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Derivatives and integrals of non-integer order may have a wide application in describing
complex properties of materials including long-term memory, non-locality of power-law
type and fractality. In this paper we consider extensions of elasticity theory that allow
us to describe elasticity of materials with fractional non-locality, memory and fractality.
The basis of our consideration is an extension of the usual variational principle for frac-
tional non-locality and fractality. For materials with power-law non-locality described
by Riesz derivatives of non-integer order, we suggest a fractional variational equation.
Equations for fractal materials are derived by a generalization of the variational principle
for fractal media. We demonstrate the suggested approaches to derive corresponding gen-
eralizations of the Euler–Bernoulli beam and the Timoshenko beam equations for the con-
sidered fractional non-local and fractal models. Various equations for materials with
fractional non-locality, fractality and fractional acceleration are considered.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Derivatives and integrals of non-integer orders [1–5] have wide applications in mechanics and physics [6–15]. The tools
of fractional derivatives and integrals allow us to investigate the behavior of materials and systems that are characterized by
power-law non-locality, power-law long-term memory and fractal properties. As concluded from the above listed works,
there are different definitions of fractional derivatives such as Riemann–Liouville, Riesz, Caputo, Grünwald-Letnikov, Mar-
chaud, Weyl, Sonin–Letnikov and others. The specific choice of fractional derivatives for a particular application, it thus
depends on the taste of the investigator and the nature of the material or system at hand. Many properties of standard dif-
ferentiation and integration do not extend in the fractional case and fractional counterpart of popular models need to be
rederived, each on individual basis.

Usually non-local continuum mechanics are treated with two approaches [16]: The gradient elasticity theory (weak non-
locality) and the integral non-local theory (strong non-locality). The fractional calculus can, in fact, be used to formulate a
generalization of non-local theory of elasticity in both forms: fractional gradient elasticity (weak power-law non-locality)
and fractional integral elasticity (strong power-law non-locality). In this paper, we consider fractional generalizations of
y, Jeddah
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the gradient elasticity theory only. In particular, we suggest fractional generalizations of a rather popular robust GRADELA
model proposed by Aifantis and co-workers [17–22] for the following cases:

(1) The elasticity of materials with power-law non-locality that can be described by derivatives of non-integer order. Both
1D and 3D models are discussed.

(2) The elasticity of materials with power-law memory that can be described by fractional time derivatives for the
internal inertia or combined strain-acceleration fractional gradient terms.

(3) The elasticity of materials with fractal structure that can be described by fractional integrals in the framework of
fractional continuum models.

The basis of our consideration is an extension of the usual variational principle for materials with fractional non-locality,
memory and fractality. For 3D spatial fractional models we also use the apparatus of fractional vector calculus. An extension
of the traditional calculus of variations for systems described by fractional derivatives was first proposed by Agrawal in [23]
for the Riemann–Liouville derivatives. Then it has been extended for other type of fractional derivatives [24–29], and frac-
tional integrals [30]. For materials with power-law non-locality and memory, we suggest a new fractional variational prin-
ciple for Lagrangians with Riesz fractional derivatives. A possible generalization of gradient elasticity theory for fractal
materials was alluded in [31]. In this paper we describe fractal materials by using the fractional continuum formalism sug-
gested in [32,33] (see also [34–37]). To obtain governing equations for fractional integral continuum models of fractal mate-
rials, we employ a generalization of the holonomic variational principle suggested in [36,35]. In this connection, we note that
extremum and variational principles for non-gradient but fractal elastic materials within a fractional continuum model
framework have been considered in [37,38].

The Euler–Bernoulli beam theory may be viewed as a benchmark example of the classical linear theory of elasticity. It
provides tools for calculating the load-carrying and deflection characteristics of beams subjected to lateral loads only. In
order to illustrate the implications of the suggested fractional approaches in this paper, we use a variational principle to
derive the corresponding generalizations of the static and dynamic Euler–Bernoulli beam model, as well as that of the Tim-
oshenko beam model for the fractional non-local and fractal cases. Solutions to some of these equations for fractional non-
local and fractal beams are considered.

Next, we list some non-standard generalizations of constitutive relations for gradient elasticity models. First, we recall the
linear elastic constitutive relations for isotopic and homogeneous bodies, i.e.,
where

where

where
consid
The p
variat
Soluti
rij ¼ kekkdij þ 2leij; ð1Þ
where rij is the stress tensor, eij is the strain tensor, whereas k and l are the Lame coefficients. In [17–19] it was suggested a
generalization of the constitutive relations (1) by a gradient modification that contains the Laplacian D in the form
rij ¼ kekkdij þ 2leij
� �

� l2s D kekkdij þ 2leij
� �

; ð2Þ
where ls is an internal length scale parameter [16]. To describe complex materials characterized by non-locality of power-
law type, long-term memory, and fractality, we should further generalize Eq. (1) and its gradient counterpart given by Eq.
(2). In this paper, we consider the following non-standard generalizations of the gradient stress–strain relation.

(1) The fractional gradient elasticity models with power-law non-locality
rij ¼ kekkdij þ 2leij
� �

� l2s ðaÞ ð�RDÞa=2
kekkdij þ 2leij
� �

; ð3Þ

ð�RDÞa=2 is the fractional generalization of the Laplacian in the Riesz form, and

rij ¼ kekkdij þ 2leij
� �

� l2s ðaÞ CDa
W kekkdij þ 2leij
� �

; ð4Þ
CDa

W is the fractional Laplacian in the Caputo form.
where
(2) The combined fractional strain gradient-internal inertia model with power-law memory and non-locality
rij ¼ kekkdij þ 2leij
� �

� l2
s ðaÞ ð�RDÞa=2 þ l2

dðbÞ ðRDb
t Þ

2
� �

kekkdij þ 2leij
� �

; ð5Þ

ðRDb
t Þ

2
is the square of the derivative of non-integer order b with respect to time t, which describes acceleration with

r-law memory.
powe
(3) The gradient elasticity models for fractal materials
rij ¼ kekkdij þ 2leij
� �

� l2F ðD; dÞD
ðD;dÞ kekkdij þ 2leij

� �
; ð6Þ

DðD;dÞ is the ‘‘fractal-Laplacian’’ that takes into account the power-law density of states of the fractal medium under
eration.

lan of the paper is as follows: In Section 2, we consider one-dimensional (1D) fractional gradient elasticity models. A
ional principle for these models is suggested. Fractional Euler–Bernoulli and Timoshenko beam equations are derived.
ons for the fractional static and dynamic Euler–Bernoulli beam governing equations are proposed. Corresponding frac-
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beam models with combined strain-internal inertia gradient terms are also considered. Moreover, solutions of the rel-
generalized equation and dispersion law for this model are derived. In Section 3, three-dimensional (3D) fractional
nt elasticity models are formulated and discussed. In particular, 3D problems with spherical symmetry based on
esz fractional derivative are considered. In addition, fractional 3D gradient elasticity models based on fractional vector
us are suggested. The operator split method for solving the relevant fractional gradient elasticity equations is formu-
To illustrate the potential of this method, a simple fractional gradient model is considered as an application and an
it solution is provided. In Section 4, some basic concepts for extending gradient elasticity models to fractal media
ggested. The equilibrium equations for fractal materials are first derived. A variational principle for obtaining gradient
ity equations for fractal materials is then proposed. Finally, in Section 5, generalizations of the Euler–Bernoulli and
henko beam equations for fractal materials and the corresponding equations for the combined strain-acceleration gra-
fractal beam models are derived.
2. Fractional 1D gradient elasticity

Fractional elasticity models are those for which non-locality of power-law type is described by using derivatives and inte-
grals of non-integer order. We can derive such phenomenological fractional elasticity models by using a variational principle
for a Lagrangian with fractional derivatives. A generalization of the traditional calculus of variations for systems described by
Riemann–Liouville fractional derivatives has been suggested by Agrawal in [23]. Then, extensions of variational calculus for
the Riemann–Liouville derivatives [24], the Caputo derivative [25–27], the Hadamard derivative [28], the Riesz derivative
[29], as well as fractional integrals [30], have been derived.

If we use the fractional derivatives of Riemann–Liouville, Caputo, Liouville, Marchaud, then we should take into account
the left-sided and the right-sided fractional derivatives in the Lagrangian. The correspondent fractional Euler–Lagrange equa-
tions contain the left-sided and the right-sided fractional derivatives also. In addition, the integration by parts, which is used
in the derivation of the Euler–Lagrange equations from the variational principle, transforms the left-sided derivatives into the
right-sided (see Eq. 2.64 of [1]). As a result, we obtain a mixture of left-sided and the right-sided derivatives in the equations of
motion. Unfortunately, these Euler–Lagrange equations can be solved for a very narrow class of Lagrangians only.

In this paper, we suggest a fractional variational principle for systems that are described by Riesz fractional derivatives
[1,2]. The suggested principle differs from the one proposed in [29]. We take advantage of the fact that the Riesz derivative
does not involve two forms, i.e., left-sided and right-sided derivatives. In addition, integration by parts transforms the Riesz
fractional derivative into itself. The corresponding fractional Euler–Lagrange equations can be solved for a wide class of
Lagrangians that describe nonlocal materials by the methods described in [2]. Moreover, the Riesz fractional derivatives
naturally arise in the elasticity theory based on lattice models [52–56]. As an example, we derive the fractional gradient gen-
eralization of the Euler–Bernoulli beam model and provide some general solutions of the corresponding equations for both
static and dynamics configurations.

