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Abstract
Generalization of the Kac integral and Kac method for paths measure based on the Lévy distribution has been used to
derive fractional diffusion equation. Application to nonlinear fractional Ginzburg-Landau equation is discussed.
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1. Introduction

Kac integral [1-3] appears as a path-wise presentation of Brownian motion and shortly becomes, with
Feynman approach [4], a powerful tool to study different processes described by the wave-type or diffu-
sion-type equations. In the basic papers [1,4], the paths distribution was based on averaging over the Wiener
measure. It is worthwhile to mention the Kac comment that the Wiener measure can be replaced by the Lévy
distribution that has infinite second and higher moments. There exists a fairly rich literature related to gener-
alizations of Wiener measure (see for example [5,6]). Recently the Lévy measure was applied to derive a frac-
tional generalization of the Schrédinger equation [7,8] using the Feynman-type approach and expressing the
Lévy measure through the Fox function [9].

In this paper, we derive the fractional generalization of the diffusion equation (FDE) from the path integral
over the Lévy measure using the integral equation approach of Kac.
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2. Leévy distribution

Let us consider the transition probability P(x,¢|x’,#) that describes the evolution of the probability density
p(x,t) by the equation

p(x, 1) = [ APt )p (X, ), )
where

The function P(x,¢|x',#) can be considered as conditional distribution function. Then the normalization
condition

+00
/ dxP(x, (W, 1) = 1 (3)

holds. Assume that P(x,¢|x',¢) satisfies the Markovian (semigroup) condition
+00
P(x, o 1) = / dYP(x, ([, ) P(Y, o 1) @)
known also as the Chapman-Kolmogorov equation.

In physical theories, the stability of a family of probability distributions is an important property which
basically states that if one has a number of random variables that belong to some family, any linear combi-
nation of these variables will also be in this family. The importance of a stable family of probability distribu-
tions is that they serve as ‘““attractors” for linear combinations of non-stable random variables. The most
noted examples are the normal Gaussian distributions, which form one family of stable distributions. By
the classical central limit theorem the linear sum of a set of random variables, each with a finite variance tends
to the normal distribution as the number of variables increases. All continuous stable distributions can be
specified by the proper choice of parameters in the Lévy skew alpha-stable distribution [10] that is defined by

1 +00 o
L e A ] 5
where
U(p.y,2 B.c) = explivp — |epl"[1 — ifsign(p)@(z p))), (6)
and
[ tan(ma/2), O0<a<2, a#l;
o = el o @

Here y is a shift parameter, f§ is a measure of asymmetry, with = 0 yielding a distribution symmetric about y.
In Eq. (6), parameter c is a scale factor, which is a measure of the width of the distribution and « is the expo-
nent or index of the distribution.

Consider P(x,t|y,t) as a symmetric homogeneous Lévy alpha-stable distribution

/ / 1 oo . ! o
Pl flx, ) =Ky —x,0 —1) =5 / dpexp(ip(y —x) — (' = 0)Clpl’) (0 <a<2). (8)
For « =2, Eq. (8) gives the Gauss distribution
1 1 2)
Py, fxt) =————exp| ————O—x)"]. 9
0.110) = s e (=g O ©
Eq. (8) gives the function
l +0o0
K(x,1) = Z/ dpexp(ipx — 1C,|pl") (10)
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that can be presented as a Fourier transform

K(x, 1) = 7' (e 'l (11)
where
) = [ dpens) (12)

For o =2, Eq. (11) gives
1

K(x,t) =

ex ( x > (13)
VanCy P\ 40 )
In the general case, the function K(x, ), given by Eq. (11), can be expressed in terms of the Fox H-function
[7-9,11-14] (see Appendix).
3. Fractional Kac path integral

Let us denote by Cl[t,, t,] the set of trajectories starting at the point x, = x(¢,) at the time 7, and having the
endpoint x, = x(z,) at the time #,.
The Kac functional integral [2,3,15] is

tp
W (. by [ ) = / Dyx(t) exp (- / drV(x(r))), (14)
Clta,tp) lq
where V(x) is some function, and
Dyx = lim HK Axy, Aty )dxy. (15)

