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We suggest a generalization of vector calculus for the case of non-integer dimensional
space. The first and second orders operations such as gradient, divergence, the scalar and
vector Laplace operators for non-integer dimensional space are defined. For simplification
we consider scalar and vector fields that are independent of angles. We formulate a
generalization of vector calculus for rotationally covariant scalar and vector functions. This
generalization allows us to describe fractal media and materials in the framework of con-
tinuum models with non-integer dimensional space. As examples of application of the sug-
gested calculus, we consider elasticity of fractal materials (fractal hollow ball and fractal
cylindrical pipe with pressure inside and outside), steady distribution of heat in fractal
media, electric field of fractal charged cylinder. We solve the correspondent equations
for non-integer dimensional space models.
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1. Introduction

In general we can assume that space and space–time dimensions are D, which need not be an integer. Non-integer dimen-
sional spaces and method of dimensional continuation are initially emerged in statistical mechanics and quantum field the-
ory. Non-integer dimension D ¼ 4� e of space–time and e-expansion are actively used in the theory of critical phenomena
and phase transitions in statistical physics (for example, see [1,2]). Integration over non-integer dimensional spaces is used
in the dimensional regularization method as a powerful tool to obtain exact results without ultraviolet divergences in quan-
tum field theory [3–5]. In quantum theory, the divergences are parameterized as quantities with coefficients e�1 ¼ ð4� DÞ�1,
and then these divergences can be removed by renormalization to obtain finite physical values.

The axioms for integrals in non-integer dimensional space are suggested by Wilson in [6]. These properties are natural
and necessary in applications in different areas [5]. Theory of integration in non-integer dimensional spaces has been sug-
gested in [7,5,8]. Stillinger introduces [7] a mathematical basis of integration on spaces with non-integer dimensions. In [7]
has been suggested a generalization of the Laplace operator for non-integer dimensional spaces also. In the book by Collins
[5] the integration in non-integer dimensional spaces is formulated for rotationally covariant functions. The product
measure method, which is suggested in [9], and the Stillinger’s approach [7] are extended by Palmer and Stavrinou [8] to
multiple variables and different degrees of confinement in orthogonal directions. In the paper [8] extensions of integration
and scalar Laplace operator for non-integer dimensional spaces are suggested.
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The scalar Laplace operators, which are suggested in [7,8] for non-integer dimensional spaces, have a wide application in
physics and mechanics. Non-integer dimensional space has successfully been used as an effective physical description. The
Stillinger’s form of Laplacian first applied by He [10–13], where the Schrödinger equation in non-integer dimensional space
is used and the real confining structure is replaced by an effective space, such that the measure of the anisotropy or confine-
ment is given by the non-integer dimension. Non-integer dimensions is used by Thilagam to describe stark shifts of excitonic
complexes in quantum wells [14], exciton–phonon interaction in fractional dimensional space [15], and blocking effects in
quantum wells [16]. The non-integer dimensional space approach is used by Matos-Abiague [17–23] to describe momentum
operators for quantum systems and Bose-like oscillator in non-integer dimensional space, the polaron effect in quantum
wells. Quantum mechanical models with non-integer (fractional) dimensional space has been suggested by Palmer and Stav-
rinou [8], Lohe and Thilagam [24]. The non-integer dimensional space approach is used to describe algebraic properties of
Weyl-ordered polynomials for the momentum and position operators [25,26] and the correspondent coherent states [27].
The Stillinger’s form of Laplacian has been applied to the Schrödinger equation in non-integer dimensional space by Eid,
Muslih, Baleanu, Rabei in [28,29], Muslih and Agrawal [30,31], by Calcagni, Nardelli, Scalisi in [32]. The fractional Schröding-
er equation with non-integer dimensions is considered by Martins, Ribeiro, Evangelista, Silva, Lenzi in [33] and by Sandev,
Petreska, Lenzi [34]. Recent progress in non-integer dimensional space approach includes the description of the scalar field
on non-integer dimensional spaces by Trinchero [35], the fractional diffusion equation in non-integer dimensional space and
its solutions are suggested in [36]. The gravity in fractional dimensional space is described by Sadallah, Muslih, Baleanu in
[37,38], and by Calcagni in [39–41]. The electromagnetic fields in non-integer dimensional space are considered in [42–49].

Unfortunately, the basic articles [7,8] proposed only the second order differential operators for scalar fields in the form of
the scalar Laplacian in the non-integer dimensional space. The first order operators such as gradient, divergence, curl
operators, and the vector Laplacian are not considered in [7,8]. In the book [49] (see also [45–48]), the gradient, divergence,
and curl operators are suggested only as approximations of the square of the Palmer–Stavrinou form of Laplace operator.
Consideration only the scalar Laplacian in non-integer dimensional space approach greatly restricts us in application of
continuum models with non-integer dimensional space for fractal media and material. For example, we cannot use the
Stillinger’s form of Laplacian for displacement vector field uðr; tÞ in elasticity and thermoelasticity theories. We cannot con-
sider equations for the electric field Eðr; tÞ and the magnetic fields Bðr; tÞ for electromagnetic theory of fractal media by using
continuum models with non-integer dimensional space.

In this paper, we propose a vector calculus for non-integer dimensional space and we define the first and second orders
differential vector operations such as gradient, divergence, the scalar and vector Laplace operators for non-integer
dimensional space. For simplification we consider rotationally covariant scalar and vector functions that are independent
of angles. In order to derive the vector differential operators in non-integer dimensional space we use the method of analytic
continuation in dimension. For this aim we get equations for these differential operators for rotationally covariant functions
in Rn for arbitrary integer n to highlight the explicit relations with dimension n. Then the vector differential operators for
non-integer dimension D are defined by analytic continuation from integer dimensions n to non-integer D. These proposed
equations allows us to reduce D-dimensional vector differentiations to usual derivatives with respect to one variable r ¼ jrj.
It allows us to reduce differential equations in non-integer dimensional space to ordinary differential equations with respect
to r. The proposed operators allows us to describe fractal materials and media in the framework of continuum models with
non-integer dimensional spaces. In order to give examples of the possible applications, we consider continuum models of
fractal media and materials in the elasticity theory in the heat theory, and in the theory of electric fields. The correspondent
equations for non-integer dimensional space are solved.

