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Abstract

A one-dimensional chain of coupled oscillators with the long-range power-law interactions is considered. Equations of
motion in the infrared limit are mapped onto the continuum equation with the Riesz fractional derivative of order a, when
0 < a < 2. The evolution of soliton-like and breather-like structures is obtained numerically and compared for two types of
simulations: using the chain of oscillators and using the continuous medium equation with the fractional derivative.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Nowadays it becomes clear that anomalous dynamics and kinetics may be not so pathological as it was
believed earlier. More and more situations have been reported in the literature supporting this [1–3,6,12].
The immediate causes for these anomalies could be attributed to fractal or multi-fractal character of phase
space, Lèvy flights, dynamical traps, or long-range correlations which are present in many interesting appli-
cations [2–5,21–24]. The desolated once fractional order calculus revives again in order to describe such prob-
lems. Indeed, equations which involve derivatives or integrals of non-integer order appeared to be very
successful in describing anomalous kinetics and transport [4,6–12].

However, fractional equations could be rarely derived explicitly from the equations of motion or from a
Hamiltonian of the model. More often fractional equations for dynamics or kinetics appear as some phenom-
enological models. Recently, the method to obtain fractional analogues of equations of motion was considered
for the bunch of classical and quantum problems related to sets of coupled particles or other objects that inter-
act via a power-like potential [13,14]. Examples of such systems are one-dimensional chain of interacting oscil-
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lators, spins, or waves that can be considered as a benchmark for numerous applications in physics, chemistry,
biology, etc. [16–20,35,41]. Transfer from the set of Hamiltonian equations to the continuous media equation
with fractional derivatives is an approximate procedure. Its formal realization can be performed using the so-
called ‘‘transform operator’’ [14]. Different applications of the operator have already been used to derive frac-
tional sine-Gordon and fractional Hilbert equation [13], to study synchronization of coupled oscillators [14],
to derive Ginzburg–Landau and Schrödinger equations [15]. It should be noted that the fractional Ginzburg–
Landau equation was also considered in [27].

Localized in space structures, such as solitons or breathers are the subjects of a great interest for a long
time. These structures have been widely studied in discrete systems on lattices with different types of interac-
tions as well as in their continuous analogues (for a review, see [34,20]). Solitons in a one-dimensional lattice
with the long-range Lennard–Jones-type interaction were considered in [37]. Kinks in the Frenkel–Kontorova
model with long-range interparticle interactions were studied in [38]. The properties of time periodic spatially
localized solutions (breathers) on discrete chains in the presence of algebraically decaying interactions were
considered in [35] and recently in [36]. Energy and decay properties of discrete breathers in systems with
long-range interactions have also been studied in the framework of the Klein–Gordon [20], and discrete
non-linear Schrodinger equations [39]. A remarkable property of the dynamics described by the equation with
fractional space derivatives is that the soliton or breather type solutions have power-like tails. Similar features
were observed in the prototype lattice models with power-like long-range interactions [35,36,41–43]. As it was
shown in [14,15], analysis of the equations with fractional derivatives (FD) can provide fairly quickly results
for the space asymptotics of their solutions. Replacement of the system of particles with power long-range
interactions by an equation with FD will be called fractional equation approximation (FEA). As it was shown
in [14,15], the FEA appears in the infrared limit when the wave number k! 0 and under some other condi-
tions that will be derived later. At the same time, in many applied problems equations with FD can appear as
an intrinsic feature of the system (see examples in reviews [2,9]). Integration of equations with FD needs spe-
cific algorithms which are fairly time consuming with not yet well defined errors [45].

The goal of this paper is to study a duality of Hamiltonian dynamics of system of particles with power-like
interactions and solutions of equations with FD using the transform operator. As a model to be studied we con-
sider a chain of interacting oscillators that can be described by the sine-Gordon equation in the continuous limit.