For (13), expression (15) gives

dxy (Axy)
Dwx = 1i -
wx = H VAnC,AL, exp ( 4C2Atk>7

which is the Wiener measure of functional integration [15]. The integral (14) is also called the Feynman-Kac
integral. Using (10) for o = 2, the path integral (14) can be written as

(16)

W (xp, ty]xa, 1) = lim ﬁ |, &dpi.. dx dp, exp ki(;(ipkAxk — A4 [Copi + V(%)) (17)

where the time interval [z,, ;] is partitioned as
:ta+ktb%t“, ty = ta, ty =1, (18)

and

Axp =X — Xk, Aty =t —ti, e =x(t),  pp = plte). (19)
The functional integral (17) can be rewritten as

W (s ol 1) = / TxTpexp < / " difips - Cp - V(x)]), (20)

ta

where

Zx = lim dek, Zp = lim H (21)

n—oo n—oo
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The Kac functional integral in the form (20) is a classical analog of the Feynman phase-space path integral,
which is also called the path integral in Hamiltonian form.

For the fractional generalization of the Wiener measure (15) and Kac integral (14), we consider K (x, ) given
by (10). Substitution of (10) into

W (xp, 1y, 1) = lim [ ik (Axi, Aty) exp(—An YV (x1), (22)
n— R" Tl
with
(A)C/”Alk / dpk exp(lpkAxk AtkC |pk‘ ) (0 < o< 2), (23)
gives
dx;d Pk
W (xp, ty|Xa; 1) = lim H expz (ipeAxi — At [Colpe]” + V(x0)])- (24)
n—o0 RZn : k 0

Similarly to (20), (21) this expression can be written as
tp
W (xp, ty|xay ta) = /ngpexp (/ dtfipx — C,|p|" — V(x)]) (25)
ta

This expression is a fractional generalization of (20).

If we introduce formally imaginary time such that
X = 1% _ &
dt  ds’

then (25) transforms into the Feynman path integral with a generalized action [7,8]
tp
Sl = [ dlpi = Copl” = V()
ta

as an action. Hamiltonian-type formal equations of motion are

dx —1 dp or(x)
= - _ _ 2
ds Na|p| © s o ( 6)

where N, = aC,sign(p).

4. Fractional diffusion equations

It is known that the Kac integral (14) can be considered as a solution of the diffusion equation [2,15].
Let us derive the corresponding diffusion equation for the fractional generalization of the Kac integral (25).

In (25) the integration is performed over a set C|t,,,] of trajectories that start at point x, = x(¢,) at time ¢,
and end at point x, = x(#,) at time ¢,. For simplification, z, = 0, x, = 0, and ¢, = ¢, x, = x are used. In partic-
ular, we can consider two following cases of Clt,, ;).

(1) The set C/[0, 7] consists of paths for which both the initial and final points are fixed. The integration over
this set obviously gives the transition probability

/ gWx:K(xb_xaatb_ta) :P(xb>tb|xaata)7
Cf[ta tb]
or

Dwx = K(x,1).
Crlog]
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The conditional fractional Wiener measure corresponds to the integration over the set C,[0, ] of paths
with fixed endpoints: x, = 0, x;, = x.

(2) If we consider a set C,[0, #] of trajectories with arbitrary endpoint x;, = x, the measure is called the uncon-
ditional Wiener measure. This measure satisfies the normalization condition

+o0o
SZWx:/ dx Dwx —/ dxK (x, ¢) (27)
Ca[Ot] -

0 C[[Ot

since it is a probability that the system ends up anywhere.