2. Fractal media

The cornerstone of fractal media is the non-integer dimension [50] such as mass or charge dimensions [51,52]. In general,
fractal media and materials can be treated with three different approaches: (1) Using the methods of ‘‘Analysis on fractals’’
[53–58] it is possible to describe fractal materials; (2) To describe fractal media we can apply fractional–integral continuous
models suggested in [59–62,52] (see also [63–76]). In this case we use integrations of non-integer orders and two different
notions such as density of states and distribution function [52]; (3) Fractal materials can be described by using the theory of
integration and differentiation for a non-integer dimensional space [5,7,8].

The first approach, which is based on the use of analysis on fractal sets, is the most stringent possible method to describe
idealized fractal media. Unfortunately, it has two lacks. Firstly, a possibility of application of the analysis on fractals to solve
differential equations for real problems of fractal material is very limited due to weak development of this area of mathe-
matics at this moment. Secondly, fractal materials and media cannot be described as fractals. The main property of the fractal
is non-integer Hausdorff dimension [77] that should be observed on all scales. The fractal structure of real media cannot be
observed on all scales from the infinitely small to the infinitely large sizes. Materials may have a fractal structure only for
scales from the characteristic size of atoms or molecules of fractal media up to size of investigated sample of material.

The second approach, which is based on the use of fractional integration in integer dimensional spaces, can give adequate
models to describe fractal media. The main disadvantage of the fractional–integral continuum models is the existence of var-
ious types of fractional integrals, which led to the arbitrariness in the choice of the correspondent densities of states.

In this paper, we consider the third approach used the non-integer dimensional spaces. One of the advantages of this
approach is a possibility to avoid the arbitrary choice of densities of states. In addition, we also suggest a generalization
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of the vector calculus to the case of non-integer dimensional space. It allows us to use different continuum models of fractal
media and materials in the framework of non-integer dimensional space approach.

Real fractal materials can be characterized by the relation between the mass MDðWÞ of a ball region W of fractal medium,
and the radius R of this ball in the form MDðWÞ ¼ M0ðR=R0ÞD; R=R0 � 1, where R0 is the characteristic size of fractal medium
such as a minimal scale of self-similarity of a considered fractal medium. The number D is called the mass dimension. The
parameter D, does not depend on the shape of the region W, or on whether the packing of sphere of radius R0 is close packing,
a random packing or a porous packing with a uniform distribution of holes. As a result, fractal materials can be considered as
media with non-integer mass dimensions. Although, the non-integer dimension does not reflect completely the geometric
and dynamic properties of the fractal media, it nevertheless allows us to get important conclusions about the behavior of
these media. As it will be shown in the next section, the power law MDðWÞ � RD can be naturally derived by using the inte-
gration over non-integer dimensional space, where the space dimension is equal to the mass dimension of fractal media.

In order to describe fractal media by continuum models with non-integer dimensional space, we should use the concepts
of density of states cnðD; rÞ and distribution function qðrÞ. The density of states describes how closely packed permitted
places (states) in the space Rn, where the fractal medium is distributed. The expression cnðD; rÞdVn is equal to the number
of permitted places (states) between Vn and Vn þ dVn in Rn. The distribution function describes a distribution of physical val-
ues such as mass, electric charge, number of particles on a set of permitted places (possible states). In general, the concepts of
density of states and distribution function are different. We cannot reduce all properties of the fractal media to the distri-
bution function only, and we should use the concepts of density of states to characterize how closely packet permitted states
places in the media.

The most important property of fractal medium is the fractality, which means that the mass MDðWÞ of this medium in any
region W � Rn increases more slowly than the n-dimensional volume VnðWÞ of this region. For the ball region of the fractal
medium, this property can be described by the power law MDðWÞ � RD, where R is the radius of the ball, and D is the mass
dimension.

Another important property of some fractal media is homogeneity. Fractal medium is called homogeneous if the power
law MDðWÞ � RD does not depend on the translation of the region. The homogeneity property of the fractal medium means
that two regions W1 and W2 with the equal volumes VnðW1Þ ¼ VnðW2Þ have equal masses MDðW1Þ ¼ MDðW2Þ.

To adequately describe the fractal media by continuum models with non-integer dimensional spaces, the following two
requirements must be satisfied.

� In the continuum models the mass density of homogeneous fractal medium should be described by the constant
distribution function qðrÞ ¼ q0 ¼ const. Then equations with constant density should describe the homogeneous media,
i.e., the conditions qðrÞ ¼ const and VnðW1Þ ¼ VnðW2Þ should lead to the relation MDðW1Þ ¼ MDðW2Þ.
� In the continuum models the mass of the ball region W of fractal homogeneous medium should be described by a power

law relation M � RD, where 0 < D < 3, and R is the radius of the ball. Then the conditions VnðW1Þ ¼ knVnðW2Þ and
qðrÞ ¼ const, should lead to the relation MDðW1Þ ¼ kDMDðW2Þ.

These requirements cannot be realized if the mass of fractal medium is described by integration of integer order over the
integer dimensional space without using the concept of density of states cnðD; rÞ. In order to realize these requirements we
propose to use the integration and differentiation in non-integer dimensional spaces. In this case we can use the equation
dMDðWÞ ¼ qðrÞdVDðr;nÞ; ð1Þ
where qðrÞ is a distribution function, and the density of states cnðD; rÞ in Rn is chosen such that
dVDðr;nÞ ¼ cnðD; rÞdVn;
describes the number of permitted states in dVn. For different values of n 2 f1;2;3g we can use the notations
dVD ¼ c3ðD; rÞdV3; dSd ¼ c2ðd; rÞdS2; dlb ¼ c1ðb; rÞdl1; ð2Þ
to describe fractal media in the spaces Rn, where these media are distributed. For simplification, we also use the notation dDr
instead of dVDðr;nÞ. The form of function cnðD; rÞ is defined by the properties of considered fractal medium. The symmetry of
the density of states cnðD; rÞ is dictated by the symmetry properties of the described fractal medium, but in any cases it
should be a function of power-law type to adequately reflect a scaling property (fractality) of described fractal medium.
To simplify the analysis in this article we will consider only isotropic fractal media with densities of states that are indepen-
dent of angles.