2.1. Fractional 1D gradient elasticity from variational principle

To generalize standard variational principles for fractional nonlocal models, we write all expressions in dimensionless
coordinate variables. We can introduce the dimensionless variables xk ¼ x0k=l0; r ¼ r0=l0, where l0 is a characteristic scale.
This allows us to have usual physical dimensions of measured quantities.

The equation for the fractional gradient elasticity can be derived as the Euler–Lagrange equation of the following action
S½w� ¼
Z

dt
Z

dx Lðw;D1
t w; RDa1

x w; RDa2
x wÞ; ð7Þ
where Lðw;D1
t w; RDa1

x w; RDa2
x wÞ is the Lagrangian defining the 1D fractional elasticity model, w ¼ wðx; tÞ denotes the displace-

ment field, and x is the dimensionless coordinate.
The variation of the action functional (7) with respect to wðx; tÞ and its derivatives is given by
dS½w� ¼
Z

dt
Z

dxdL ¼
Z

dt
Z

dx
@L
@w

dwþ @L
@D1

t w

 !
dðD1

t wÞ þ @L
@RDa1

x w

� �
dðRDa1

x wÞ þ @L
@RDa2

x w

� �
dðRDa2

x wÞ
" #

; ð8Þ
where, in the absence of non-holonomic constraints, the variation and fractional derivatives commute, i.e.
dðD1
t wÞ ¼ D1

t ðdwÞ; dðRDa1
x wÞ ¼ RDa1

x ðdwÞ; dðRDa2
x wÞ ¼ RDa2

x ðdwÞ:
In order to utilize the fractional variational principle, we should perform the operation of integration by parts. Unfortu-
nately, integration by parts transforms left-sided derivatives into right-sided ones for the most commonly used types of frac-
tional derivatives. For the Liouville fractional derivatives
LDa
�f

� �
ðxÞ ¼ ð�1Þn

Cðn� aÞ
dn

dxn

Z 1

0

f ðx� zÞ
zaþ1�n dz; ð9Þ
the integration by parts (see Eq. 5.17 in Section 5.1 of [1]) has the form
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Z þ1

�1
f ðxÞ LDa

þg
� �

ðxÞdx ¼
Z þ1

�1

LDa
� f

� �
ðxÞgðxÞdx: ð10Þ
For the Marchaud fractional derivatives, which is defined by
MDa
�f

� �
ðxÞ ¼ a

Cð1� aÞ

Z 1

0

f ðxÞ � f ðx� zÞ
zaþ1 dz; ð11Þ
the integration by parts (see Eq. 6.27 in Corollary 2 of Theorem 6.2 of [1]) has the form
Z þ1

�1
f ðxÞ MDa

þg
� �

ðxÞdx ¼
Z þ1

�1

MDa
� f

� �
ðxÞgðxÞdx: ð12Þ
This relation is valid for functions f ðxÞ 2 LsðRÞ, f ðxÞ 2 LtðRÞ, such that MDa
þg

� �
ðxÞ 2 LpðRÞ and MDa

� f
� �

ðxÞ 2 LrðRÞ,
where p > 1, r > 1,
1
p
þ 1

r
¼ 1þ a;

1
s
¼ 1

p
� a;

1
t
¼ 1

r
� a:
We suggest the use of Riesz fractional derivatives. It is known (see Section 20.1 of [1]) that the connection of the Riesz
fractional derivative to the Marchaud fractional derivatives has the form
RDa
x f

� �
ðxÞ ¼ 1

2 cosðap=2Þ

�
MDa

þ f
� �

ðxÞ þ MDa
� f

� �
ðxÞ
�
; ð13Þ
where a > 0, and a – 1;2;3; . . .. Here RDa
x is the Riesz fractional derivative defined by the equation
RDa
x f

� �
ðxÞ ¼ � a

2Cð1� aÞ cosðap=2Þ

Z 1

0

f ðxþ zÞ � 2f ðxÞ þ f ðx� zÞ
zaþ1 dz; ð14Þ
where x 2 R. Note that the Riesz derivative for an integer a ¼ 2n gives
RD2n
x f

� �
ðxÞ ¼ ð�1Þn D2

x f ðxÞ; ð15Þ
where n 2 N, i.e.
RD2
x ¼ �D2

x ;
RD4

x ¼ D4
x ;

RD6
x ¼ �D6

x : ð16Þ
Using relations (13) and (12), we obtain the equation of the integration by parts for the Riesz fractional derivative (13) in the
form
 Z þ1

�1
f ðxÞ RDa

x g
� �

ðxÞdx ¼
Z þ1

�1

RDa
x f

� �
ðxÞgðxÞdx: ð17Þ
As a result, integration by parts in Eq. (17) does not change the type of derivative, and also does not change the sign in front
of the integral.

Using the integration by parts given by Eq. (17), we can rewrite the variation in Eq. (8) as
dS½w� ¼
Z

dt
Z

dx
@L
@w

dw� D1
t

@L
@D1

t w

 !
þ RDa1

x
@L

@RDa1
x w

� �
þ RDa2

x
@L

@RDa2
x w

� �" #
dw: ð18Þ
Then, the stationary action principle in the form of the holonomic variational equation
dS½w� ¼ 0
yields the equation
@L
@w
� D1

t
@L
@D1

t w

 !
þ RDa1

x
@L

@RDa1
x w

� �
þ RDa2

x
@L

@RDa2
x w

� �
¼ 0: ð19Þ
This is the fractional Euler–Lagrange equation for the model described by the Lagrangian L ¼ Lðw;D1
t w; RDa1

x w; RDa2
x wÞ. In the

next section, we use this equation to establish a fractional generalization of the Euler–Bernoulli beam model.

2.2. Fractional Euler–Bernoulli beam equation from variational principle

The Lagrangian of Euler–Bernoulli beams with gradient power-law non-locality has the form
Lðw;D1
t w; RDa1

x w; RDa2
x wÞ ¼ 1

2
l D1

t wðx; tÞ
� �2

� 1
2
ðEIÞ RDa1

x wðx; tÞ
� �2�

�1
2
ðEIÞ l2

s ða2Þ RDa2
x wðx; tÞ

� �2 þ qðx; tÞwðx; tÞ: ð20Þ
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The curve wðxÞ ¼ uyðxÞ describes the deflection of the beam in the y direction at some position x. As we have already noted, x
and l2

s ða2Þ are dimensionless values. The first term represents the kinetic energy, where l ¼ qA is the mass per unit length;
the second term describes the potential energy due to internal forces (when considered with a negative sign); and the third
term is the potential energy due to the external load qðxÞ. Note that in the Lagrangian of Eq. (20) the second term has a neg-
ative sign, since integration by parts in Eq. (17) does not change the sign in front of the integral, in contrast to the standard
case.

For the usual case of a1 ¼ 2 and a3 ¼ 3, the Lagrangian given by Eq. (20) is
L w;D1
t w;D2

x w;D3
x w

� �
¼ 1

2
l D1

t wðx; tÞ
� �2

� 1
2
ðEIÞ D2

x wðx; tÞ
� �2

þ 1
2
ðEIÞ l2

s D3
x wðx; tÞ

� �2
þ qðx; tÞwðx; tÞ: ð21Þ
For the fractional case, the Lagrangian (20) leads to the expressions
@L
@w
¼ qðx; tÞ @L

@D1
t wðx; tÞ

¼ lD1
t wðx; tÞ; ð22Þ

@L
@RDa1

x wðx; tÞ
¼ �ðEIÞRDa1

x wðx; tÞ; @L
@RDa2

x wðx; tÞ
¼ �ðEIÞ l2s ða2ÞRDa2

x wðx; tÞ: ð23Þ
Substitution of Eqs. (22) and (23) into the Euler–Lagrange Eq. (19) gives
lD2
t wþ RDa1

x ðEIÞ ðRDa1
x Þw

� �
þ RDa2

x ðEIÞ l2s ða2Þ RDa2
x w

� �
� qðx; tÞ ¼ 0; ð24Þ
which is the governing equation for the dynamics of a fractional non-local Euler–Bernoulli beam.
When the beam is homogeneous, E and I are independent of x, and the fractional Euler–Bernoulli beam equation assumes

the simpler form
lD2
t wþ ðEIÞ RDa1

x

� �2
wþ ðEIÞ l2s ða2Þ RDa2

x

� �2
w� qðx; tÞ ¼ 0: ð25Þ
For a wide class of functions wðxÞ the properties of the fractional Riesz derivatives allows us to write Eq. (25) as
lD2
t wþ ðEIÞRD2a1

x wþ ðEIÞ l2
s ða2ÞRD2a2

x w� qðx; tÞ ¼ 0: ð26Þ
In general, we should consider an effective source term qeff ðxÞ instead of qðxÞ, where qeff ðxÞ contains the function qðxÞ and
deviations from the semigroup property for the Riesz derivatives as described for the fractional gradient model with Caputo
derivatives dealt with in [54].

