð55Þ
This equation has an integral of motion. The integral is
I ¼ 2jx2 � E2j�1=2 arctan sgnðx� EÞ x� E
xþ E

���� �����1=2

tanð/ðtÞ=2Þ
 !

þ t: ð56Þ
These expressions help to obtain the solution in form (38) for forced case (52) keeping the same notations as in
(38). For polar coordinates we get
dR
dt
¼ ð1� gjKjaÞR� R3 � E sin h;

dh
dt
¼ ða� cgjKjaÞ � E cos h

R
: ð57Þ
Numerical solution of (57) was performed with the same parameters as for Eq. (52), i.e., a = 1, g = 1, c = 70,
E = 0.9, K = 0.1, and a within interval a 2 (1,2). The results are presented in Figs. 2 and 3.

The time evolution of phase h(K, t) is given in Fig. 2 for a = 2.00, a = 1.50, a = 1.47, a = 1.44, a = 1.40,
a = 1.30, a = 1.20, a = 1.10. The decrease of a from 2 to 1 leads to the oscillations of the phase h(K, t) after
the Hopf bifurcation at a0 = 1.51. . ., then the amplitude of phase oscillation decreases and the velocity of
phase rotations increases.

The amplitude R(K, t) is shown in Fig. 3 for a = 1.6, a = 1.55, a = 1.55, a = 1.51, a = 1.50, a = 1.45,
a = 1.2. The appearance of oscillations in the plots means the loss of synchronization.

5. Space structures from FGL equation

In previous sections, we considered mainly time-evolution and ‘‘time structures’’ as solutions for the FGL
equation. Particularly, synchronization process was an example of the solution that converged to a time-
coherent structure. Here, we focus on the space structures for the solution of FGL equation (35) with
b = c = 0 and the constants a1 and a2 ahead of linear term
o

ot
Z ¼ ða1 þ ia2ÞZ � jZj2Z þ g

oa

ojxja Z: ð58Þ



0

0.5

1

1.5

2

R(t)

0 10 20 30 40 50
t

0 10 20 30 40 50
t

0 10 20 30 40 50
t

0 10 20 30 40 50
t

0 10 20 30 40 50
t

0 10 20 30 40 50
t

0

0.5

1

1.5

2

R(t)

0

0.5

1

1.5

2

R(t)

0

0.5

1

1.5

2

R(t)

0

0.5

1

1.5

2

R(t)

0

0.5

1

1.5

2

R(t)

Fig. 3. Amplitude R(K, t). The upper curve corresponds to a = 2 for all plots. The lower curves correspond to a = 1.6, a = 1.55, a = 1.51,
a = 1.50, a = 1.45, a = 1.2. The appearance of oscillations on the plots means the loss of synchronization.
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Let us seek a particular solution of (58) in the form
Zðx;tÞ ¼ Rðx;tÞeihðtÞ; R	ðx;tÞ ¼ Rðx;tÞ; h	ðtÞ ¼ hðtÞ: ð59Þ

Substitution of (59) into (58) gives
o

ot
R ¼ a1R� R3 � g

o
a

ojxja R;
o

ot
hðtÞ ¼ a2: ð60Þ
Using h(t) = a2t + h(0), we arrive to the existence of a limit cycle with R0 ¼ a1=2
1 .
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A particular solution of (60) in the vicinity of the limit cycle can be found as an expansion
Rðx;tÞ ¼ R0 þ eR1 þ e2R2 þ 
 
 
 ðe� 1Þ: ð61Þ
Zero approximation R0 ¼ a1=2
1 satisfies (60) since oa/ojxja1 = 0, and for R1 = R1(x, t), we have
o

ot
R1 ¼ �2a1R1 þ g

o
a

ojxja R1: ð62Þ
Consider the Cauchy problem for (62) with initial condition R1(x,0) = u(x), and the Green function G(x, t)
such that
R1ðx;tÞ ¼
Z þ1

�1
Gðx0;tÞuðx� x0Þdx0: ð63Þ
Let us apply Laplace transform for t and Fourier transform for x
eGðk;sÞ ¼ Z 1

0

dt
Z þ1

�1
dxe�stþikxGðx;tÞ: ð64Þ
Applying (64) to (62), we obtain
eGðk;sÞ ¼ 1

sþ 2a1 þ gjkja : ð65Þ
Let us first invert the Laplace transform in (65). Then, the Fourier transform of the Green function
bGðk;tÞ ¼ Z þ1

�1
dxeikxGðx;tÞ ¼ e�ð2a1þgjkjaÞt ¼ e�2a1te�gjkjat: ð66Þ
As the result, we get
Gðx;tÞ ¼ ðgtÞ�1=ae�2a1tLaðxðgtÞ�1=aÞ; ð67Þ

where
LaðxÞ ¼
1

2p

Z þ1

�1
dk e�ikxe�ajkja ð68Þ
is the Levy stable p.d.f. [47].
As an example, for a = 1 we have the Cauchy distribution with respect to coordinate
Gðx;tÞ ¼ 1

p
ðgtÞ�1e�2a1t

x2ðgtÞ�2 þ 1
: ð69Þ
For a = 2, we get the Gauss distribution
Gðx;tÞ ¼ ðgtÞ�1=2e�2a1t 1