In the continuum models of fractal media, it is convenient to work in the dimensionless space variables
x=R0 ! x; y=R0 ! x; z=R0 ! x, r=R0 ! r, that yields dimensionless integration and dimensionless differentiation in
non-integer dimensional space. In this case the physical and mechanical quantities of fractal media have correct physical
dimensions.
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3. Integration over non-integer dimensional space

The integral for all non-integer values of D is defined by continuation in D [4,5]. Let us give properties must we impose on
a functional of f ðrÞ in order to regard it as D-dimensional integration. The following properties or axioms [6] for integrals in
D-dimensional space are natural and necessary in applications [5]:

1. Linearity:
Z
af1ðrÞ þ bf2ðrÞð ÞdDr ¼ a

Z
f1ðrÞdDr þ b

Z
f2ðrÞdDr; ð3Þ
where a and b are arbitrary real numbers, and dDr ¼ dVDðr;nÞ represents the volume element in the non-integer dimensional
space.
2. Translational invariance:
Z

f ðrþ r0ÞdDr ¼
Z

f ðrÞdDr ð4Þ
for any vector r0.
3. Scaling property:
Z

f ðkrÞdDr ¼ k�D
Z

f ðrÞdDr ð5Þ
for any positive k.

Linearity is true of any integration, while translation and rotation invariance are basic properties of an Euclidean space.
The scaling property embodies the D-dimensionality. Not only are the above three axioms necessary, but they also ensure
that integration is unique, aside from an overall normalization [6].

These properties must be imposed on a functional of f ðrÞ in order to regard it as D-dimensional integrations [5]. These
properties are natural and are necessary in application of dimensional regularization to quantum field theory (see Section 4
in [5]).

A function f ðrÞ that we integrate could in principle be any function of the components of its vector argument r. However,
we do not, a priori, know the meaning of the components of, say, a vector in non-integer dimensions. In this paper, we will
work with rotationally covariant functions. So we will assume that f is a scalar or vector function only of scalar products of
vectors or of length of vectors. For example, in the elasticity theory, we consider the case, where the displacement vector
uðrÞ, is independent of the angles uðrÞ ¼ uðrÞ, where r ¼ jrj.

The integral defined in Eq. (6) satisfies the properties (3)–(5).
The D-dimensional integration for scalar functions f ðrÞ ¼ f ðjrjÞ can be defined in terms of ordinary integration by the

expression
Z
dDr f ðrÞ ¼

Z
XD�1

dXD�1

Z 1

0
dr rD�1 f ðrÞ; ð6Þ
where we can use
Z
XD�1

dXD�1 ¼
2pD=2

CðD=2Þ ¼ SD�1: ð7Þ
For integer D ¼ n, Eq. (7) gives the well-known area Sn�1 of ðn� 1Þ-sphere with unit radius.
As a result, we have [5] the explicit definition of the continuation of integration from integer n to arbitrary fractional D in

the form
Z
dDr f ðjrjÞ ¼ 2pD=2

CðD=2Þ

Z 1

0
dr rD�1 f ðrÞ: ð8Þ
This equation reduced D-dimensional integration to ordinary integration. Therefore the linearity and translation invariance
follow from linearity and translation invariance of ordinary integration. The scaling and rotation covariance are explicit
properties of the definition.

Let us give some examples of an application of Eq. (8). For the function
f ðr2Þ ¼ r2 þ a
r2 þ b

; ð9Þ
where a and b are real numbers. The integral for (9) can be explicitly computed
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Z
dDr

r2 þ a
r2 þ b

¼ ðpbÞD=2 ða=b� 1ÞCð1� D=2Þ: ð10Þ
The other example is the integral
Z
dDr

r2a

ðr2 þ a2Þb
¼ Cðaþ D=2ÞCðb� a� D=2Þ

CðD=2ÞCðbÞ pD=2 aDþ2a�2b; ð11Þ
where r ¼ jrj.
The mass of material in W is described by the integral
MDðWÞ ¼
Z

W
qðrÞdDr; ð12Þ
where r is dimensionless vector variable. For a ball with radius R and the density qðrÞ ¼ q0 ¼ const, we get the mass is
defined by
MDðWÞ ¼ q0 VD ¼
pD=2 q0

CðD=2þ 1Þ RD: ð13Þ
This equation defines the mass of the fractal homogeneous ball with volume VD. For D ¼ 3, Eq. (13) gives the well-known
equation for mass of non-fractal ball M3 ¼ ð4q0p=3ÞR3 because Cð3=2Þ ¼

ffiffiffiffi
p
p

=2 and Cðzþ 1Þ ¼ zCðzÞ.

4. Divergence for non-integer dimensional space

Let us consider hollow ball BDðR1; R2Þwith internal radius R1 and external radius R2 in non-integer dimensional space. The
boundary @BDðR1; R2Þ of this ball consists of two ðD� 1Þ-dimensional spheres SD�1ðR1Þ and SD�1ðR2Þ.

We assume that the vector field uðrÞ is radially directed and uðrÞ is not dependent on the angles, i.e.,
uðrÞ ¼ urðrÞer; ð14Þ
where er ¼ r=jrj and r ¼ jrj. We can defined a flux of the vector field uðrÞ across a surface @BDðR1; R2Þ by using the integration
in non-integer dimensional space suggested in [5]. A flux of the vector field uðrÞ across a ðD� 1Þ-dimensional surface SD�1 is
the integral
UuðSD�1Þ ¼
Z

SD�1

ðu;dSD�1Þ; ð15Þ
where dSD�1 ¼ er dSD�1.
The volume of BDðR1; R2Þ is equal to
VðBDðR1; R2ÞÞ ¼
pD=2

CðD=2þ 1Þ ðR
D
2 � RD

1 Þ: ð16Þ
An exact expression for dependence of the divergence operator on the non-integer dimension D and the vector field
uðrÞ ¼ urðrÞer can be derived by the equation
DivD
r u ¼ lim