For materials without non-locality and memory, we have a1 ¼ 2, a2 ¼ 3, and then Eq. (25) obtains the form
lD2
t wþ EI D4

x w� EI l2
s D6

x w� qðx; tÞ ¼ 0: ð27Þ
This is the gradient elasticity Euler–Bernoulli beam equation derived earlier in [16] for the case of integer-order derivatives
and non-fractal media.

2.3. Solution of fractional static Euler–Bernoulli beam equation

For the static case (D1
t w ¼ 0 and qðx; tÞ ¼ qðxÞ), Eq. (26) has the form
RD2a1
x wþ l2

s ða2ÞRD2a2
x w ¼ ðEIÞ�1 qðxÞ: ð28Þ
Using Corollary 5.14 of [2], we can state that a particular solution of Eq. (28) is
wðxÞ ¼ ðEIÞ�1
Z þ1

�1
G2a1 ;2a2 ðx� x0Þqðx0Þdx0; ð29Þ
where Ga1 ;a2 ðxÞ is a Green’s type function of the form
G2a1 ;2a2 ðxÞ ¼
Z 1

0

cosðkjxjÞ
k2a1 þ l2

s ða2Þk2a2
dk: ð30Þ
Here a1 > 0, a2 > 0 and l2
s ða2Þ – 0.

For a point load of intensity q0, i.e. a load qðxÞ of the form [66]
qðxÞ ¼ q0 dðxÞ; ð31Þ
where dðxÞ denotes the Dirac delta-function, the displacement field wðxÞ has a simple form wðxÞ ¼ ðq0=EIÞG2a1 ;2a2 ðxÞ given by
expression
wðxÞ ¼ 2q0

pEI

Z 1

0

cosðkjxjÞ
k2a1 þ l2s ða2Þk2a2

dk; ð32Þ
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where the definition given by Eq. (30) for G2a1 ;2a2 ðxÞ has been used. For the usual non-fractional case, the solution of the static
Euler–Bernoulli beam equation with the external point-load is given by Eq. (32) with a1 ¼ 2 and a3 ¼ 3.

2.4. Solution of fractional dynamic Euler–Bernoulli beam equation

For a plane wave traveling in a fractional non-local material with frequency x, the governing fractional equation is
�lx2 wpðxÞ þ ðEIÞ ðRDa1
x Þ

2
wpðxÞ þ ðEIÞ l2

s ða2Þ ðRDa2
x Þ

2
wpðxÞ � qpðxÞ ¼ 0; ð33Þ
where wðx; tÞ ¼ e�ix t wpðxÞ, and we have also used the notation qðx; tÞ ¼ e�ix t qpðxÞ. For a wide class of functions wpðxÞ,
Eq. (33) can be expressed as
RD2a1
x wpðxÞ þ l2s ða2ÞRD2a2

x wpðxÞ �
lx2

EI
wpðxÞ ¼ ðEIÞ�1 qpðxÞ: ð34Þ
Using Theorem 5.24 of [2], we can obtain a particular solution of Eq. (34) as
wpðx;xÞ ¼ ðEIÞ�1
Z þ1

�1
G2a1 ;2a2 ðx� x0;xÞqpðx0Þdx0; ð35Þ
where GðxÞ2a1 ;2a2
ðxÞ is a Green’s type function of the form
G2a1 ;2a2 ðx;xÞ ¼ 2
Z 1

0

cosðk jxjÞ
k2a1 þ l2

s ða2Þk2a2 � lx2=ðEIÞ
dk: ð36Þ
Here a1 > 0, a2 > 0, l2
s ða2Þ – 0 and lx2 – 0, l ¼ qA. For the point-load case (31), the solution given by Eq. (35) is reduced to
wpðx;xÞ ¼
2q0

EI

Z 1

0

cosðk jxjÞ
k2a1 þ l2

s ða2Þk2a2 � lx2=ðEIÞ
dk: ð37Þ
For the usual non-fractional case, the solution of dynamic Euler–Bernoulli beam equation with an external point-load is
given by Eq. (37) with a1 ¼ 2 and a3 ¼ 3.

2.5. Fractional gradient Timoshenko beam equations

In the Timoshenko beam theory the displacement vector uðx; y; z; tÞ of the beam is assumed to be given by
uxðx; y; z; tÞ ¼ �zuðx; tÞ uyðx; y; z; tÞ ¼ 0; uzðx; y; tÞ ¼ wðx; tÞ; ð38Þ
where ðx; y; zÞ are the coordinates of a point in the beam, (ux, uy, uz) are the corresponding components of the displacement
vector, u ¼ uðx; tÞ is the angle of rotation of the normal to the mid-surface of the beam, and w ¼ wðx; tÞ is the displacement
of the mid-surface in the z-direction.

To obtain a fractional generalization of the relevant gradient beam equation we use a fractional variational principle and a
generalization of the Timoshenko beam Lagrangian. The appropriate form of such Lagrangian with fractional gradient non-
locality, is
L ¼ 1
2
q I D1

t uðx; tÞ
� �2

þ 1
2
qA D1

t wðx; tÞ
� �2

� 1
2
ðkGAÞ RDa1

x wðx; tÞ �uðx; tÞ
� �2 � 1

2
ðEIÞ RDb1

x uðx; tÞ
� �2

� 1
2
ðkGAÞ l2s RDa2

x wðx; tÞ � RDb1
x u

� �2
� 1

2
ðEIÞ l2

s
RDb2

x uðx; tÞ
� �2

; ð39Þ
where ðx; y; zÞ are dimensionless coordinates. Note again that we use dimensionless coordinates. such that the relevant
quantities of fractional models have the same physical dimension as corresponding one for non-fractional models.

Then, in view of the expressions
@L
@D1

t w
¼ qAD1

t w;
@L

@RDa1
x w
¼ �kGA RDa1

x w�u
� �

; ð40Þ

@L
@u
¼ k GA RDa1

x w�u
� � @L

@D1
t u
¼ q I D1

t u; ð41Þ

@L
@RDb1

x u
¼ �EIRDb1

x uþ l2
s kGARDa2

x w� l2s kGARDb1
x u; ð42Þ

@L
@RDa2

x w
¼ �l2

s kGA RDa2
x w� RDb1

x u
� �

;
@L

@RDb2
x u
¼ � l2

s E IRDb2
x u; ð43Þ



V.E. Tarasov, E.C. Aifantis / Commun Nonlinear Sci Numer Simulat 22 (2015) 197–227 203
the stationary action principle gives the following Euler–Lagrange equations
@L
@w
� D1

t
@L
@D1

t w

 !
þ RDa1

x
@L

@RDa1
x w

� �
þ RDa2

x
@L

@RDa2
x w

� �
¼ 0; ð44Þ

@L
@u
� D1

t
@L
@D1

t u

 !
þ RDb1

x
@L

@RDb1
x u

 !
þ RDb2

x
@L

@RDb2
x u

 !
¼ 0: ð45Þ
Eqs. (44) and (45) are the Euler–Lagrange equations for the fractional gradient elasticity model described by the Lagrangian
(39).

Substitution of Eqs. (40)–(43) into Eqs. (44) and (45) gives the following fractional gradient Timoshenko beam equations
for the displacement w ¼ wðxÞ and the rotation u ¼ uðxÞ,
qAD2
t w ¼ RDa1

x �kGA RDa1
x w�u

� �� �
þ RDa2

x �l2s kGA RDa2
x w� RDb1

x u
� �� �

; ð46Þ

q I D2
t u ¼ kGA RDa1

x w�u
� �

þ RDb1
x �EIRDb1

x uþ l2
s k GARDa2

x w� l2
s kGARDb1

x u
� �

þ RDb2
x � l2

s E IRDb2
x u

� �
: ð47Þ
For homogeneous materials, Eqs. (46) and (47) take the form
qAD2
t w ¼ �kG ARDa1

x
RDa1

x w�u
� �

� l2s k GA RDa2
x

RDa2
x w� RDb1

x u
� �

; ð48Þ

q I D2
t u ¼ kGA RDa1

x w�u
� �

� EIRDb1
x

RDb1
x uþ l2

s kG ARDb1
x

RDa2
x w� l2

s kGARDb1
x

RDb1
x u� l2s E IRDb2

x
RDb2

x u: ð49Þ
For a wide class of functions wðx; tÞ and uðx; tÞ, Eqs. (48) and (49) can be rewritten as
qAD2
t w ¼ �kG A RD2a1

x w� RDa1
x u

� �
� l2

s kGA RD2a2
x w� RDa2þb1

x u
� �

; ð50Þ

q I D2
t u ¼ kGA RDa1

x w�u
� �

� EIRD2b1
x uþ l2s kGARDa2þb1

x w� l2
s kGARD2b1

x u� l2
s E IRD2b2

x u: ð51Þ
If a1 ¼ b1 ¼ 1, and a2 ¼ b2 ¼ 0, Eqs. (50) and (51) reduce to the well-known Timoshenko beam equations. If a1 ¼ b1 ¼ 1, and
a2 ¼ b2 ¼ 2, Eqs. (50) and (51) reduce to the form of the gradient generalization of the Timoshenko beam equations. In gen-
eral, the Riesz fractional derivatives do not commute and
RDa
x

RDb
x – RDaþb

x : ð52Þ
In this case, Eqs. (48) and (49) give Eqs. (50) and (51) with an additional term in the form of an effective source terms that
contain the deviations from the semigroup property for the Riesz derivatives as it was described in [54].