To incorporate long-range interparticle interactions several non-local generalizations of the sine-Gordon
equation were considered in Refs. [41–43] using the integro-differential equations of motion. The generaliza-
tion of the standard sine-Gordon equation with space FD was proposed and numerically studied in [40]. The
form of the fractional sine-Gordon equation was utt � RDau + sinu = 0, where RDa is the Riesz space frac-
tional derivative, 1 < a < 2. This equation was proposed as an interpolation between the classical sine-Gordon
equation and a non-local sine-Gordon equation. Here, we consider the one-dimensional lattice of coupled
non-linear oscillators. We focus on the dynamics of soliton-like and breather-like patterns. Following [13],
we make the transform to the infrared limit and derive the fractional sine-Gordon equation which describes
the dynamics of the lattice. Using both, Hamiltonian lattice dynamics and the fractional sine-Gordon (FSD)
equation, we compare solutions and demonstrate their similarity as well as discuss conditions when such dual-
ity is applicable.

The obtained results can be used in a twofold way: firstly, we show how the infrared limit for the chain of
oscillators can be described by the corresponding FSG equation with similar solutions; secondly, we propose
the replacement of the integration scheme of equations with FD by the system of coupled Hamiltonian equa-
tions. The latter can be considered as a new way of analysis of the equations with FD.
2. Long-range interaction of oscillators

Consider a one-dimensional system of interacting oscillators described by the Hamiltonian
H ¼
Xþ1

n¼�1

M
2

_u2
n þ

J 0

2

Xþ1
m¼�1

n 6¼m

1

jn� mj1þa unum þ
J 1

2
u2

n þ J 2 1� cos
2pun

a

� �� �264
375; ð1Þ
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where M is mass of a single oscillator and un is displacement from the equilibrium. The last term characterizes
an interaction of the chain with the external on-site potential which is defined by the periodic function with
period a and amplitude J2. The second term in Eq. (1) takes into account the interaction of the oscillators
in the chain. Here, we consider non-local coupling given by the power-law function. Constant a is a physical
relevant parameter. Some integer values of a correspond to the well-known physical situations: Coulomb po-
tential corresponds to a = 0, dipole–dipole interaction corresponds to a = 2, and the limit a!1 is for the
case of nearest-neighbor interaction.

From Hamiltonian (1) it follows the equation of motion:
o
2un

ot2
þ J 0

Xþ1
m¼�1

n6¼m

1

jn� mj1þa um þ J 1un þ J 2 sinðunÞ ¼ 0; ð2Þ
where we put M = 1 and the period a = 2p.
Let us sketch the derivation of continuous medium equation. We define the field ûðk; tÞ on [�K/2,K/2] as
ûðk; tÞ ¼
Xþ1

n¼�1
unðtÞe�ikxn ¼FDfunðtÞg; ð3Þ
where xn = nDx, and Dx = 2p/K is distance between oscillators
unðtÞ ¼
1

K

Z þK=2

�K=2

dk ûðk; tÞeikxn ¼F�1
D fûðk; tÞg: ð4Þ
These equations are the basis for the Fourier transform which is obtained by transforming un(t) = u(nDx, t)
from discrete variable xn = nDx to a continuous one in the limit as Dx! 0 (K!1). The Fourier transform
is a generalization of (3), (4) in the limit as Dx! 0. Replace the discrete un(t) with continuous u(x, t) while
letting xn = nDx = 2pn/K! x. Then, Eqs. (3) and (4) become
~uðk; tÞ ¼
Z þ1

�1
dxe�ikxuðx; tÞ ¼Ffuðx; tÞg; ð5Þ

uðx; tÞ ¼ 1

2p

Z þ1

�1
dk eikx~uðk; tÞ ¼F�1f~uðk; tÞg; ð6Þ
where
~uðk; tÞ ¼Lûðk; tÞ; uðx; tÞ ¼LunðtÞ; unðtÞ ¼ uðxn; tÞ; ð7Þ

and L denotes the passage to the limit Dx! 0 (K!1). The procedure of the replacement of a discrete mod-
el by the continuous one is defined by the following operations:

(1) The Fourier series transform:
FD : unðtÞ !FDfunðtÞg ¼ ûðk; tÞ; ð8Þ

(2) The passage to the limit Dx! 0:
L : ûðk; tÞ !Lfûðk; tÞg ¼ ~uðk; tÞ; ð9Þ

(3) The inverse Fourier transform:
F�1 : ~uðk; tÞ !F�1f~uðk; tÞg ¼ uðx; tÞ: ð10Þ

The operation T ¼F�1LFD can be called a transform operation (transform map), since it performs a trans-
formation of a discrete model of coupled oscillators by the continuous medium model. In a similar to [13,14]
way, we can obtain from (2) the equation for ûðk; tÞ using (3)
o
2ûðk; tÞ
ot2

þ J 0
bJ aðkÞûðk; tÞ þ J 1ûðk; tÞ þ J 2FDfsinðunðtÞÞg ¼ 0; ð11Þ
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where
bJ aðkÞ ¼
Xþ1

n¼�1
n6¼0

e�iknDx 1

jnj1þa ¼
Xþ1
n¼1

1

n1þa
e�iknDx þ eiknDx
� �

¼ Li1þa eikDx
� �

þ Li1þa e�ikDx
� �

; ð12Þ
and Li1+a(z) is a polylogarithm function. Using the series representation of the polylogarithm [44]
LibðezÞ ¼ Cð1� bÞð�zÞb�1 þ
X1
n¼0

fðb� nÞ
n!

zn; jzj < 2p; b 6¼ 1; 2; 3 . . . ; ð13Þ
we obtain
bJ aðkÞ ¼ aajDxjajkja þ 2
X1
n¼0

fð1þ a� 2nÞ
ð2nÞ! ðDxÞ2nð�k2Þn; jkj < 1; a 6¼ 0; 1; 2; 3 . . . ; ð14Þ
where Ja(0) = 2f(1 + a), f is the Riemann zeta-function and
aa ¼ 2Cð�aÞ cos
pa
2

� �
: ð15Þ
Function bJ aðkÞ can also be presented in the form
bJ aðkÞ ¼ 2
X1
n¼1

cosðknDxÞ
n1þa

; ð16Þ
from which it follows that
bJ aðk þ 2pm=DxÞ ¼ bJ aðkÞ; ð17Þ

where m is an integer. For a = 2, bJ aðkÞ is the Clausen function Cl2(k) [32].

Combining all expressions, Eq. (11) takes the form
o2ûðk; tÞ
ot2

þ J 0aajDxjajkjaûðk; tÞ þ 2J 0

X1
n¼0

fðaþ 1� 2nÞ
ð2nÞ! ðDxÞ2nð�k2Þnûðk; tÞ þ J 1ûðk; tÞ

þ J 2FDfsinðunðtÞÞg ¼ 0: ð18Þ
We will be interested in the limit Dk! 0. Then Eq. (18) can be written in a simplified way
o2

ot2
ûðk; tÞ þ �J 0

cTa;DðkÞûðk; tÞ þ J 1ûðk; tÞ þ J 2FDfsinðunðtÞÞg ¼ 0; a 6¼ 0; 1; 2; . . . ; ð19Þ
where �J 0 ¼ J 0jDxjminfa;2g and
cTa;DðkÞ ¼
aajkja � jDxj2�afða� 1Þk2; 0 < a < 2 ða 6¼ 1Þ;
jDxja�2aajkja � fða� 1Þk2; 2 < a < 4 ða 6¼ 3Þ:

(
ð20Þ
Expression (20) was obtained in [13,14] in a slightly different way. Let us note that (20) has a crossover scale
for
k0 ¼ jaa=fða� 1Þj1=ð2�aÞjDxj�1
; ð21Þ
such that cTa;DðkÞ � k2 for a > 2, k� k0 and non-trivial expression cTa;DðkÞ � jkja appears only for a < 2,
k� k0. The crossover was considered also in [14,26]. The expression for cTa;DðkÞ can be considered as a Fou-
rier transform of the operator
Ta;nunðtÞ �
Xþ1

m¼�1
m 6¼n

jn� mj�ð1þaÞumðtÞ: ð22Þ
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Performing the transition to the limit k� k0 (or more precisely kDx� k0Dx), and applying inverse Fourier
transform to (19) gives
o2

ot2
uðx; tÞ þ �J 0TaðxÞuðx; tÞ þ J 1uðx; tÞ þ J 2 sinðuðx; tÞÞ ¼ 0 a 6¼ 0; 1; 2; . . . ; ð23Þ
where
TaðxÞ ¼F�1fcTaðkÞg ¼
�aa

oa

ojxja ; 0 < a < 2 ða 6¼ 1Þ;

fða� 1Þ o2

ojxj2 ; 2 < a < 4 ða 6¼ 3Þ;