VðBDðR1 ;R2ÞÞ!0

Uuð@BDðR1; R2ÞÞ
VðBDðR1; R2ÞÞ

: ð17Þ
Here the flux of the vector field can be represented by
Uuð@BDðR1; R2ÞÞ ¼
Z

SD�1ðR2Þ
ðu; dSD�1Þ �

Z
SD�1ðR1Þ

ðu;dSD�1Þ: ð18Þ
Using (14), we get
Z
@BDðR1 ;R2Þ

ðu;dSD�1Þ ¼
Z

SD�1ðR2Þ
ðu;dSD�1Þ �

Z
SD�1ðR1Þ

ðu; dSD�1Þ ¼ urðR2Þ
Z

SD�1ðR2Þ
dSD�1 � urðR1Þ

Z
SD�1ðR1Þ

dSD�1

¼ 2pD=2

CðD=2Þ urðR2ÞRD�1
2 � urðR1ÞRD�1

1

� �
; ð19Þ
where SD�1 ¼ ðer ; SD�1Þ.
For D ¼ 3, we have Cð3=2Þ ¼ ð1=2ÞCð1=2Þ ¼

ffiffiffiffi
p
p

=2, and
Z
@BDðR1 ;R2Þ

ðu;dSD�1Þ ¼ 4p urðR2ÞR2
2 � urðR1ÞR2

1

� �
: ð20Þ
For an infinitely thin hollow ball (thin spherical shell) with R1 ¼ r and R2 ¼ r þ Dr, we can use
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DivD
r u ¼ lim

Dr!0

Uuð@BDðr; r þ DrÞÞ
VðBDðr; r þ DrÞÞ ; ð21Þ
to derive an expression for the divergence for our case.
The volume of the ball BDðr; r þ DrÞ is
VðBDðr; r þ DrÞÞ ¼ pD=2

CðD=2þ 1Þ ðr þ DrÞD � rD
� �

¼ pD=2

CðD=2þ 1Þ D rD�1 Dr þ OððDrÞ2Þ
� �

¼ 2pD=2

CðD=2Þ rD�1 Dr þ OððDrÞ2Þ
� �

: ð22Þ
The flux of the vector field u ¼ urðrÞer across a surface @BDðR1; R2Þ is given by
Uuð@BDðr; r þ DrÞÞ ¼
Z

SD�1ðrþDrÞ
ðu;dSD�1Þ �

Z
SD�1ðrÞ

ðu;dSD�1Þ ¼
2pD=2

CðD=2Þ urðr þ DrÞ ðr þ DrÞD�1 � urðrÞ rD�1
� �

¼ 2pD=2

CðD=2Þ urðrÞ þ
@urðrÞ
@r

Dr þ OððDrÞ2Þ
� �

rD�1 þ ðD� 1ÞrD�2 Dr þ OððDrÞ2Þ
h i

� urðrÞrD�1
� �

¼ 2pD=2

CðD=2Þ rD�1 @urðrÞ
@r

þ ðD� 1ÞrD�2 urðrÞ þ OðDrÞ
� �

Dr: ð23Þ
Using (22) and (23), we get
Uuð@BDðr; r þ DrÞÞ
VðBDðr; r þ DrÞÞ ¼

@urðrÞ
@r

þ D� 1
r

urðrÞ þ OðDrÞ: ð24Þ
As a result, the divergence for the vector field u ¼ urðrÞer in non-integer dimensional space has the form
DivD
r u ¼ lim

Dr!0

Uuð@BDðr; r þ DrÞÞ
VðBDðr; r þ DrÞÞ ¼

@urðrÞ
@r

þ D� 1
r

urðrÞ: ð25Þ
The Gauss theorem in non-integer dimensional space can be written in the form
Z
BDðR1 ;R2Þ

DivD
r u dDr ¼

Z
@BDðR1 ;R2Þ

ðu;dSD�1Þ; ð26Þ
where we assume that the dimension D of the region of fractal materials and the dimension d of boundary of this region are
related by the equation d ¼ D� 1.

5. Vector differential operators in non-integer dimensional space

We would like to derive equations for vector differential operators in non-integer dimensional space. For this aim we
should have equations for these differential operators for rotationally covariant functions in the spherical coordinates in
Rn for arbitrary n to highlight the explicit relations with dimension n. Then the vector differential operators for non-integer
dimension D can be defined by analytic continuation in dimension from integer n to non-integer D.

To simplify we will consider only scalar fields u and vector fields u that are independent of angles
uðrÞ ¼ uðrÞ; uðrÞ ¼ uðrÞ ¼ ur er;
where er ¼ r=r; r ¼ jrj and ur ¼ urðrÞ is the radial component of u. We will work with rotationally covariant functions only.
This simplification is analogous to the simplification for definition of integration over non-integer dimensional space sug-
gested in [5].

Let us give equations for differential operators for functions u ¼ urðrÞer and u ¼ uðrÞ in the spherical coordinates in Rn for
arbitrary n.

The divergence in integer dimensional space Rn for the vector field u ¼ uðrÞer is
div u ¼ @ur

@r
þ n� 1

r
ur : ð27Þ
The gradient in integer dimensional space Rn for the scalar field u ¼ uðrÞ is
grad u ¼ @u
@r

er: ð28Þ
The scalar Laplacian in integer dimensional space Rn for the scalar field u ¼ uðrÞ is
DuðrÞ ¼ div grad uðrÞ ¼ @
2u
@r2 þ

n� 1
r

@u
@r

: ð29Þ
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The vector Laplacian [78] in integer dimensional space Rn for the vector field u ¼ uðrÞer is
DuðrÞ ¼ grad div uðrÞ ¼ @2ur

@r2 þ
n� 1

r
@ur

@r
� n� 1

r2 ur

 !
er: ð30Þ
As a result, we have equations of differential operators in Rn for continuation from integer n to arbitrary non-integer D in
the following forms.