2.6. Combined strain-acceleration fractional gradients beam model

Let us now consider internal inertia effects, i.e. effects of combined strain-acceleration gradients on fractional nonlocal
beams. We start with the governing equation of a gradient elasticity Euler–Bernoulli beam equation with internal inertia
or acceleration gradients [16], i.e.,
qAD2
t wþ EI D4

x w� EI l2
s D6

x wþ q I l2
d D2

t D4
x w� qðx; tÞ ¼ 0; ð53Þ
where ðq;A; E; IÞ have their usual meaning, (x, t) are dimensionless variables, and (l2
s , l2

d) are scale parameters. The fractional
generalization of Eq. (53) can be written in the form
�qARD2b
t wþ EIRD2a1

x wþ EI l2
s ða2ÞRD2a2

x w� q I l2dða3ÞRD2b
t

RD2a3
x w� qðx; tÞ ¼ 0; ð54Þ
where RD2b
t is the Riesz fractional derivative [2] with respect to time. Using Eqs. (16) and (54) with a1 ¼ a3 ¼ 2, b ¼ 1 and

a2 ¼ 3 gives Eq. (53).
Eq. (54) can be obtained from the stationary action principle and the correspondent fractional Euler–Lagrange equation
@L
@w
þ RDb

t
@L

@RDb
t w

 !
þ RDa3

x
RDb

t
@L

@RDa3
x

RDb
t w

 !
þ RDa1

x
@L

@RDa1
x w

� �
þ RDa2

x
@L

@RDa2
x w

� �
¼ 0; ð55Þ
where the Lagrangian
L¼1
2
qA RDb

t wðx; tÞ
� �2�1

2
EI RDa1

x wðx;tÞ
� �2�1

2
EIl2ða2Þ RDa2

x wðx;tÞ
� �2þ1

2
qI l2

dða3Þ RDa3
x

RDb
t wðx;tÞ

� �2þqðx;tÞwðx;tÞ; ð56Þ
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is used and Eq. (16) is also taken into account.
In the above we use the Riesz fractional derivatives (13) with respect to time to derive Eq. (54) from a variational prin-

ciple, instead of the Caputo derivatives that are commonly used. Moreover, the Riesz fractional derivatives allow us to obtain
a general harmonic solution of the combined strain-acceleration fractional gradient beam model, as we will see in the sequel.
At the same time, an interpretation of Riesz fractional derivatives with respect to time can be more complicated in compar-
ison with the left- sided Caputo derivative. In any case, the Riesz fractional time derivative describes a special form of power-
law material memory (acceleration with memory) and deserves to be explored in its own right.

2.7. Solution for the combined strain-acceleration fractional gradients beam model

Let us consider the Fourier transform F of the displacement field by utilizing the properties of the Riesz fractional deriv-
ative (see Property 2.34 in [2]) with respect to time
F RDa
t wðx; tÞ

� �
ðkÞ ¼ jkja ðFwðx; tÞÞðx;xÞ; ð57Þ
where wðx; tÞ belongs to the space C10 ðR2Þ of infinitely differentiable functions on R2 with a compact support. Then Eq. (54)
takes the form
�qA jxj2bŵþ EIRD2a1
x ŵþ EI l2

s ða2ÞRD2a2
x ŵ� q I l2

dða3Þx2bRD2a3
x ŵ� q̂ðx;xÞ ¼ 0; ð58Þ
where ŵðx;xÞ ¼ ðFwðx; tÞÞðx;xÞ and q̂ðx;xÞ ¼ ðFqðx; tÞÞðx;xÞ. By rewriting this equation in the form
EI l2
s ða2ÞRD2a2

x ŵþ EIRD2a1
x ŵ� q I l2

dða3Þx2bRD2a3
x ŵ� qAx2bŵ ¼ q̂ðx;xÞ; ð59Þ
we can solve it by using Theorem 5.24 of [2] with the coefficients
a0 ¼ qAx2b; a1 ¼ q I l2
dða3Þx2b; a2 ¼ EI; a3 ¼ EI l2

s ða2Þ: ð60Þ
Noting that the Fourier transform of the Riesz fractional derivative with respect to coordinates is defined by
FðRD2aŵðx;xÞÞðk;xÞ ¼ jkj2a ðF ŵÞðk;xÞ; ð61Þ
and applying F to both sides of Eq. (59) by also using Eq. (61), we obtain
ðF ŵÞðk;xÞ ¼ a3 jkj2a2 þ a2 jkj2a1 � a1 jkj2a3 � a0

� ��1
ðF ŵÞðk;xÞ: ð62Þ
Next, we define the fractional analogue of Green’s function [2] as
GaðxÞ ¼ F�1 a3 jkj2a2 þ a2 jkj2a1 � a1 jkj2a3 � a0

� ��1
� 	

ðxÞ ¼
Z

R

a3 jkj2a2 þ a2 jkj2a1 � a1 jkj2a3 � a0

� ��1
eþikx dk; ð63Þ
where a ¼ ða1;a2;a3Þ is a multi-index. Then, the following relation holds
Z
Rn

eiðk;rÞ f ðjkjÞdnk ¼ ð2pÞn=2

jrjðn�2Þ=2

Z 1

0
f ðkÞkn=2 Jn=2�1ðkjrjÞdk ð64Þ
for any function f such that the integral in the right-hand side of Eq. (64) is convergent (see Lemma 25.1 of [1]). Here Jm is the
Bessel function of the first kind and we can use for n ¼ 1 the expression
J�1=2ðzÞ ¼
ffiffiffiffiffiffiffi
2
pz

r
cosðzÞ: ð65Þ
Using Eq. (64), the Green’s function given by Eq. (63) can be rewritten (see Theorem 5.22 of [2]) in the form
GaðrÞ ¼ ð2pÞ1=2jxj1=2
Z 1

0

k1=2 J�1=2ðkjxjÞdk

a3 k2a2 þ a2 k2a1 � a1 k2a3 � a0
; ð66Þ
where we used n ¼ 1. If a2 > 1, and ak – 0, then Eq. (59) is solvable [2]. A particular solution of Eq. (59) can be represented as
the convolution of the functions GðxÞ and qðxÞ, i.e.,
ŵðx;xÞ ¼
Z

R

Gaðx� x0Þqðx;xÞdx0; ð67Þ
where the Green’s function GaðzÞ is defined by Eq. (66).
For the case qðx;xÞ ¼ q0dðxÞ, Eq. (67) gives
ŵðx;xÞ ¼ 2q0

Z 1

0

cosðkjxjÞdk

a3 k2a2 þ a2 k2a1 � a1 k2a3 � a0
: ð68Þ
Using Eq. (60), we can write Eq. (68) in the form
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ŵðx;xÞ ¼ 2q0

EI

Z 1

0

cosðkjxjÞdk

l2
s ða2Þk2a2 þ k2a1 � ðq=EÞ l2

dða3Þx2b k2a3 � ðqAÞ=ðEIÞx2b
: ð69Þ
For a fractional non-local material without memory (b ¼ 1) and fractional acceleration gradient (l2
dða3Þ ¼ 0), the correspond-

ing solution is
ŵðx;xÞ ¼ 2q0

EI jxj

Z 1

0

cosðkjxjÞdk

l2
s ða2Þk2a2 þ k2a1 � ðqAÞ=ðEIÞx2

: ð70Þ
This is in fact, the solution given by Eq. (37) for the fractional gradient Euler–Bernoulli beam equation of motion for the point
load case of Eq. (31).

2.8. Dispersion law and general harmonic solution of the combined strain-acceleration fractional gradient beam model

Let us now obtain a general harmonic solution of the combined strain-acceleration fractional gradient beam model
defined by Eq. (54). Using Property 2.34 in [2], the Fourier transform of ðRDa

x wÞðxÞ is given by Eq. (57), where wðx; tÞ belongs
to the space C10 ðR2Þ of infinitely differentiable functions on R2 with a compact support.