For simplification, we introduce the notation

t
Z[x,t] = exp (—/ drV(x(r))), (28)
0
and define the field
u(x,t) = W(x,¢0,0). (29)
For the Kac functional integral, we have with respect to (27),
+00
DwxZx, 1 :/ dx/ DwxZx, 1. (30)
C,[0,1] -0 Cr[0,]

Using notations (28), (29), expression (25) for ¢t, =0, x, = 0, and ¢, = ¢, x, = x can be presented as
t
u(x,t) = Dwx exp (—/ drV(x(r))) = DwxZx, 1. (31)
Cr[0.] 0 Clo]
To derive a diffusion equation, we use the identity [15]

exp <—/0 drV(x(r))) =1 —/0 dr{ exp< / dsV(x ﬂ (32)

Eq. (32) can be proved by using differentiation by ¢, and the value of the constant is found from the condition
of coincidence of both sides for = 0. For the notation (29), identity (32) has the form

t
Zhed=1- / de[V (x())Z[x, ). (33)
0
Eq. (33) can be integrated with respect to the conditional fractional Wiener measure:
t
DwxZlx,t] = Iwxl 7/ @Wx/ dt[V (x(7))Z]x, 1]]. (34)
crlo) crlo) crlo) 0

Changing the order of the integration in the second term in the right hand-side of (34), we get

[ 7o [tz = o [ anlrieo)zice)

/df/ /gw [ el )i

/ dr/ dx, V (x / DwxZx, 1| Dwx. (35)
[0,7] Crled]
The first term in the right hand-side of (34) gives

/ Iwxl = lim | ] duK(Ax,Ay) = lim [ ][] duK(Ax, Aty) = K(xh = Xay 15 — ta). (36)
C/ [ta tb] n—oo [Rn k:l n—oo Rn k:l
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Using (29), (36) and (35), (34) gives the integral equation

t 400
u(, 1) = K(x,1) — / dr / dv. ¥ (x)u(re, DK (x — o, — 7). (37)
0 —0o0
For this equation there exists the infinitesimal operator .Z, (generator) of time shift such that
Ou(x, t
40 _ (e, (38)
ot
Using (31) and (11), we obtain
aa
Lau(x,t) = Cy=——u(x,t) — lim — / d‘L’/ K (x —y, t — )V (y)u(y, 1), (39)
0lx|” -0 ¢

where 0”/0|x|" is a fractional Riesz derivative [16-19] of order 0 < o < 2 that is defined by its Fourier
transform

Srun) = 7 (o) = o [ dplpfitpe (40)
where
t) = /W dxu(x, t)e?. (41)
The initial cond;:ioon K(x,0) = 6(x) gives [15]
1301 : df / YK (x — .1 — D)V ()l ) = V(e)u(x, o). (42)

Then (39) gives
a_a
o a|x|:)(

This generator is an operator of fractional differentiation of order o.
As a result, we obtain

Qu(x,1) c 0"u(x, t)
o " o

Py=Cyt V(). (43)

— V(x)u(x,t), (44)

which is a diffusion equation with fractional coordinate derivatives. For o = 2, Eq. (44) is the usual diffusion
equation.

It is worthwile to mention that the way of obtaining fractional equation (44) is based on the exploiting the
properties of integral equation (37), while the expansion of exponents in (24) over small A#; has been used in
[7,8] for Feynman path integral.

5. Fractional diffusion equations by Kac approach
It is useful also to derive the fractional diffusion equation from (14) using Kac approach described in

Section 4. of [2].
The mathematical expectation value of Z[x, ] is defined as

E<exp (— /OtdrV(x(r))>> = s Dwxexp (/0, drV(x(r))). (45)

Using the expansion

exp (— /Ot doV(x ) i - V" (/tdrV(x(r)))m, (46)
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we get

<exp( /drV >> ; (_ml')m /a[m ch(/ dtV (x )))’”

The expression (47) can be presented as

E<exp(—/0tdrV(x(r))>> > / dv0, (v, 1),

where

0,,(x,1) Z% /C/m a@w)C(/OtdrV(x(f)))m-

These functions (49) satisfy the recurrence equations [2]

0,1 (x,1) = / e / QK (x — 1 — V() 03, 7),

and
QO(xv t) = K(X, t)'

Let us introduce

o0

Q(xa t) = Z(—l)QO(X, t)'

m=0

Then

O(x, 1) = :1 (_m1!)m [ e ( /0 [de(x(f))y =], 7o ( /0 t de(x(f))>7

o (- [ arsn) )= [ aten

It follows from (50) and (51) that the field O(x, ) satisfies the integral equation

t “+00
O(x,1) = Oy, 1) /0 dr / K (x — 3,0 — )V (1) O, 7).
There exists an infinitesimal operator %, of time shift such that

00(x,1)
T ZL,0(x,1).