The divergence in non-integer dimensional space for the vector field u ¼ uðrÞ is
DivD
r u ¼ @ur

@r
þ D� 1

r
ur: ð31Þ
The gradient in non-integer dimensional space for the scalar field u ¼ uðrÞ is
GradD
r u ¼

@u
@r

er: ð32Þ
The curl operator for the vector field u ¼ uðrÞ is equal to zero
CurlD
r u ¼ 0: ð33Þ
The scalar Laplacian in non-integer dimensional space for the scalar field u ¼ uðrÞ is
SDD
r u ¼ DivD

r GradD
r u ¼

@2u
@r2 þ

D� 1
r

@u
@r

: ð34Þ
The vector Laplacian in non-integer dimensional space for the vector field u ¼ uðrÞer is
VDD
r u ¼ GradD

r DivD
r u ¼ @2ur

@r2 þ
D� 1

r
@ur

@r
� D� 1

r2 ur

 !
er : ð35Þ
Let us consider a case of axial symmetry of the fractal material, where the fields uðrÞ and uðrÞ ¼ urðrÞer are also axially
symmetric. Let Z-axis be directed along the axis of symmetry. Therefore it is convenient to use a cylindrical coordinate sys-
tem. Equations for differential vector operations for cylindrical symmetry case have the following forms.

The divergence in non-integer dimensional space for the vector field u ¼ uðrÞ is
DivD
r u ¼ @ur

@r
þ D� 2

r
ur: ð36Þ
The gradient in non-integer dimensional space for the scalar field u ¼ uðrÞ is
GradD
r u ¼

@u
@r

er: ð37Þ
The scalar Laplacian in non-integer dimensional space for the scalar field u ¼ uðrÞ is
SDD
r u ¼ DivD

r GradD
r u ¼

@2u
@r2 þ

D� 2
r

@u
@r

: ð38Þ
The vector Laplacian in non-integer dimensional space for the vector field u ¼ uðrÞer is
VDD
r u ¼ GradD

r DivD
r u ¼ @2ur

@r2 þ
D� 2

r
@ur

@r
� D� 2

r2 ur

 !
er : ð39Þ
For D ¼ 3 Eqs. (31)–(39) give the well-known expressions for the gradient, divergence, scalar Laplacian and vector Lapla-
cian in R3 for fields u ¼ uðrÞ and uðrÞ ¼ urðrÞer .

It is easy to generalize these equations for the case u ¼ uðr; zÞ and uðr; zÞ ¼ urðr; zÞer þ urðr; zÞez. In this case the curl
operator for uðr; zÞ is different from zero, and
CurlD
r;zu ¼

@ur

@z
� @uz

@r

� �
er: ð40Þ
The suggested operators allow us to reduce D-dimensional vector differentiations (31)–(39) to derivatives with respect to
r ¼ jrj. It allows us to reduce partial differential equations for fields in non-integer dimensional space to ordinary differential
equations with respect to r.

6. Stillinger’s Laplacian for non-integer dimensional space

In the paper [7], the integration in a non-integer dimensional space is described by using the equation
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Z
RD

dDruðrÞ ¼ 2pðD�1Þ=2

CððD� 1Þ=2Þ

Z 1

0
dr rD�1

Z p

0
dhuðr; hÞ sinD�2h; ð41Þ
where dDr ¼ dVDðr;nÞ represents the volume element in the non-integer dimensional space. Using (41) with uðr; hÞ ¼ 1, and
Z p

0
dhsinD�2h ¼ p1=2 CðD=2� 1Þ

CðD=2Þ ; ð42Þ
we get
VD ¼
pD=2

CðD=2þ 1Þ RD; ð43Þ
which is the volume of a D-dimensional ball with radius R.
Using the analytic continuation of Gaussian integrals the scalar Laplace operator for non-integer dimensional space has

been suggested in [7]. For a function u ¼ uðr; hÞ of radial distance r and related angle h measured relative to an axis passing
through the origin, the Laplacian in non-integer dimensional space proposed by Stillinger [7] is
StDD ¼ 1
rD�1

@

@r
rD�1 @

@r

� �
þ 1

r2 sinD�2 h

@

@h
sinD�2 h

@

@h

� �
; ð44Þ
where D is the dimension of space (0 < D < 3), and the variables r P 0; 0 6 h 6 p. Note that StDD
� �2

– StD2D. If the function
depends on radial distance r only (u ¼ uðrÞ), then
StDDuðrÞ ¼ 1
rD�1

@

@r
rD�1 @uðrÞ

@r

� �
¼ @

2uðrÞ
@r2 þ D� 1

r
@uðrÞ
@r

: ð45Þ
It is easy to see that the Stillinger’s form of Laplacian StDD for radial scalar functions uðrÞ ¼ uðrÞ coincides with the suggested
scalar Laplacian SDD

r for this function,
StDDuðrÞ ¼ SDDuðrÞ: ð46Þ
The Stillinger’s Laplacian can be applied only for scalar fields and it cannot be used to describe vector fields u ¼ urðrÞer

because Stillinger’s Laplacian for D ¼ 3 is not equal to the usual vector Laplacian for R3,
StD3uðrÞ– DuðrÞ ¼ @2ur

@r2 þ
2
r
@ur

@r
� 2

r2 ur

 !
er: ð47Þ
For the vector fields u ¼ urðrÞer , we should use the vector Laplace operators (35) and (35).
Note that the gradient, divergence, curl operator and vector Laplacian are not considered in Stillinger’s paper [7]

7. Non-integer dimensional space for complex fractal media with d 6¼ D� 1

In general, the dimension D of the ball region BD of fractal materials and the dimension d of boundary Sd ¼ @BD of this
region are not related by the equation d ¼ D� 1, i.e.,
dimð@BDÞ – dimðBDÞ � 1; ð48Þ
where dimðBDÞ ¼ D. We assume that dimension of the boundary Sd ¼ @BD is
dimðSdÞ ¼ d: ð49Þ
Considering an infinitely thin hollow ball BD with R1 ¼ r and R2 ¼ r þ Dr, we can use
DivD;d
r u ¼ lim

Dr!0

UuðSdðr; r þ DrÞÞ
VðBDðr; r þ DrÞÞ ; ð50Þ
in order to derive an expression for the divergence for the case d – D� 1.
The flux of the vector field u ¼ urðrÞer across a surface Sd is
UuðSdðr; r þ DrÞÞ ¼ 2pðdþ1Þ=2

