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1. Introduction

Fractional derivatives of non-integer orders [1,2] have wide applications in physics and mechanics [4-13]. The tools of
fractional derivatives and integrals allow us to investigate the behavior of objects and systems that are characterized by
power-law non-locality, power-law long-term memory or fractal properties.

There are different definitions of fractional derivatives such as Riemann-Liouville, Riesz, Caputo, Griinwald-Letnikov,
Marchaud, Weyl, Sonin-Letnikov and others [1,2]. Unfortunately all these fractional derivatives have a lot of unusual prop-
erties. The well-known Leibniz rule D*(fg) = (D*f)g + f(D*g) is not satisfied for differentiation of non-integer orders [1]. For
example, we have the infinite series

o = I +1 o—
I P Lot 1)

0
for analytic functions on [a, b] (see Theorem 15.1 in [1]), where D* is the Riemann-Liouville derivative, D* is derivative of
integer order k. Note that the sum is infinite and contains integrals of fractional order for k > [¢] + 1. Formula (1) first ap-
peared in the paper by Liouville [3] in 1832.
The unusual properties lead to some difficulties in application of fractional derivatives in physics and mechanics. There
are some attempts to define new type of fractional derivative such that the Leibniz rule holds (for example, see [15-17]).
In this paper we proof that a violation of the Leibniz rule is one of the main characteristic properties of fractional deriv-
atives. We state that linear operator D* that can be defined on CZ(U), where U c R, such that it satisfied the Leibniz rule
cannot have a non-integer order «. In other words, a fractional derivative that satisfies the Leibniz rule is not fractional. It
should have integer order.

2. Hadamard’s theorem

We denote by C™(U) a space of functions f(x), which are m times continuously differentiable on U c R'. Let
D! =d/dx: C™(U) — C™'(U) be a usual derivative of first order with respect to coordinate x.
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It is well-known the following Hadamard’s theorem [14].
Hadamard’s Theorem. Any function f(x) € C' (U) in a neighborhood U of a point X, can be represented in the form

fx) =f(x0) + (x — X0)g(x), (2)
where g(x) € C"(U).

Proof. Let us consider the function
F(t) = f(xo + (X — Xxo)t). 3)
Then F(0) = f(xo) and F(1) = f(x). The Newton-Leibniz formula gives

1 1 1
F(1) — F(0) = /0 dt (D!F)(t) = /0 dt (DXf)(Xo + (X — X0)£) (X — X0) = (X — X) /0 dt (D}f) (%o + (x — Xo0)0). (4)

We define the function

1
g(x) = /0 dt (DXf) (%o + (x — x0)t). (5)

As the result, we have proved representation (2). O

3. Algebraic approach to fractional derivatives

We consider fractional derivatives D* of non-integer orders o by using an algebraic approach. Special forms of fractional
derivatives are not important for our consideration. We take into account the property of linearity and the Leibniz rule only.
For the operator D* we will consider the following conditions.
(1) R-linearity:
Dy(cif (x) + 028(x)) = 1 (Dif (X)) + €2 (Drg(x)), (6)

where ¢, and c; are real numbers. Note that all known fractional derivatives are linear [1,2].

(2) The Leibniz rule:
Dy (f(x)g(x)) = (Dif (x)) g(x) + f(x) (D& (x)). 7)

(3) If the linear operator satisfies the Leibniz rule, then the action on the unit (and on a constant function) is equal to zero:
D1 =0. (8)

Let us proof the following theorem.

Theorem (“No violation of the Leibniz rule. No fractional derivative”). If an operator D} can be applied to functions from
C%(U), where U c R! be a neighborhood of the point xo, and conditions (6) and (7) are satisfied, then the operator DY is the
derivative D} of integer (first) order, i.e. it can be represented in the form

D = a(x)Dy, ®

where a(x) are functions on R'.

Proof

(1) Using Hadamard’s theorem for the function g(x) in the decomposition (2), the function f(x) for x € U can be repre-
sented in the form

F(0) = f(x0) + (X = X0)g(X0) + (X — X0)* £2(), (10)
where g,(x) € C*(U), and U c R' is a neighborhood of the point x,.
Applying to equality (10) the operator D, and use D)f(xo) = 0, we get

(D3f)(X) = 8(Xo) + 2(X — X0) 85 (%) + (X — Xo)* (D3&5)(X). (11)
Then
(Daf)(%0) = &(Xo).
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As a result, we have

FX) = f(x0) + (X = %0) (Dyf ) (X0) + (X — X0)” £5(x). (12)
(2) Applying to equality (12) the operator D7, we get

(DA)(X) = Dif (xo) + D} (X = %) (D}f ) (x0) ) + i (X = o)’ 850 (13)
The Leibniz rule gives

(D)%) = Dif (Xo) + a(x) (Def)(X0) + (x — X0) (D5 (Dyf) (Xo) + 2a(x) (X — X0) 82(X) + (X — X0)” (D5 &) (X), (14)

where we use the notation

a(x) = (D (x — X0)) (X)- (15)
Then

(Dif)(%0) = Dif (Xo) + a(Xo) (D1f ) (Xo)- (16)
As a result, we have

D? = a(x) D} + b(x), (17)

where we define the function

b(x) = D1 (18)
and we use the R-linearity in the form

Dif (%0) = f(x0) (DX1).

(3) Using that D1 = 0 for linear operator, which satisfies the Leibniz rule, we get b(x) = 0, Dixo = xoD1 =0 and

D* = a(x) D, (19)

X

where a(x) = Dix.
As the result, we prove (9). O

Remark. In general, the property (8) is not satisfied for all type of fractional derivatives. For example, we have

o1 1 —a
D1 _mx

for Riemann-Liouville fractional derivative [2]. Note that DJx is not equal to one in general. For example,

1

1-a
NP

Dix =
for Riemann-Liouville fractional derivative [2].

Note that this theorem can be proved for multivariable case.

The theorem state that fractional derivative that satisfies the Leibniz rule coincides with differentiation of the order equal
to one, i.e. fractional derivatives of non-integer orders cannot satisfy the Leibniz rule. Unfortunately the Leibniz rule is sug-
gested for some new fractional derivatives (the modified Riemann-Liouville derivative that is suggested by Jumarie [15,16],
and local fractional derivative in the form that is suggested by Yang [17] and some other derivatives).

Linear operators D7 that satisfy the Leibniz rule cannot be considered as fractional derivatives of non-integer orders. Frac-
tional derivatives should be subject to a rule that is a generalization of the classical Leibniz rule

n
Di(fg) = >_(D"“f)(D'g)
k=0
to the case of differentiation and integration of fractional order (see Section 15. “The generalized Leibniz rule” of [1] and ref-
erences in it). It can be assumed with a high degree of reliability that the generalization of the Leibniz rule for all types of
fractional derivatives should be represented by an infinite series in general. The history of the generalizations of the Leibniz
rule for fractional derivatives, which is began from the paper [3] in 1868, is described in Section 17 (Bibliographical Remarks
and Additional Information to Chapter 3.) in [2].
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