The Fourier transform F of the fractional differential Eq. (54) with q ¼ 0 gives
�qA jxj2b þ EI jkj2a1 þ EI l2
s ða2Þ jkj2a2 � q I l2dða3Þ jkj2a3 jxj2b ¼ 0; ð71Þ
implying that
x2b ¼ E
q

I
A
jkj2a1 þ l2

s ða2Þ jkj2a2

1þ ðI=AÞ l2
dða3Þ jkj2a3

: ð72Þ
As a result, we obtain
x ¼ C1=b
e R1=b jkja1=b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2

s ða2Þ jkj2ða2�a1Þ

1þ R2l2
dða3Þ jkj2a3

2b

vuut ; ð73Þ
where
R ¼
ffiffiffiffiffiffiffi
I=A

p
; Ce ¼

ffiffiffiffiffiffiffiffiffi
R=q

p
: ð74Þ
The parameter R is called the gyration radius.
In the absence of memory, i.e. b ¼ 1, Eq. (73) yields
x ¼ Ce R jkja1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2s ða2Þ jkj2ða2�a1Þ

1þ R2l2
dða3Þ jkj2a3

vuut : ð75Þ
If a1 ¼ a3 ¼ 2, b ¼ 1 and a2 ¼ 3, Eq. (73) gives
x ¼ Ce Rk2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2

s k2

1þ R2l2
d k4

vuut ; ð76Þ
which is precisely the dispersion relation obtained earlier (Eq. (50) of [16]) for the non-fractional combined strain-acceler-
ation gradient beam model. Using Eq. (73), we can obtain the group velocity Cg ¼ @xðkÞ=@k for the combined strain-accel-
eration fractional gradient beam model as
Cg

Ce
¼ 1

2b
Cð1�bÞ=b

e R1=b
1þ l2s ða2Þ jkj2ða2�a1Þ
� �ð1�2bÞ=ð2bÞ

1þ R2 l2dða3Þ jkj2a3
� �ð1þ2bÞ=ð2bÞ

� 2a1 jkj2a1�1 þ 2a2 l2
s ða2Þ jkj2a2�1 þ 2ða1 þ a3ÞR2 l2

dða3Þ jkj2ða1þa3Þ�1 þ 2ða2 þ a3ÞR2 l2s ða2Þ l2dða3Þ jkj2ða2þa3Þ�1
� �

: ð77Þ
If a1 ¼ a3 ¼ 2, b ¼ 1 and a2 ¼ 3, Eq. (77) is reduced to
Cg

Ce
¼ Rk

2þ 3l2
s k2 þ R2 l2

s l2
d jkj

6

ð1þ l2
s k2Þ

1=2
ð1þ R2 l2

dk4Þ
3=2 : ð78Þ
This is the well-known normalized form of the corresponding group velocity (see Eq. (51) of [16]) for non-fractional coun-
terpart of the model.



206 V.E. Tarasov, E.C. Aifantis / Commun Nonlinear Sci Numer Simulat 22 (2015) 197–227
3. Toward 3D fractional gradient elasticity

To develop a fractional gradient elasticity theory in three-dimensions (3D), the following approaches may be used:

(1) An approach based on the Riesz fractional derivatives and integrals for R3 [1,2,50]. This approach is best suited for 3D
problems with spherical symmetry. The Riesz fractional derivative can be considered as a non-integer power of the
Laplacian. Such a simple 3D fractional gradient elasticity model based on the Riesz fractional derivatives has already
been recently considered by the authors in [54], and it can be naturally derived from lattice models with long-range
interactions [52,53,55].

(2) An approach based on fractional vector calculus. Currently, however fractional vector calculus is formulated for a
Cartesian coordinate system only [13,60]. The transformation from Cartesian to cylindrical, spherical or other coordi-
nates is prohibitively complicated for fractional derivatives.It is connected with the fact that the formula of fractional
derivative of a composite function (see Eq. 2.209 in Section 2.7.3 of [59]) is very complex, i.e.,
aDa
x f ðgðxÞÞ ¼ ðx� aÞa

Cð1� aÞ f ðgðxÞÞ þ
X1
k¼1

Ca
k

k!ðx� aÞk�a

Cðk� aþ 1Þ
Xk

m¼1

ðDm
g f ÞðgðxÞÞ

XYk

r¼1

1
ar !

ðDr
xgÞðxÞ
r!

� �ar

; ð79Þ
where
P

extends over all combinations of non-negative integer values of a1; a2; . . . ; ak such that
Xk

r¼1

rar ¼ k;
Xk

r

ar ¼ m: ð80Þ
These two approaches which allow us to construct 3D fractional nonlocal models of gradient elasticity are briefly dis-
cussed below.

3.1. Fractional gradient elasticity based on Riesz derivative

Three-dimensional fractional gradient elasticity models based on the Riesz fractional derivative are possible due to the
fact that this fractional derivative is a generalization of the Laplacian in Rn and, in fact, it can be considered as a non-integer
power of the Laplacian. The corresponding 3D fractional gradient elasticity model is described by the following equation (for
details see [54])
ca ðð�RDÞa=2
uÞðrÞ þ cb ðð�RDÞb=2

uÞðrÞ ¼ f ðrÞ ða > bÞ; ð81Þ
where r 2 R3 and r ¼ jrj are dimensionless variables, and ð�RDÞa=2 is the Riesz fractional Laplacian of order a [2]. The coef-
ficients (ca, cb) are phenomenological constants and the rest of the symbols have their usual meaning, with u denoting the
radial component of the displacement.

For a > 0 and suitable functions uðrÞ, r 2 R3, the Riesz fractional derivative can be defined [2] in terms of the inverse Fou-
rier transform F�1 by
ðð�RDÞa=2
uÞðrÞ ¼ F�1 jkjaðFuÞðkÞ

� �
; ð82Þ
where k denotes the wave vector, a > 0 and x 2 Rn. The fractional Laplacian in the Riesz form is usually defined in terms of
the hypersingular integral
ðð�RDÞa=2
f ÞðxÞ ¼ 1

dnðm;aÞ

Z
Rn

1
jzjaþn ðD

m
z f ÞðxÞdz; ð83Þ
where m > a > 0, and ðDm
z f ÞðxÞ is a finite difference of order m of a function f ðxÞ with a vector step z 2 Rn centered at the

point x 2 Rn:
ðDm
z f ÞðxÞ ¼

Xm

k¼0

ð�1Þk m!

k!ðm� kÞ! f ðx� kzÞ;
where the constant dnðm;aÞ is defined by
dnðm;aÞ ¼
p1þn=2AmðaÞ

2aCð1þ a=2ÞCðn=2þ a=2Þ sinðpa=2Þ
;

with
AmðaÞ ¼
Xm

j¼0

ð�1Þj�1 m!

j!ðm� jÞ! ja:
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The definition given by Eq. (83) for the fractional Laplacian of order a does not depend on the choice of m > a. Its Fourier
transform F satisfies the relationship ðFð�DÞa=2f ÞðkÞ ¼ jkjaðF f ÞðkÞ, which is valid for the Lizorkin space [1] and the space
C1ðRnÞ of infinitely differentiable functions on Rn with compact support.

If a ¼ 4 and b ¼ 2, we have the well-known equation of gradient elasticity [16] for the non-fractional case, i.e.,
c2 DuðrÞ � c4D
2uðrÞ þ f ðrÞ ¼ 0; ð84Þ
where
c2 ¼ E; c4 ¼ � l2 E: ð85Þ
Eq. (81) is a fractional partial differential equation with a particular solution (Section 5.5.1. of [2]) of the form
uðrÞ ¼
Z

R3
G3

a;bðr� r0Þ f ðr0Þd3r0; ð86Þ
where the Green’s type function is given by the expression
G3
a;bðrÞ ¼

Z
R3

1
cajkja þ cbjkjb

eþiðk;rÞ d3k: ð87Þ
Using Lemma 25.1 of [1], the kernel function in Eq. (87) can be represented by the equation
G3
a;bðrÞ ¼

1

ð2pÞ3=2 ffiffiffiffiffi
jrj

p Z 1

0

k3=2 J1=2ðkjrjÞ
cak

a þ cbk
b dk; ð88Þ
where J1=2ðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðpzÞ

p
sinðzÞ denotes Bessel function of the first kind.

If we consider the deformation of an infinite elastic continuum due to an external field f ðrÞ applied to a very small region,
then for distances jrj which are large in comparison with the size of the region (neighborhood) of load application, we can
suppose that f ðrÞ is applied at a point [66]:
f ðrÞ ¼ f 0 dðrÞ: ð89Þ
Then, the displacement field uðrÞ has a simple form uðrÞ ¼ f 0 G3
a;bðrÞ given by
uðrÞ ¼ 1

ð2pÞ3=2 ffiffiffiffiffi
jrj

p Z 1

0

k3=2 J1=2ðkjrjÞ
cak

a þ cbk
b dk: ð90Þ
3.2. Fractional vector calculus and 3D models

3.2.1. Fractional vector calculus
Fractional vector calculus is a very important tool for describing processes in complex media and materials with non-local

properties.It allows us to formulate a dynamical theory of materials with non-locality of power-law type in three dimen-
sions. At present, however, several formulations of fractional vector calculus are either incorrect or inconsistent, leading
to errors. It seems that it is possible to define a generalization of grad, div and curl operators by using a fractional derivative
Da

xk
instead of the usual derivative D1

xk
, where Da

xk
are fractional (Liouville, Riemann–Liouville, Caputo, etc.) derivatives of

order a with respect to xk, k ¼ 1;2;3. In such an approach, there is considerable arbitrariness in the definition of vector oper-
ators. The main problem in fractional vector calculus, however, appears when we try to generalize not only differential vec-
tor operators, but also the related integral theorems [60]. In general, a robust framework of fractional vector calculus must
include generalizations of the differential operators (gradient, divergence, curl), the integral operations (flux, circulation),
and the theorems of Gauss, Stokes and Green.