Using (50) (49), and (11) this generator can be expressed through a fractional differential operator

and

t—0

2,00 = €z 0len) ~tim 1 [ ¢ [ a0 0)00:0)

The initial condition K(x,0) = 6(x) snmlarly to (42)
llnol ; dr/ K (x =y, t =)V ()0, 1) = V(x)O(x,1).
1—!
Then
aoc

ga = C“W_ V(x),

(47)

(53)
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where 0*/0|x|” is a fractional Riesz derivative of order 0 < o < 2 [16-19] that is defined as Fourier transform of

| pl".
As a result, we obtain

00(x,t) 0"O(x, 1)
ot - Coc a|x|1 - V(X)Q(X, t)a (60)

which is fractional diffusion equation that coincides with (44). Then
t
O(x,t) = W(x,0,0) = Dwxexp (/ d‘cV(x(r))). (61)
Cr[0.] 0

Using (52), the approximate solution of (44) can be presented as
u(xv t) ~ Qo(xv t) - Ql (X’ t) + QZ(xv t)
t +00
:K(x,t)—/ dr/ K (x —y,t —1)V(¥)K(p, 1)
0 00

+ /0 e /0 Cdr [ :0 dy [ :o AYK(x—y,t — VK — 7 — VDKW 0). (62)

for small enough 1(x).

6. Nonlinear fractional equations

Egs. (44) and (60) are linear equations with respect to the fields u(x,#) and Q(x,¢). In general, nonlinear
equations can be derived from the functional integral over the space of branching paths (see [21] and Section
VIL.4. of [20]). Note that Feynman path integral over the branching paths has been suggested in [22] (see also
[23,24]). The multiplicative representations of nonlinear diffusion equations are also considered in [25-27]. As
an example of nonlinear diffusion equation, which can be derived from integrals over the branching paths, is
an equation with the polynomial nonlinearity [20,21]:

Uu) = z’": arlu(x, )] (63)

Using fractional Kac integral over the branching Lévy paths [28,29], a nonlinear generalization of fractional
equation (44) can be derived in the form

e, 6“;5;;’) V@) + kzmzak[u(x, ol ()

For example, fractional equations with cubical nonlinearity can be obtained

Qu(x,t)  0"u(x,t)
5 =G N V(x)u(x, 1) + as[u(x, 1))’ . (65)

Eq. (65) is the fractional generalization of the Gross—Pitaevskii equation [30,31]. For ¥ (x) = const, Eq. (65) is
fractional Ginzburg-Landau equation that is suggested in [32] (see also [33,34]) to describe complex media
with fractional dispersion law.
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Appendix. Fox function representation for K (x,t)

In this section, we use the results of the paper [7] (see also [8]) to demonstrate how the function K(x,?)
defined by Eq. (10) can be expressed in the terms of the Fox H-function [9,11-14]. The Fox function represen-
tation of K(x,¢) can be considered as a fractional analog of expression (13).

To present K(x, ¢) in terms of the Fox H-function, we consider the Mellin transform of (10). Comparing of
the inverse Mellin transform with the definition of the Fox function [9,11], we obtain an expression in terms of
Fox H-function.