8<:
cTaðkÞ ¼

aajkja; 0 < a < 2 ða 6¼ 1Þ;
�fða� 1Þk2; 2 < a < 4 ða 6¼ 3Þ:

� ð24Þ
Here, we have used the connection between the Riesz fractional derivative and its Fourier transform [28]:
jkja $ � oa

ojxja ; k2 $ � o2

ojxj2
: ð25Þ
The properties of the Riesz derivative can be found in [28–31].
If we consider a system with Hamiltonian H = H1 + Hint, where
H 1 ¼
Xþ1

n¼�1

1

2
_u2

n þ V ðunÞ
	 


; H int ¼
1

2
J 0

Xþ1
n;m¼�1

n6¼m

1

jn� mj1þa gðunÞgðumÞ; ð26Þ
where g(u) is some function of u. Eq. (1) appears for g(u) = u. The corresponding generalization of (23) is eas-
ily obtained as
o
2uðx; tÞ
ot2

¼ V 0ðuðx; tÞÞ þ �J 0g0ðuðx; tÞÞTaðxÞgðuðx; tÞÞ ða 6¼ 0; 1; 2; . . .Þ; ð27Þ
where g 0(u) = og(u)/ou and TaðxÞ is the same as in (24).

3. Numerical methods

We consider N + 1 equally spaced by Dx = 2L/(N + 1) coupled oscillators on the finite interval (�L,L).
The system is described by the equations of motion
o2un

ot2
þ J 0

XN=2

m¼�N=2
m6¼n

1

jn� mj1þa um þ J 1un þ J 2 sin un ¼ 0 n ¼ �N
2
; . . . ; 0; . . . ;

N
2

� �
ð28Þ
and N is even. For N!1 Eq. (28) coincides with Eq. (2). By specifying appropriate initial and boundary
conditions, Eq. (28) could be solved numerically for example by the discretization scheme or with the
Runge–Kutta method.

For numerical solutions of the fractional sine-Gordon equation (23) with 0 < a < 2
o
2

ot2
uðx; tÞ � �J 0aa

o
a

ojxja uðx; tÞ þ J 1uðx; tÞ þ J 2 sinðuðx; tÞÞ ¼ 0; ð29Þ
we have used two methods which are described as the following.
Method (a): The Riesz derivative could be represented as [46]
oa

ojxja uðx; tÞ ¼ � 1

2 cosðpa=2Þ Da
þuðx; tÞ þDa

�uðx; tÞ
� �

; ð30Þ
where Da
� are Riemann–Liouville left and right fractional derivatives defined by [28–31]
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Da
þuðx; tÞ ¼ 1

Cðm� aÞ
om

oxm

Z x

�1

uðn; tÞdn

ðx� nÞa�mþ1
;

Da
�uðx; tÞ ¼ ð�1Þm

Cðm� aÞ
om

oxm

Z 1

x

Zðn; tÞdn

ðn� xÞa�mþ1
;

ð31Þ
where m � 1 < a < m. Since we seek for a numerical solution on a finite interval, we will also use the Riemann–
Liouville left and right fractional derivatives defined on a finite interval (�L,L)
�LD
a
xuðx; tÞ ¼ 1

Cðm� aÞ
om

oxm

Z x

�L

uðn; tÞdn

ðx� nÞa�mþ1
;

xD
a
Luðx; tÞ ¼ ð�1Þm

Cðm� aÞ
om

oxm

Z L

x

uðn; tÞdn

ðn� xÞa�mþ1
:

ð32Þ
As the next step we approximate the Riesz fractional derivative as follows:
oa

ojxja uðx; tÞ ’ � 1

2 cosðpa=2Þ ð�LD
a
xuðx; tÞ þ xD

a
Luðx; tÞÞ: ð33Þ
To compute Riemann–Liouville fractional derivatives we have used Grunwald–Letnikov discretization
scheme [28]
�LD
a
xuðx; tÞ ¼ 1

ha

XK�
q¼0

wkuðx� qh; tÞ;

xD
a
Luðx; tÞ ¼ 1

ha

XKþ
q¼0

wkuðxþ qh; tÞ;
ð34Þ
where h is the discretization parameter, K� = [(x + L)/h], K+ = [(L � x)/h], [m] means integer part of m, and
wk ¼
Cðq� aÞ

Cð1þ qÞCð�aÞ : ð35Þ
However, for numerical calculations it is more convenient to use, instead of Eq. (35), the following recursion
relation:
wk ¼ 1� aþ 1

q

� �
wk�1; w0 ¼ 1: ð36Þ
The numerical scheme defined by Eq. (34) could be unstable. Therefore, to obtain a stable numerical
scheme, one can use shifted Grunwald–Letnikov formulas proposed in [45]
�LD
a
xuðx; tÞ ¼ 1

ha

XK�
q¼0

wkuðx� ðq� 1Þh; tÞ;

xD
a
Luðx; tÞ ¼ 1

ha

XKþ
q¼0

wkuðxþ ðq� 1Þh; tÞ:
ð37Þ
In our numerical simulations both numerical methods reproduce the same results. To ensure the stability of
the integration scheme the analog to the Courant–Friedrichs–Lewy stability condition should be fulfilled
Dt=ðDxÞa < 1=2: ð38Þ

After substitution of Eqs. (33)–(35) into Eq. (29), we have solved them using the explicit finite differences

method for the second-order time derivative
o2

ot2
uðx; tÞ ¼ uðx; t þ DtÞ þ uðx; t � DtÞ � 2uðx; tÞ

ðDtÞ2
: ð39Þ
We have solved Eq. (29) also by the forth-order Runge–Kutta method in time. Results of both methods ap-
pear to be the same.
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Method (b): The second method for numerical solution of the FSG equation is based on the fact that the
Riesz space-fractional derivative admits the explicit representation in the form of an integral [28] with the lim-
its of integration from zero to infinity. To use this definition for the solution of the equation on the finite inter-
val we cut off the upper integration limit and approximate the Riesz derivative in the following way:
Fig. 1.
equatio
of the
oa

ojxja uðx; tÞ ’ Cð1þ aÞ
p

sin
ap
2

� �Z L

0

uðxþ g; tÞ � 2uðx; tÞ þ uðx� g; tÞ
g1þa

dg: ð40Þ
4. Numerical results

In this section we compare numerical solutions obtained by two different ways: solution of equations of
motion for the system of coupled oscillators starting from particular initial conditions and solution of FSG
with the same initial conditions.
Kink-like structures obtained from the evolution of the system of coupled oscillators (left panel) and from the solution of the FSG
n (right panel). Bottom panel: comparison of the time evolution of the central oscillator u0(t) (solid curve) with the time evolution

u(0, t) (circles) obtained from the solution of the FSG equation. Exponent a = 1.21.
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As the first kind of initial conditions we consider the topological soliton (kink) solution of the standard
sine-Gordon equation
Fig. 2.
FSG e
u(0, t)
unð0Þ ¼ 4 arctan½j expðxÞ�; ð41Þ

where for the system of coupled oscillators the variable x defines positions of oscillators, x = nDx. The param-
eter j was fixed to j = 0.001. Three other constants in Eqs. (28) and (29) were J1 = 0.2, J0 = J2 = 0.01. The
long-range interaction exponent is a = 1.21. We consider N + 1 = 1001 equally spaced oscillators with the dis-
tance between them Dx = 2L/(N + 1), L = 500 and boundary conditions un+2L+1(t) = un(t) + 2p. For the solu-
tion of FSG equation the discretization parameter h was chosen to be Dx/2.