The main problem in the formulation of fractional integral vector operations is connected with the complex form of the
fractional analogue of the Newton-Leibniz formula aI1

b aD1
x f ðxÞ ¼ f ðbÞ � f ðaÞ. In fact, the non-commutativity of Dn

x and aIax does
not allows us to derive a convenient Riemann–Liouville fractional counterpart of the Newton–Leibniz formula. For fractional
Riemann–Liouville integrals and derivatives, we have the relation
aIab aDa
x f ðxÞ ¼ f ðbÞ �

Xn

j¼1

ðb� aÞa�j

Cða� jþ 1Þ ðD
n�j
x aIn�a

x f ÞðaÞ ð91Þ
holding almost everywhere in ½a; b�, where Dn�j
x ¼ dn�j

=dxn�j are integer derivatives, and n� 1 < a < n. Here f ðxÞ is a Lebesgue
measurable function on ½a; b� for which aI1

bf ðxÞ <1, and aIn�a
b f ðxÞ has absolutely continuous derivatives up to order ðn� 1Þ on

½a; b�. This relation was proved in [1] (see Theorem 2.4 of Section 2.6). For 0 < a < 1, Eq. (91) gives
aIab aDa
x f ðxÞ ¼ f ðbÞ � ðb� aÞa�1

CðaÞ aI1�a
b f ðxÞ: ð92Þ
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Obviously, that Eqs. (92) and (91) do not have the usual form of the Newton-Leibniz formula.
A consistent formulation of fractional vector calculus has been realized in [60] by using fractional derivatives and frac-

tional integrals of different types. For this purpose, the Riemann–Liouville integration and the Caputo differentiation are
used. The main property is that the Caputo fractional derivative provides an operation that is inverse to the Riemann–Liou-
ville fractional integration from the left. As a result, we can formulate a fractional analogue of the Newton–Leibniz formula in
the usual form if the integral is of Riemann–Liouville type and the derivative is of the Caputo type. i.e.,
aIab
C
a Da

x f ðxÞ ¼ f ðbÞ � f ðaÞ; ð0 < a < 1Þ; ð93Þ
where C
a Da

x is the Caputo fractional derivative defined by the equation
C
a Da

x FðxÞ ¼ aIn�a
x Dn

x FðxÞ ¼ 1
Cðn� aÞ

Z x

a

dx0Dn
x0Fðx0Þ

ðx� x0Þ1þa�n ;
where n� 1 < a < n, and aIax is the Riemann–Liouville fractional integral
aIax f ðxÞ :¼ 1
CðaÞ

Z x

a

f ðx0Þ
ðx� x0Þ1�a dx0:
Here f ðxÞ is a real-valued function defined on a closed interval ½a; b� such that f ðxÞ 2 AC1½a; b� or f ðxÞ 2 C1½a; b�. For details, the
reader may consult [60], where the fractional differential operators are defined such that fractional generalizations of
integral theorems (Green’s, Stokes’, Gauss’) can be realized. Using this fractional vector calculus [60], fractional differential
equations for the conservation of mass, momentum and energy can be obtained for a continuum with power-law non-
locality. This allows us to formulate 3D fractional models of continuum mechanics for fluids and solids with non-local prop-
erties. In the next subsection, we show how the fractional vector calculus can be used to formulate a fractional generalization
of gradient elasticity for the 3D case.

3.2.2. Fractional differential vector operators
To properly define fractional vector operations, we will first introduce the operators that correspond to fractional

differentiation and fractional integration. The left-sided Riemann–Liouville fractional integral operator is defined as
aIax ½x0� :¼
1

CðaÞ

Z x

a

dx0

ðx� x0Þ1�a ; ða > 0Þ: ð94Þ
To designate that the operator given by Eq. (94) acts on a real-valued function f ðxÞ 2 L1½a; b�, we employ the notation
aIax ½x0 �f ðx0Þ. We define the left-sided Caputo fractional differential operator on ½a; b� in the form
C
a Da

x ½x0� :¼
1

Cðn� aÞ

Z x

a

dx0

ðx� x0Þ1þa�n

@n

@x0n
; ðn� 1 < a < nÞ: ð95Þ
The Caputo operator defined by Eq. (95) acts on real-valued functions f ðxÞ 2 ACn½a; b� as C
a Da

x ½x0�f ðx0Þ. We note that the Caputo
operator can be represented as
C
a Da

x ½x0� ¼ aIn�a
x ½x0�Dn½x0�; ðn� 1 < a < nÞ:
Eq. (93) can be rewritten in the form
aIab ½x� C
a Da

x ½x0�f ðx0Þ ¼ f ðbÞ � f ðaÞ; ð0 < a < 1Þ: ð96Þ
In the notations aIab ½x� and aDa
x ½x0�, we indicate the variable of integration by the brackets ½ �, and the lower indices show the

limits of integration. Note that in Eq. (96) the variable of integration is x since the result of the integration with respect to x0

in the operator C
a Da

x ½x0 � depends on x only. These notations are more convenient than the ones usually used (see Eq. (93)),
since it allows us to take into account the variables of integration and the domain of the operators.

We define a fractional generalization of nabla operator by
ra
W ¼ CDa

W ¼ e1
CDa

W ½x� þ e2
CDa

W ½y� þ e3
CDa

W ½z�; ðn� 1 < a < nÞ; ð97Þ
where CDa
W ½xm� denotes the Caputo fractional derivative with respect to coordinates xm. For the parallelepiped

W :¼ fa 6 x 6 b; c 6 y 6 d; g 6 z 6 hg, we have
CDa
W ½x� ¼ C

a Da
b ½x�; CDa

W ½y� ¼ C
c Da

d ½y�; CDa
W ½z� ¼ C

g Da
h ½z�:
Let us now give the definitions of fractional gradient, divergence and curl operators in Cartesian coordinates [13,60]. We
assume that f ðxÞ and FðxÞ are real-valued functions with continuous derivatives up to order ðn� 1Þ on W � R3, such that
their ðn� 1Þ derivatives are absolutely continuous, i.e., f ; F 2 ACn½W�.
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(1) The fractional gradient is defined by
here f

where

Note t

Using
Grada
W f ¼ CDa

W f ¼ el
CDa

W ½xl�f ðx; y; zÞ ¼ e1
CDa

W ½x�f ðx; y; zÞ þ e2
CDa

W ½y�f ðx; y; zÞ þ e3
CDa

W ½z�f ðx; y; zÞ; ð98Þ

¼ f ðx; y; zÞ is a ðn� 1Þ times continuously differentiable scalar field such that the derivative Dn�1
xl

f is absolutely
uous.
contin

(2) The fractional divergence is defined by the equation
Diva
W F ¼ CDa

W ;F
� �

¼ CDa
W ½xl�Flðx; y; zÞ ¼ CDa

W ½x�Fxðx; y; zÞ þ CDa
W ½y�Fyðx; y; zÞ þ CDa

W ½z�Fzðx; y; zÞ; ð99Þ

Fðx; y; zÞ is a ðn� 1Þ times continuously differentiable vector field such that the derivatives Dn�1
xl

Fl are absolutely
uous.
contin

(3) The fractional curl operator is defined by
CurlaW F ¼ CDa
W ;F

� �
¼ el elmk

CDa
W ½xm�Fk

¼ e1
CDa

W ½y�Fz � CDa
W ½z�Fy

� �
þ e2

CDa
W ½z�Fx � CDa

W ½x�Fz
� �

þ e3
CDa

W ½x�Fy � CDa
W ½y�Fx

� �
; ð100Þ

Fk ¼ Fkðx; y; zÞ 2 ACn½W�, ðk ¼ 1;2;3Þ.
where
(4) Using the notation introduced in Eq. (97), the operator ð CDa

WÞ
2 can be considered as the fractional Laplacian of the Cap-

uto type:
CDa
W ¼ CDa

W ;
CDa

W

� �
¼ ð CDa

W Þ
2 ¼

X3

l¼1

CDa
W ½xl�

� �2
: ð101Þ

hat in the general case we have the inequality
CDa

W ½xl�
� �2

– CD2a
W ½xl�: ð102Þ
Let us now give the basic relations for the fractional differential vector operators (for details of proofs see [13,60]).

(i) For the scalar field f ¼ f ðx; y; zÞ, we have
Diva
W Grada

W f ¼ CDa
W ½xl� CDa

W ½xl�f ¼
X3

l¼1

ðCDa
W ½xl�Þ

2
f : ð103Þ

then the notations introduced in Eqs. (97) and (101), we conclude

Diva
W Grada

W ¼ CDa
W ;

CDa
W

� �
¼ CDa

W : ð104Þ
(ii) The second relation for the scalar field f ¼ f ðx; y; zÞ is
CurlaW Grada
W f ¼ 0: ð105Þ
(iii) For the vector field F ¼ emFm, it is easy to prove the relation
Diva
W CurlaW Fðx; y; zÞ ¼ 0: ð106Þ
(iv) The following identity also holds for the double curl operator
CurlaW CurlaW F ¼ Grada
W Diva

W F� ð CDa
WÞ

2
F: ð107Þ
(v) The Leibniz rule for fractional differential vector operators [58] does not hold, i.e.,
Grada
W fgð Þ– Grada

W f
� �

g þ Grada
W g

� �
f ; ð108Þ

Diva
W f Fð Þ – Grada

W f ; F
� �

þ f Diva
W F: ð109Þ
We define the fractional differential vector operators such that the fractional vector integral operators (circulation, flux,
and volume integral) exist as inverse operations. This allows us to establish the fractional analogues of Green’s, Stokes’ and
Gauss’ integral theorems [13,60]. It is also noted that the fractional differential operators are nonlocal by definition. The frac-
tional gradient, divergence and curl operators depend on the region W . This property allows for the use of fractional vector
calculus to describe complex materials with power-law non-locality in three dimensional space. Note that these continuum
fractional vector operators can be connected with the fractional-order operators on lattices with long-range interactions [61].