Using the relation K (x, 1) = K(—x, 1), it is sufficient to consider K (x, t) for x > 0 only. The Mellin transfor-
mation of (10) is

K(s,1) / dxex' 'K (x, 7) / dxx’™ 1/ dpexp(ipx — C,|p|"7). (66)
Changing the variables
— (€)™, x— (0
we present K (s, 1) as

[?(S, T) — % ((C&_E)l/ot)s—l ‘/OOO déés—l /+OO drleiﬂi,‘r"m. (67)

The integrals over d¢ and dy can be evaluated by using the equation [13]:

* 2 [T e 4 . w(s—1) s—1
s—1 né—n* __ _
/0 dég /0 dne =—ysin— F(s)F(l - ), (68)

where s — 1 < o < 2 and I'(s) is the gamma function.
Inserting of (68) into (67) and using the relations

I'(l —z)=—zI(-z), TI'(z2)I'(1-z)=mn/sinnz, (69)
we find

Then the inverse Mellin transform of (70) is
1 c+ioco 11 c+ioo a1 ( ( )
K = K TS —L L 1
&) =35 /Hx o Kis D) =755 / . SUED T rG)riy)’ )

where the integration contour is the straight line from ¢ — ico to ¢ + ico with 0 < ¢ < 1. Replacing s by —s,
we get

K(x,7) = é (C,7) i [ i = ds((Cr) Py % (72)

The integration contour may be deformed into one running clockwise around [—c¢, c0). Comparison with the
definition of the Fox H-function [9,11,12] gives

(0,1),(1/2,1/2) '
Using the properties of the Fox H-function [9,11,12], we obtain

~1/x 1 l/oc (1,1/2)
W mmd' 74)

1 ,
K(x,7) = —(Cyo) "2 | (Cur) 7 Vox
5 22

1
Ke) = (€
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Let us show by analogy with [7] (see also [8]) that Eq. (74) includes as a particular case at o = 2 the well
known Gauss distribution (13). Assuming o =2 in Eq. (74)

(1,1/2),(1,1/2)
_ gyll -1/2 )
K)o = 3o | G e (75)
The series expansion for the function (75) gives
Klxola = (€0 S AL (76)
2 k=0 k! F(T)

Substituting of k£ — 2/ into (76), and using

1 _ VT 21
F(E— 1) _7(_1)1<21)!(2) 1, (77)

the function K(x,7) can be rewritten as

CzT Rl —1/2021 (=) 1 x*
K E = - . 78
(x7 t)‘:x:Z ) 2211! vV 47TC2T xp 4C21’ ( )
Thus, it is shown that (13) can be derived from Eq. (74) with o = 2.