The time evolution of this initial function is shown in Fig. 1. The left panel represents the solution of the
equations of motion for the discrete system of coupled oscillators, while the solution of the FSG equation is
shown in the right panel. As it is seen from the figure, solutions of both systems are very similar to each other.
On the bottom panel we compare the behaviour of u0(t) (solid line) and u(0, t) (circles). The fractional order of
the space derivative imposes time oscillations of the initial soliton-like profile taken as an exact stationary
solution for the sine-Gordon equation with a = 2.
Left panel: breather-like structures obtained from the evolution of the system of coupled oscillators. Right panel: solution of the
quation. Bottom figure: comparison of the time evolution of the central oscillator u0(t) (solid curve) with the time evolution of the
(circles) obtained from the solution of the FSG equation. Exponent a = 1.21.
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As a second kind of profile we consider two-parametric standing soliton solution of the standard sine-Gor-
don equation
unð0Þ ¼ 4 arctan
m

j coshðxÞ

	 

; ð42Þ
where m = 1 and j = 0.05. The constant was chosen such that the ratio wave length to the distance between
oscillators is small. Three other constants in Eqs. (28) and (29) were fixed to J0 = 0.01, J1 = J2 = 0.1. The
number of oscillators N + 1 = 1001, the distance between them Dx = 2L/(N + 1) with L = 500, and the peri-
odic boundary conditions were applied un+2L+1(t) = un(t). For the solution of the FSG equation the discret-
ization we choose h = Dx/2.

Solutions of both equations appear in the form of a breather-like structures. They are plotted for different
values of a in Figs. 2–4. Solutions for the system of coupled oscillators are presented on the left panels of Figs.
2–4, while solutions of the fractional sine-Gordon equation (29) are plotted on the right panels.
Fig. 3. The same as in Fig. 1, but for a = 1.51.



Fig. 4. The same as in Fig. 1, but for a = 1.91.
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From these figures we conclude that in the infrared limit solutions of both systems are almost identical.
Another conclusion, that one can draw, is the low sensitivity of the core breather-like structure on the expo-
nent 0 < a < 2. In Fig. 5 the snapshots of the breather-like solutions obtained for the same initial conditions
are plotted for the time instant t = 100. The long-range interaction mostly contributes to the behaviour of the
tails of the breather-like solutions. The exponential spatial decay for short distances is modified by the power-
law for large distances [35,36] due to non-local interaction �1/x1+a. In Fig. 5 (middle and low panels) the pro-
files of the breather-like solutions are plotted in semi-logarithmic and in double-logarithmic scales. The cross-
over from the exponential decay of the profile for a short distances to the power-law decay for a large
distances is explicitly seen. With the increasing value of the parameter a the cross-over is shifted for longer
time with the agreement to the reduction of the power-law interaction to the nearest-neighbor one for
a!1. With a decrease of a the exponential part of the decay shrinks while the power-law decay is getting
broad.
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5. Conclusion

One-dimensional chain of classical interacting oscillators serve as a model for numerous applications in
physics, chemistry, biology, etc. Long-range interactions, i.e., with forces proportional to 1/jxj1+a are impor-
tant type of interaction for complex media. An interesting situation arrises when, for some reasons, the power
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a is non-integer. A remarkable feature of these interactions is the existence of a transform operator that
replaces the set of coupled individual oscillator equations into the continuous medium equation with the space
derivative of order a, where 0 < a < 2, a 5 1. Such transformation is an approximation and it appears in the
infrared limit. This limit helps to consider different models and related phenomena in unified way applying
different tools of fractional calculus.

Periodic space-localized oscillations which arise in discrete and continuous non-linear systems have been
widely studied in systems with short-range interactions. Here, the system with long-range interactions was
considered. The method to map the set of equations of motion onto the continuous fractional-order differen-
tial equation is developed in terms of the transform operator. It is known that the properties of a system with
long-range interactions are very different from short-range one. The method offers a new tool for the analysis
of different soliton- and breather-type solutions in such systems.

Vice versa, we hope that in some cases the obtained transform operator can be used to improve methods for
numerical solutions of equations with fractional derivatives.

In quantum case the application of the transform operator would be highly interesting for different prob-
lems with long-range power-law interactions.
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