3.3. Fractional 3D gradient elasticity model

The simplest form of the stress–strain relation of gradient elasticity theory can be written [16] as
rij ¼ Cijkl ekl � l2
s Dekl

� �
; ð110Þ
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where Cijkl is the matrix of elastic modulus, ls is a length scale parameter, rij is the stress, and ekl is the strain tensor. For
homogenous and isotropic materials we have
Cijkl ¼ kdijdkl þ 2ldikdjl; ð111Þ
where k and l are the usual Lame constants, and dij is the Kronecker delta.
The equation of motion based on Eq. (110) has the form
Cijkl D1
xj

D1
xl
� l2s D1

xj
ðD1

xm
D1

xm
ÞD1

xl

� �
uk þ f i ¼ qD2

t ui; ð112Þ
where f i are the components of the external force field, and uk are the components of the displacement vector field. For
homogenous and isotropic materials, Eq. (112) can be written as
k D1
xi

D1
xk
� l2

s D1
xi

D1
xk
ðD1

xm
D1

xm
Þ

� �
uk þ 2l ðD1

xl
D1

xl
Þ � l2

s ðD
1
xl

D1
xl
ÞðD2

xm
D1

xm
Þ

� �
ui þ f i ¼ qD2

t ui: ð113Þ
Using now operations of the vector calculus operators, this equation can be rewritten in the following vector form
k 1� l2
s D

� �
grad divuþ 2l D� l2s D

2
� �

uþ f ¼ qD2
t u: ð114Þ
A formal fractional generalization of Eq. (112) can be obtained in the form
Cijkl
CD

aj
W ½xj� CDal

W ½xl� � l2
s ðaÞ CD

aj
W ½xj� CDam

W ½xm� CDam
W ½xm�

� �
CDal

W ½xl�
� �

uk þ f i ¼ qD2
t ui; ð115Þ
where a ¼ ða1;a2;a3Þ is a multi-index. For the isotropic case (a1 ¼ a2 ¼ a3 ¼ a), we have the fractional equation
Cijkl
CDa

W ½xj� CDa
W ½xl� � l2

s ðaÞ CDa
W ½xj�ð CDa

W ½xm� CDa
W ½xm�Þ CDa

W ½xl�
� �

uk þ f i ¼ qD2
t ui: ð116Þ
Using the properties of the fractional differential vector operators, Eq. (116) for homogenous and isotropic materials can be
rewritten in the following vector form
k 1� l2
s ðaÞ CDa

W

� �
Grada

W Divauþ 2l CDa
W � l2

s ðaÞð CDa
W Þ

2
� �

uþ f ¼ qD2
t u: ð117Þ
Note that, in general, the following inequality holds
�
CDa

W

�2

– CD2a
W ; ð118Þ
since
�

CDa
x

�2

– CD2a
x .

In general, the fractional equations of motion may contain expressions of the form AaðxjÞ CDa
W ½xj� with a given function

AaðxÞ instead of the fractional derivative CDa
W ½xj�. The explicit form of the function AaðxÞ is deduced by the conservation

law for non-local media by using the fractional vector calculus [13,60]. In this case, the resulting 3D gradient elasticity mod-
els are more complicated and the corresponding equations of motion are much more difficult to solve. To solve the governing
equations of 3D fractional models we should also take into account an explicit form of the violation of the semigroup prop-
erty for the Caputo derivative [54] that gives the relationship between the product CDa

aþ
CDb

aþ and the derivative CDaþb
aþ .

Using Eq. (107) in the form
Grada
W Diva

W u ¼ CurlaW CurlaW uþ CDW u; ð119Þ
we can rewrite Eq. (117) as
k 1� l2
s ðaÞ CDa

W

� �
CurlaW CurlaW uþ ðkþ 2lÞ CDa

W � l2
s ðaÞð CDa

W Þ
2

� �
uþ f ¼ qD2

t u: ð120Þ
If we further assume that the displacement vector u is radial and function of r ¼ jrj alone (uk ¼ ukðjrjÞ), we have
CurlaW u ¼ 0;
and, as a result, Eq. (120) has the form
ðkþ 2lÞ 1� l2
s ðaÞ CDa

W

� �
CDa

W uþ f ¼ qD2
t u: ð121Þ
This is the governing fractional gradient elasticity equation for homogenous and isotropic materials with spherical
symmetry.
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3.4. The square of fractional derivative is not equal to a dual-order derivative

In order to solve the governing equations of fractional gradient elasticity, we should give first the explicit form of the rela-
tionship between the square of the Caputo derivative ð CDa

aþÞ
2 and the Caputo derivative CD2a

aþ. To obtain this relation we use
Eq. 2.4.6 of [2], in the form
ð CDa
aþf ÞðxÞ ¼ ð RLDa

aþf ÞðxÞ �
Xn�1

k¼0

ðDkf ÞðaÞ
Cðk� aþ 1Þ ðx� aÞk�a; ð122Þ
and Eq. 2.1.16 of [2], in the form
Iaaþðx� aÞb ¼ Cðbþ 1Þ
Cðaþ bÞ ðx� aÞbþa

; ð123Þ
where a > 0 and b > �1. The condition b > �1 gives another restriction for a in the form a < 1. The relationship between the
square of the Caputo derivative of order a and the Caputo derivative of order 2a takes then the form
ð CDa
aþÞ

2
f ðxÞ ¼ CD2a

aþf ðxÞ þ f 0ðaÞ
Cð1� 2aÞ ðx� aÞ1�2a

; ð0 < a 6 1Þ; ð124Þ
where a – 1=2. Using Eq. (124), we can represent the fractional Laplacian of Caputo type as
CDa
W ¼

X3

k¼1

CD2a
xi
þ
X3

k¼1

ðD1
xk

f ÞðaÞ
Cð1� 2aÞ ðxk � akÞ1�2a

: ð125Þ
Note that the relation given by Eq. (124) cannot be used for a > 1. As a result, additional difficulties for solving fractional
gradient equations arise. To solve these problems, we can use a generalization of the Ru–Aifantis operator split method
[19,22].

3.5. Operator split method for fractional gradient elasticity

In 1993, Ru and Aifantis [19] suggested an operator split method to solve static problems of gradient elasticity. Let us
consider a generalization of this method to solve the fractional gradient elasticity problems. For the static case, Eq. (117)
can be written in the form
1� l2
s ðaÞ CDa

W

� �
kGrada

W Diva þ 2l CDa
W

� �
uþ f ¼ 0: ð126Þ
By introducing l2
s ðaÞ ¼ 0 in Eq. (126), we obtain the fractional differential equation
LðaÞuþ f ¼ 0; ð127Þ
where we use the fractional operator
LðaÞ ¼ kGrada
W Diva þ 2l CDa

W : ð128Þ
For the gradient-dependent case l2
s ðaÞ – 0, Eq. (126) has the form
1� l2
s ðaÞ CDa

W

� �
LðaÞuþ f ¼ 0: ð129Þ
In general, it is necessary to solve the fractional partial differential equation of order 4a, which has a very complex form
caused by the inequality ð CDa

WÞ
2

– CD2a
W for the fractional Laplacian of Caputo type. The following observation can reduce the

complexity of this task and greatly facilitate the obtaining of solutions in certain cases. For the radial displacement case
(CurlaW u ¼ 0), the operators LðaÞ and CDa

W commute, i.e.,
LðaÞ CDa
W � CDa

W LðaÞ ¼ 0:
Therefore, we can see from Eq. (129) that the vector field 1� l2
s ðaÞ CDa

W

� �
u satisfies the non-gradient expression of Eq. (127)

for the field u. Thus, if 1� l2
s ðaÞ CDa

W

� �
u can be identified with the non-gradient displacement field uc of fractional non-gra-

dient elasticity theory given by Eq. (127), which can be solved, then the original fractional gradient elasticity theory given by
Eq. (126) is reduced to the following fractional equation
1� l2
s ðaÞ CDa

W

� �
ug ¼ uc; ð130Þ
where uc is a classical (‘‘non-gradient’’) solution of the fractional equation
LðaÞuc þ f ¼ 0:
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Obviously, the solution of Eq. (130) can be more conveniently obtained. This establishes a connection between the ‘‘gradient’’
(g) and the non-gradient ‘‘classical’’ (c) fractional elasticity solutions. For the non-radial case (CurlaW u – 0), the fractional gra-
dient elasticity theory given by Eq. (116) takes the form
LðaÞik 1� l2
s ðaÞ CDa

W

� �
uk þ f i ¼ 0; ð131Þ
where
LðaÞik ¼ Cijkl
CDa

W ½xj� CDa
W ½xl�: ð132Þ
Using the operator split approach, Eq. (131) can be solved as an uncoupled sequence of two sets of fractional equations, that
is
LðaÞik uc
k þ f i ¼ 0 ð133Þ
followed by
1� l2
s ðaÞ CDa

W

� �
ug

k ¼ uc
k; ð134Þ
where two separate displacement fields are distinguished. Firstly, uc
k obeys the non-gradient fractional elasticity as given by

Eq. (133). Secondly, ug
k are the same as uk in Eq. (131), but they are now appended with a superscript g to emphasize that they

incorporate fractional gradient effects.