Cððdþ 1Þ=2Þ urðr þ DrÞ ðr þ DrÞd � urðrÞrd
� �

¼ 2pðdþ1Þ=2

Cððdþ 1Þ=2Þ rd @urðrÞ
@r

þ drd�1 urðrÞ þ OðDrÞ
� �

Dr: ð51Þ
Using (22) and (51), we get
UuðSdðr; r þ DrÞÞ
VðBDðr; r þ DrÞÞ ¼

pðdþ1�DÞ=2 CðD=2Þ
Cððdþ 1Þ=2Þ

1
rD�1�d

@urðrÞ
@r

þ d
rD�d

urðrÞ
� �

þ OðDrÞ: ð52Þ
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Using the limit Dr ! 0, we get the divergence operator for fractal media with d – D� 1 in the form
DivD;d
r u ¼ pðdþ1�DÞ=2 CðD=2Þ

Cððdþ 1Þ=2Þ
1

rD�1�d

@urðrÞ
@r

þ d
rD�d

urðrÞ
� �

: ð53Þ
We can define the parameter
ar ¼ D� d; ð54Þ
that can be interpreted as a dimension of medium along the radial direction. Using (54), Eq. (53) can be rewritten in the form
DivD;d
r u ¼ pð1�ar Þ=2 Cððdþ arÞ=2Þ

Cððdþ 1Þ=2Þ
1

rar�1

@urðrÞ
@r

þ d
rar

urðrÞ
� �

: ð55Þ
This is divergence operator for non-integer dimensional continuum models of fractal materials with d – D� 1. For ar ¼ 1, i.e.
d ¼ D� 1, equations (53) and (55) give (31).

We can assume that the gradient for the scalar field uðrÞ ¼ uðrÞ may depend on the radial dimension ar in the form
GradD;d
r u ¼ Cðar=2Þ

par=2 rar�1

@uðrÞ
@r

er ; ð56Þ
because expression (56) can be represented by the equation
GradD;d
r u ¼ lim

Dr!0

2ðuðr þ DrÞ �uðrÞÞ
VðBar ðr; r þ DrÞÞ ; ð57Þ
where
VðBar ðr; r þ DrÞÞ ¼ 2par=2

Cðar=2Þ rar�1 Dr þ OððDrÞ2Þ
� �

: ð58Þ
The presence of the factor of 2 in (57) is due to the fact that for D ¼ 1; r is integrated from �R to R, and when the limits are
taken as 0 and R, one gets a factor of 2.

For ar ¼ 1, Eq. (56) gives (32).
Using the operators (56) and (53) for the fields u ¼ uðrÞ and u ¼ uðrÞer , we can get the scalar and vector Laplace oper-

ators for the case d – D� 1 by the equation
SDD;d
r u ¼ DivD;d

r GradD;d
r u; VDD;d

r u ¼ GradD;d
r DivD;d

r u: ð59Þ
Then the scalar Laplacian for d – D� 1 for the field u ¼ uðrÞ is
SDD;d
r u ¼ Cððdþ arÞ=2ÞCðar=2Þ

par�1=2 Cððdþ 1Þ=2Þ
1

r2ar�2

@2u
@r2 þ

dþ 1� ar

r2ar�1

@u
@r

 !
; ð60Þ
and the vector Laplacian for d – D� 1 for the field u ¼ uðrÞer is
VDD;d
r u ¼ Cððdþ arÞ=2ÞCðar=2Þ

par�1=2 Cððdþ 1Þ=2Þ
1

r2ar�2

@2ur

@r2 þ
dþ 1� ar

r2ar�1

@ur

@r
� d� ar

r2ar
ur

 !
er : ð61Þ
The vector differential operators (56), (53), (60) and (61) allow us to describe complex fractal materials with the boundary
dimension of the regions d – D� 1.

8. Applications in mechanics and physics

In this section, we consider some applications of vector calculus in non-integer dimensional space to the elasticity theory,
the heat processes, and electrodynamics.

8.1. Elasticity of fractal material

For homogenous and isotropic materials, the equation of linear elasticity [79,80] for the displacement vector fields
u ¼ uðr; tÞ has the form
kgraddiv uþ 2lDuþ f ¼ qD2
t u; ð62Þ
where k and l are the Lame coefficients, and f is the external force density vector field.
If the deformation in the material is described by uðr; tÞ ¼ uðr; tÞer , then Eq. (62) has the form
ðkþ 2lÞDuðr; tÞ þ fðr; tÞ ¼ qD2
t uðr; tÞ: ð63Þ
A generalization of Eqs. (63) for fractal material in the framework of non-integer dimensional models has the form
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ðkþ 2lÞVDD
r uðr; tÞ þ fðr; tÞ ¼ qD2

t uðr; tÞ; ð64Þ
where VDD
r is defined by (35). Eq. (64) describes dynamics of displacement vector for fractal materials. For static case, Eq. (64)

has the form
VDD
r uðrÞ þ ðkþ 2lÞ�1 fðrÞ ¼ 0; ð65Þ
where u ¼ ur er and f ¼ f ðrÞer .
Let us consider some two problems for elasticity of fractal materials.