References

[1] Kac M. On the distributions of certain Wiener functionals-Preliminary report. Bull Am Math Soc 1948;54:64;
Kac M. On distributions of certain Wiener functionals. Trans Am Math Soc 1949;65:1-13.
[2] Kac M. Probability and related topics in physical sciences. London, New York: Interscience; 1957.
[3] Moral PD. Kac formulae: genealogical and interacting particle systems with applications. New York: Springer; 2004.
[4] Feynman RP. Space-time approach to non-relativistic quantum mechanics. Rev Mod Phys 1948;20:367-87.
[5] Barndorff-Nielsenn O, Mikosch T, Resnick SI, editors. Lévy processes: theory and applications. Boston: Birkhauser; 2001.
[6] Sato Ken-iti. Lévy processes and infinitely divisible distributions. Cambridge: Cambridge University Press; 1999.
[7] Laskin N. Fractional quantum mechanics and Lévy path integrals. Phys Lett A 2000;268(4):298-305. hep-ph/9910419.
[8] Laskin N. Fractional quantum mechanics. Phys Rev E 2000;62:3135-45;
Laskin N. Fractals and quantum mechanics. Chaos 2000;10:780-90;
Laskin N. Fractional Schrodinger equation. Phys Rev E 2002;66:056108.
Fox C. The G and H functions as symmetrical Fourier kernels. Trans Am Math Soc 1961;98:395-429.
Lévy P. Sur les integrales dont les elements sont des variables aleatoires independantes. Ann Pisa 1934;3:337-66.
Mathai AM, Saxena RK. The H-function with applications in statistics and other disciplines. New Delhi: Wiley Eastern; 1978.
Srivastava HM, Gupta KC, Goyal SP. The H-function of one and two variables with applications. New Delhi-Madras: South Asian
Publishers; 1982.
[13] West BJ, Seshadri V. Linear-systems with Lévy fluctuations. Phys A 1982;113:203-16.
[14] Glockle WG, Nonnenmacher TF. Fox function representation of non-Debye relaxation processes. J Stat Phys 1993;71:741-57.
[15] Chaichian M, Demichev A. In: Path integrals in physics. Stochastic processes and quantum mechanics, vol. 1. Bristol: Institute of
Physics; 2001.
[16] Samko SG, Kilbas AA, Marichev OI. Fractional integrals and derivatives theory and applications. New York: Gordon and Breach;
1993.
Oldham KB, Spanier J. The fractional calculus. New York: Academic Press; 1974.
Podlubny I. Fractional differential equations. San Diego: Academic Press; 1999.
Kilbas AA, Srivastava HM, Trujillo JJ. Theory and application of fractional differential equations. Amsterdam: Elsevier; 2006.
Daleckij Yul, Fomin SV. Measures and differential equations in infinite-dimensional space. Moscow: Nauka; 1983 [in Russian];
Daleckij YuL, Fomin SV. Measures and differential equations in infinite-dimensional space. Dordrecht: Kluwer; 1991 [in English].
[21] Daletskii YuL. Composition multiplicative integral of a formal power series. Funct Anal Appl 1980;14(4):309-11.
[22] Maslov VP, Chebotarev AM. Path integral over branching paths. Theor Math Phys 1980;45(3):1058-69.
[23] Jarvis PD, Bashford JD, Sumner JG. Path integral formulation and Feynman rules for phylogenetic branching models. J Phys A
2005;38:9621-47.
[24] Peres Y. Intersection-equivalence of Brownian paths and certain branching processes. Commun Math Phys 1996;177(2):417-34.
[25] Chernoff PR. Note on product formulas for operator semigroups. J Funct Anal 1968;2(2):238-42;
Chernoff PR. Product formulas, nonlinear semigroups and addition of unbounded operators. Memo Am Math Soc 1974;140:1-121.
[26] Marsden J. On product formulas for nonlinear semigroups. J Funct Anal 1973;13(1):51-72.
[27] Sevast’yanov BA. Branching processes. Moskov: Nauka; 1981 [in Russian].

[

[9
[10
11
[12

17
18
19

[
[
[
120



258 V.E. Tarasov, G.M. Zaslavsky | Communications in Nonlinear Science and Numerical Simulation 13 (2008) 248-258

[28] Le Gall JF, Le Jan Y. Branching processes in Lévy processes: the exploration process. Ann Prob 1998;26(1):213-52;
Le Gall JF, Le Jan Y. Branching processes in Lévy processes: Laplace functionals of snakes and superprocesses. Ann Prob
1998;26(4):1407-32.

[29] Vernon D, Howard M. Branching and annihilating Lévy flights. Phys Rev E 2001;63(4):041116.

[30] Gross EP. Structure of a quantized vortex in boson system. Nuovo Cimento 1961;20:454-77;
Gross EP. Hydrodynamics of a superfluid condensate. J Math Phys 1963;4:195-207.

[31] Pitaevskii LP. Vortex lines in an imperfect Bose gas. Zh Eksp Teor Fiz 1961;40:646-51;
Pitaevskii LP. English Transl Sov Phys. JETP-USSR 1961;13(2):451-4.

[32] Weitzner H, Zaslavsky GM. Some applications of fractional derivatives. Commun Nonlinear Sci Numer Simul 2003;8:273-81.
nlin.CD/0212024.

[33] Tarasov VE, Zaslavsky GM. Fractional Ginzburg-Landau equation for fractal media. Phys A 2005;354:249-61. physics/0511144.

[34] Milovanov AV, Rasmussen JJ. Fractional generalization of the Ginzburg-Landau equation: an unconventional approach to critical
phenomena in complex media. Phys Lett A 2005;337:75-80. cond-mat/0309577.



	Fractional generalization of Kac integral
	Introduction
	L eacute vy distribution
	Fractional Kac path integral
	Fractional diffusion equations
	Fractional diffusion equations by Kac approach
	Nonlinear fractional equations
	Acknowledgements
	Fox function representation for K(x,t)
	References