2
ffiffiffi
p
p e�x2=ð4gtÞ: ð70Þ
For 1 < a 6 2 the function La(x) can be presented as the convergent expansion
LaðxÞ ¼ �
1

px

X1
n¼1

ð�xÞn Cð1þ n=aÞ
n!

sinðnp=2Þ: ð71Þ
The asymptotic (x!1, 1 < a < 2) is given by
LaðxÞ � �
1

px

X1
n¼1

ð�1Þnx�na Cð1þ naÞ
n!

sinðnp=2Þ; x!1 ð72Þ
with the leading term: La(x) � p�1C(1 + a)x�a�1, (x!1).
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As the result, the solution of (58) is
Zðx;tÞ ¼ eiða2tþhð0ÞÞ a1=2
1 þ eðgtÞ�1=ae�2a1t

Z þ1

�1
Laðx0ðgtÞ�1=aÞuðx� x0Þdx0 þOðe2Þ

� �
: ð73Þ
This solution can be considered as a space–time synchronization in the oscillatory medium with long-range
interaction decreasing as jxj�(a+1).

For u(x) = d(x � x0), solution (73) has the form
Zðx;tÞ ¼ eiða2tþhð0ÞÞ a1=2
1 þ eðgtÞ�1=ae�2a1tLaððx� x0ÞðgtÞ�1=aÞ þOðe2Þ

� 	
ð74Þ
and the asymptotic is
Zðx;tÞ ¼ eiða2tþhð0ÞÞ a1=2
1 þ egte�2a1tp�1Cð1þ aÞðx� x0Þ�a�1 þOðe2Þ

� 	
; x!1: ð75Þ
This solution shows that the long-wave modes approach the limit cycle exponentially with time. For t =
1/(2a1), we have the maximum of jZ(x, t)j with respect to time
max
t>0
jZðx;tÞj ¼ a1=2

1 þ eg
Cð1þ aÞ

2pe
ðx� x0Þ�a�1 þOðe2Þ: ð76Þ
As the result, we have the power law decay with respect to the coordinate for the space structures near the limit
cycle jZj ¼ a1=2

1 .
6. Conclusion

One-dimensional chain of interacting objects, say oscillators, can be considered as a benchmark for numer-
ous applications in physics, chemistry, biology, etc. All considered models were related mainly to the oscillat-
ing objects with long-range powerwise interaction, i.e., with forces proportional to 1/jn � mjs and 2 < s < 3. A
remarkable feature of this interaction is a possibility to replace the set of coupled individual oscillator equa-
tions into the continuous medium equation with fractional space derivative of order a = s � 1, where
0 < a < 2, a 5 1. Such transformation is an approximation and it appears in the infrared limit for wave num-
ber k! 0. This limit helps to consider different models and related phenomena in a unified way applying dif-
ferent tools of fractional calculus.

A nontrivial example of general property of fractional linear equation is its solution with a powerwise decay
along the space coordinate. From the physical point of view that means a new type of space structures or
coherent structures. The scheme of equations with fractional derivatives includes either effect of synchroniza-
tion [8], breathers [48–50], fractional kinetics [1], and others.

Discrete breathers are periodic space localized oscillations that arise in discrete and continuous nonlinear
systems. Their existence was proved in Ref. [51]. Discrete breathers have been widely studied in systems with
short-range interactions (for a review, see [52,48]). Energy and decay properties of discrete breathers in sys-
tems with long-range interactions have also been studied in the framework of the Klein–Gordon [49,53],
and the discrete nonlinear Schrodinger equations [54]. Therefore, it is interesting to consider breathers solution
in systems with long-range interactions in infrared approximation.

We also assume that the suggested replacement of the equations of interacting oscillators by the continuous
medium equation can be used for improvement of simulations for equations with fractional derivatives.
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[46] Erdélyi A, Magnus W, Oberhettinger F, Tricomi FG. Higher transcendental functions, vol. 1. New York: Krieger; 1981. p. 30–1.
[47] Feller V. An introduction to probability theory and its applications, vol. 2. New York: Wiley; 1971.
[48] Flach S, Willis CR. Phys Rep 1998;295:181–264.
[49] Flach S. Phys Rev E 1998;58:R4116–9.
[50] Braun OM, Kivshar YS. Phys Rep 1998;306:2–108.
[51] MacKay RS, Aubry S. Nonlinearity 1994;7:1623–43.
[52] Aubry S. Physica D 1997;103:201–50.
[53] Baesens C, MacKay RS. Helv Phys Acta 1999;72:23–32.
[54] Gaididei YuB, Mingaleev SF, Christiansen PL, Rasmussen KO. Phys Rev E 1997;55:6141–50.


	Fractional dynamics of systems with long-range interaction
	Introduction
	Long-range interaction of oscillators
	Fractional Ginzburg-Landau (FGL) equation
	Forced FGL equation for isochronous case
	Space structures from FGL equation
	Conclusion
	Acknowledgments
	References