8.1.1. Elasticity of fractal hollow ball with pressure inside and outside
Let us determine the deformation of a hollow fractal ball with internal radius R1 and external radius R2, with the pressure

p1 inside and the pressure p2 outside.
We can use the spherical polar coordinates with the origin at the center of the ball. The displacement vector u is every-

where radial, and it is a function of r ¼ jrj alone. Then the equilibrium equation for fractal ball is
ðkþ 2lÞ VDD
r uðrÞ ¼ 0; ð66Þ
where u ¼ ur er . Using (35), we represent Eq. (66) in the form
@2urðrÞ
@r2 þ D� 1

r
@urðrÞ
@r

� D� 1
r2 urðrÞ ¼ 0: ð67Þ
The solution of (67) is
uðrÞ ¼ C1 r þ C2 r1�D: ð68Þ
The constants C1 and C2 are determined from the boundary conditions for radial stress
rrrðR1Þ ¼ �p1; rrrðR2Þ ¼ �p2: ð69Þ
Using that the radial components of the stress is
rrrðrÞ ¼ ð2lþ kÞ @ur

@r
þ k

D� 1
r

ur ; ð70Þ
we get
C1 ¼
�ðp2 RD

2 � p1 RD
1 Þ

ð2lþ DkÞ ðRD
2 � RD

1 Þ
; ð71Þ

C2 ¼
p2 � p1

2 ð1� DÞl ðRD
2 � RD

1 Þ
: ð72Þ
Then the radial components of the stress is
rrrðrÞ ¼
�ðp2 RD

2 � p1 RD
1 Þ

RD
2 � RD

1

þ ðp2 � p1Þ ðR1 R2ÞD

RD
2 � RD

1

r�D: ð73Þ
The stress distribution in a ball with pressure p1 ¼ p inside and p2 ¼ 0 outside is gives by
rrrðrÞ ¼
pRD

1

RD
2 � RD

1

1� R2

r

� �D
 !

: ð74Þ
The stress distribution in an infinite elastic medium with spherical cavity with radius R subjected to hydrostatic compres-
sion is
rrrðrÞ ¼ �p 1� R
r

� �D
 !

ð75Þ
that can be obtained by putting R1 ¼ R; R2 ! 1, p1 ¼ 0 and p2 ¼ p in Eq. (73).

8.1.2. Elasticity of cylindrical fractal solid pipe with pressure inside and outside
Let us consider the deformation of a fractal solid cylindrical pipe with internal radius R1 and external radius R2 with

pressure p1 inside and pressure p2 outside. We use the cylindrical coordinates with the z-axis along the axis of the pipe.
When the pressure is uniform along the pipe, the deformation is a purely radial displacement u ¼ urðrÞer , where er ¼ r=r.
The equation for the displacement urðrÞ in fractal pine is
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@2urðrÞ
@r2 þ D� 2

r
@ur

@r
� D� 2

r2 ur ¼ 0; ð76Þ
where 0 < D 6 3. If D ¼ 3, we get the usual (non-fractal) case.
The general solution of Eq. (76), where D – 1; D – 2, has the form
urðrÞ ¼ C1 r þ C2 r2�D: ð77Þ
Eqs. (76) with D ¼ 1 has the general solution
urðrÞ ¼ C1 r þ C2 r lnðrÞ: ð78Þ
For D ¼ 2, Eqs. (76) has the solution
urðrÞ ¼ C1 þ C2 r: ð79Þ
Note that dimensions D ¼ 1 or D ¼ 2 of the fractal pipe material do not correspond to the distribution of matter along the
line and surface. These dimensions describe a distribution of matter in 3-dimensional space (in the volume of pipe) such that
the mass dimensions are equal to D.

The constants C1 and C2 are determined by boundary conditions. Using that pressure is p1 inside and pressure p2 outside,
we get the boundary condition in the form
rrrðR1Þ ¼ �p1; rrrðR2Þ ¼ �p2: ð80Þ
Using (77) and
rrr ¼ ð2lþ kÞ @ur

@r
þ k

D� 2
r

ur ¼ ð2lþ k ðD� 1ÞÞC1 � 2l ðD� 2ÞC2 r1�D; ð81Þ
the boundary condition (80) gives
C1 ¼ �
p1 R1�D

2 � p2 R1�D
1

ð2lþ k ðD� 1ÞÞ ðR1�D
2 � R1�D

1 Þ
; ð82Þ

C2 ¼
p2 � p1

2l ðD� 2Þ ðR1�D
2 � R1�D

1 Þ
: ð83Þ
The stress for 2 < D < 3 or 1 < D < 2 can represented in the form
rrr ¼
p1 RD�1

1 � p2 RD�1
2

ðRD�1
2 � RD�1

1 Þ
� p2 � p1

ðRD�1
2 � RD�1

1 Þ
R1 R2

r

� �D�1

: ð84Þ
For the boundary conditions rrrðR2Þ ¼ 0 and rrrðR1Þ ¼ �p, i.e. p2 ¼ 0 and p1 ¼ p for (84), we have the solution
rrr ¼
pRD�1

1

ðRD�1
2 � RD�1

1 Þ
1� R2

r

� �D�1
 !

: ð85Þ
This is the deformation of cylindrical pipe with a pressure p inside and no pressure outside. For D ¼ 3, Eq. (85) has the well-
known form
rrr ¼
pR2

1

ðR2
2 � R2

1Þ
1� R2

r

� �2
 !

ð86Þ
that describes the stress of non-fractal material of pipe.

8.2. Heat equation for fractal materials

The heat equation is
@uðr; tÞ
@t

� aDuðr; tÞ ¼ 1
cp q

qðr; tÞ; ð87Þ
where uðr; tÞ is the heat density of a medium, qðr; tÞ is the heat source density, and a is the thermal diffusivity a ¼ k=cp q,
where k is thermal conductivity, q is density, cp is specific heat capacity.

A generalization of Eq. (87) for fractal material, has the form of the heat equation in the non-integer dimensional space
@uðr; tÞ
@t

� a SDD
r uðr; tÞ ¼

1
cp q

qðr; tÞ; ð88Þ
where we assume that the fields uðr; tÞ and qðr; tÞ are not depend on the angles.
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Using (34), we get the following equations for the ball
@2uðr; tÞ
@r2 þ D� 1

r
@uðr; tÞ
@r

þ 1
cp q

qðr; tÞ ¼ 1
a
@uðr; tÞ
@t

: ð89Þ
For the pipe and cylinder, we get
@2uðr; tÞ
@r2 þ D� 2

r
@uðr; tÞ
@r

þ 1
cp q

qðr; tÞ ¼ 1
a
@uðr; tÞ
@t

: ð90Þ
Steady states is described by the equation
@2uðrÞ
@r2 þ D� 1

r
@uðrÞ
@r

þ 1
cp q

qðrÞ ¼ 0: ð91Þ
The general solution of Eq. (91) is
uðrÞ ¼ C1 þ C2 r2�D þ 1
cp q ðD� 2Þ r2�D

Z
qðrÞ rD�1 dr �

Z
qðrÞ r dr

� �
; ð92Þ
where the constants C1 and C2 are determined by the boundary condition. For the constant heat source density
qðrÞ ¼ q0 ¼ const, Eq. (92) has the form
uðrÞ ¼ C1 þ C2 r2�D � q0

2Dcp q
r2: ð93Þ
For D ¼ 3, we get the well-known equation for non-fractal material.

8.3. Electric field of fractal charged infinite cylinder

Let us consider a uniformly fractal charged infinite circular cylinder of radius R with a volume charge density q ¼ const
and non-integer dimension 2 < D 6 3. Using the Poisson equation for scalar potential created by an infinite circular cylinder.
We assume that the Z-axis is directed along the axis of the cylinder. Due to the axial symmetry of the charge distribution the
potential is also axially symmetric. Therefore it is convenient to use a cylindrical coordinate system. The Poisson equation for
scalar field uðrÞ in non-integer dimensional space has the form
@2u
@r2 þ

D� 2
r

@u
@r
¼ � q

e0
ð0 < r < RÞ; ð94Þ

@2u
@r2 þ

D� 2
r

@u
@r
¼ 0 ðr > RÞ: ð95Þ
The general solution of equations (94) and (95) are
uðrÞ ¼ C1 þ C2 r3�D � q r2

2e0 ðD� 1Þ ð0 < r < RÞ; ð96Þ

uðrÞ ¼ C3 þ C4 r3�D ðr > RÞ; ð97Þ
where C1; C2; C3; C4 are the integration constants, and 2 < D 6 3. For the case D ¼ 3, the general solution of equations (94)
and (95) has the well-known form
uðrÞ ¼ C1 þ C2 lnðrÞ � q r2

4e0
ð0 < r < RÞ; ð98Þ

uðrÞ ¼ C3 þ C4 lnðrÞ ðr > RÞ: ð99Þ
The electric fields
EðrÞ ¼ �GradD
r u ¼ � @uðrÞ

@r
er ð100Þ
for potentials (96) and (97) are
EðrÞ ¼ ðD� 3ÞC2 r2�D þ q r
e0 ðD� 1Þ

� �
er ð0 < r < RÞ; ð101Þ

EðrÞ ¼ ðD� 3ÞC4 r2�D er ðr > RÞ: ð102Þ
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Because the electric field (100) must be finite at all points, and r2�D ! 1 for r ! 0 and 2 < D 6 3, it is necessary put C2 ¼ 0.
Conveniently potential normalized by the condition uð0Þ ¼ 0, then we get C1 ¼ 0. Because there are no surface charges, then
the electric field (100) at the surface of the cylinder r ¼ R is continuous, i.e. the derivative of the potential should be
continuous. The conditions of continuity of the potential and its derivative at r ¼ R give two algebraic equations that allow
us to determine the remaining two constants C3 and C4 by the equations
� qR2

2e0 ðD� 1Þ ¼ C3 þ C4 R3�D; ð103Þ

qR
e0 ðD� 1Þ ¼ ðD� 3ÞC4 R2�D: ð104Þ
Then we have
C3 ¼ �
qR2

2e0 ðD� 3Þ ; C4 ¼
qRD�1

e0 ðD� 1Þ ðD� 3Þ : ð105Þ
As a result, the potential is
uðrÞ ¼ � q r2

2e0 ðD� 1Þ ð0 < r 6 RÞ; ð106Þ

uðrÞ ¼ � qR2

2e0 ðD� 3Þ þ
qRD�1

e0 ðD� 1Þ ðD� 3Þ r3�D ðr P RÞ: ð107Þ
Using (100), (106) and (107), the electric field has the form
EðrÞ ¼ q r
e0 ðD� 1Þ er ð0 < r 6 RÞ; ð108Þ

EðrÞ ¼ qRD�1 r2�D

e0 ðD� 1Þ er ðr P RÞ: ð109Þ
For D ¼ 3, we get the well-known results of non-fractal case.
Eq. (108) can be represented in the form
EðrÞ ¼ q r
2e0eeff ;in

er ð0 < r 6 RÞ; ð110Þ
where eeff ;in ¼ ðD� 1Þ=2 is an effective permittivity of fractal materials. Consider the charge per unit length
sD ¼ qVD�1 ¼ q
pðD�1Þ=2RD�1

CððDþ 1Þ=2Þ : ð111Þ
For D ¼ 3, Eq. (111) gives the value s3 ¼ qpR2 for non-fractal charge cylinder. Using (111) Eq. (109) can be represented in
the form
EðrÞ ¼ 1
2pe0 eeff ;out

sD

rD�2 er ðr P RÞ; ð112Þ
where the effective permittivity
eeff ;out ¼
ðD� 1Þ

2 pð3�DÞ=2 CððD� 1Þ=2Þ : ð113Þ
The electric field in the fractal homogeneous charged cylinder is analogous to the non-fractal case up to the factor eeff ;in.
We have a linear dependence on the distance from the cylinder axis for 0 < r 6 R. Electric field outside the fractal charged
cylinder differs from non-fractal case. For r P R, we have power-law dependence on the distance from the cylinder axis. In
addition the electric field outside the cylinder is reduced by the effective permittivity eeff ;out .

9. Conclusion

In this paper, differential operators of vector calculus for non-integer dimensional space is suggested to describe fractal
media and materials in the framework of continuum models. The first and second order differential operators for non-integer
dimensional space are proposed for rotationally covariant scalar and vector functions. We consider some applications for the
case of spherical and axial symmetries of the fractal material. Elasticity of fractal hollow ball and fractal cylindrical pipe, heat
distribution in fractal media, and electrostatic field of fractal charged cylinder are described to illustrate the suggested
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approach. In general, we can consider not only first and second order differential operators for non-integer dimensional
space. The differential and integral operators of fractional orders can also be considered for non-integer dimensional spaces
to take into account non-locality of materials. We can note that a dimensional continuation of the Riesz fractional integrals
and derivatives [81,82] to generalize differential and integrals of fractional orders for non-integer dimensional space has
been considered in [83].
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