3.6. Solutions by fractional operator split method

Unfortunately, the applicability of fractional vector calculus to solve 3D fractional differential equations, such as Eq. (117),
is very limited due to the weak development of this area of mathematics. Therefore, we demonstrate an application of the
suggested generalization of the operator split method to obtain solutions of fractional gradient elasticity equation for a 1D
case only. The 1D counterpart of Eq. (121) reads
ðkþ 2lÞ 1� l2
s ðaÞ CDa

x

� �
CDa

x uðxÞ þ f ðxÞ ¼ 0: ð135Þ
Using the operator split method in Eq. (135), we derive two uncoupled fractional equations
LðaÞ ucðxÞ þ f ðxÞ ¼ 0; ð136Þ
and
1� l2
s ðaÞ CDa

x

� �
ugðxÞ ¼ ucðxÞ; ð137Þ
where the notation LðaÞ ¼ ðkþ 2lÞ CDa
x was used.

Let us first consider the equation for the non-gradient case. Using (124), Eq. (136) can be represented as
ðkþ 2lÞ CD2a
aþuðxÞ þ ðkþ 2lÞu0ðaÞ

Cð1� 2aÞ ðx� aÞ1�2a þ f ðxÞ ¼ 0: ð138Þ
We can rewrite this equation in the form
ðkþ 2lÞ CD2a
aþuðxÞ þ f eff ðxÞ ¼ 0; ð139Þ
where we have used the effective body force given by the expression
f eff ðxÞ ¼
ðkþ 2lÞu0ðaÞ

Cð1� 2aÞ ðx� aÞ1�2a þ f ðxÞ: ð140Þ
If f eff ðxÞ 2 Cc½a; b� with 0 6 c < 1 and c 6 2a, then (see Section 4.1.3 and Theorem 4.3 of [2]) Eq. (139) has a unique solution
ucðxÞ belonging to the space C2a;n

c ½a; b�, where n� 1 < 2a < n, defined by the expression
uðxÞ ¼ ucðxÞ ¼
Xn�1

k¼0

uðkÞðaÞ
k!

ðx� aÞk � 1
ðkþ 2lÞCð2aÞ

Z x

a

f eff ðzÞ
ðx� zÞ1�2a ; ð141Þ
where n� 1 < 2a < n.
Next, we consider the corresponding equation for the gradient case. Eq. (137) can be rewritten as
CD2a
aþ ugðxÞ � l�2

s ðaÞugðxÞ ¼ �ucðxÞ: ð142Þ
Using (124), Eq. (142) can be represented as
CD2a
aþ ugðxÞ þ u0ðaÞ

Cð1� 2aÞ ðx� aÞ1�2a � l�2
s ðaÞugðxÞ ¼ �ucðxÞ; ð143Þ
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where ucðxÞ is defined by Eq. (141). We rewrite this equation in the form
In gen
notion
descri
sity of
closel
CD3a
x ugðxÞ � l�2

s ðaÞugðxÞ ¼ uc
eff ðxÞ; ð144Þ

uc
eff ðxÞ ¼ �ucðxÞ � u0ðaÞ

Cð1� 2aÞ ðx� aÞ1�2a
: ð145Þ
If uc
eff ðxÞ 2 Cc½a; b� with 0 6 c < 1 and c 6 2a, then (see Theorem 4.3 of [2]) Eq. (144) has a unique solution ugðxÞ belonging to

the space C2a;n
c ½a; b�, where n� 1 < 2a < n, defined by the expression
ugðxÞ ¼
Xn�1

k¼0

ugðaÞ ðx� aÞk E2a;kþ1 � l�2
s ðaÞ ðx� aÞ2a

h i
þ
Z x

a
ðx� zÞ2a�1 E2a;2a � l�2

s ðaÞ ðx� zÞ2a
h i

uc
eff ðzÞdz: ð146Þ
The quantity Ea;bðzÞ is the Mittag–Leffler function [2] defined by the relation
Ea;b½z� ¼
X1
k¼0

zk

Cðakþ bÞ ; ða > 0;b 2 RÞ: ð147Þ
Note also that E1;1½z� ¼ ez.
4. Toward gradient elasticity of fractal materials

Fractals are measurable metric sets with non-integer Hausdorff dimension [44,45] that should be observed on all scales.-
Real fractal materials can be characterized by an asymptotic relation between the mass MðWÞ and the volume VðWÞ of
regions W of the fractal medium. For example, for a homogeneous fractal medium, a ball of radius R� R0 contains the mass
MDðWÞ ¼ M0ðR=R0ÞD, where the number D is called the mass dimension, and R0 is a characteristic size related to the arrange-
ment of the medium particles. The mass dimension D does not depend on the shape of the region W , or on the packing of
particles (close packing, random packing or porous packing with uniform distribution of holes).

As a result, we can define a fractal material as a medium with non-integer mass (or number of particles) dimension.
Although, the non-integer dimension does not reflect completely the geometric and dynamic properties of a fractal medium,
it nevertheless permits a number of important conclusions about its behavior.

4.1. Fractional continuum model for fractal materials

In general, a fractal material cannot be considered as a usual continuum, since there are places and areas that are not
filled with particles. Nevertheless it can be described by special continuum models [32,33,13] based on the use of the
integrals with non-integer order. The order of these integrals should be defined by the fractal mass dimension. The kernel
of the fractional integral operator describes a density of permitted states (permitted places) in space. The fractional-order
integrals can be considered as integrals over a non-integer dimensional space up to a numerical factor by using the well-
known formulas of dimensional regularization [46].

Fractional integral continuum models of fractal media may have a wide range of applications [13] due to the relatively
small numbers of parameters that define a fractal material of great complexity and rich structure. One of the advantages
of such models is the ability to describe dynamics of fractal materials and media (for details see [13]).

To describe fractal materials by a fractional integral continuum model, we use two different notions: the density of states
cnðD; rÞ and the distribution function qðr; tÞ.

(1) The function cnðD; rÞ is a density of states in the n-dimensional Euclidean space Rn. The density of states describes how
closely packed permitted states of particles in the space Rn. The expression cnðD; rÞdVn represents the number of states
(permitted places) between Vn and Vn þ dVn. We note that the symmetry of the density of states cnðD; rÞ must be the
defined by the symmetry properties of the fractal medium.

(2) The function qðr; tÞ is a distribution function in the n-dimensional Euclidean space Rn. It describes the distribution of
physical values (for example, mass, electric charge, number of particles, probability) on a set of possible (permitted)
states in the space Rn.
For example, the mass of a region dVn in fractal media is defined by the equation
dMðr; tÞ ¼ qðr; tÞcnðD; rÞdVn:

eral, we cannot consider the value qðr; tÞcnðD; rÞ as a new distribution function or a particle number density, since the
s of density of states and of distribution function are different. We cannot reduce all properties of the system to a

ption of the distribution function. This fact is well-known in statistical and condensed matter physics, where the den-
states is usually considered as a density of energy states or as a density of wave vector states [57] that describe how

y packed the allowed states in energy or wave-vector spaces. For fractal distributions of particles in a coordinate space
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must use a density of states in this space. The density of states cnðD; rÞ in Rn is chosen such that dlDðr;nÞ ¼ cnðD; rÞdVn

bes the number of states in dVn. We use the notations

dVD ¼ c3ðD; rÞdV3; dSd ¼ c2ðd; rÞdS2; dlb ¼ c1ðb; rÞdl1

cribe densities of states in n-dimensional Euclidean spaces with n ¼ 1;2;3.
4.2. Mass of fractal materials

The cornerstone of fractal media is the non-integer mass dimension. One of the best static experimental methods to
determine the mass dimension D of fractal materials is the box-counting method (see, for example [49] and references
therein). It involves the selection of a box of size R and counting the mass inside to estimate D from corresponding power
law relation M 	 RD.

Let us now consider a region W of a fractal material in the Euclidean space R3, with its boundary denoted by @W . Suppose
that the medium in the region W has a mass dimension D, and the medium on the boundary @W has a dimension d. In
general, the dimension d is not equal to ðD� 1Þ and it is not equal to 2. The mass of the region W in the fractal medium
is denoted by MDðWÞ. The fractality means that the mass in any region W � R3 increases slower than the 3D volume of this
region, i.e., according to the power law MDðWÞ 	 RD, where R is the radius of the ball used to measure D.

A fractal material is called homogeneous if the power law MDðWÞ 	 RD does not depend on the translation of the region
W . In other words, for any two regions W1 and W2 of the homogeneous fractal material with equal volumes
VDðW1Þ ¼ VDðW2Þ, the corresponding masses are equal MDðW1Þ ¼ MDðW2Þ. A wide class of fractal media satisfies the
homogeneous property. Many porous materials, polymers, colloid aggregates, and aerogels can be considered as homoge-
neous fractal materials. However, the fact that a material is porous or random does not necessarily imply that this material
is fractal. To describe fractal materials by a fractal integral continuum model, the fractality and homogeneity properties are
implemented as follows:


 Homogeneity: The local density of a homogeneous fractal material can be described by the constant density
qðrÞ ¼ q0 ¼ const. This property means that if qðrÞ ¼ const and VðW1Þ ¼ VðW2Þ, then MDðW1Þ ¼ MDðW2Þ.

 Fractality: The mass of the ball region W of a fractal homogeneous material obeys a power law relation M 	 RD, where

0 < D < 3, and R is the radius of the ball. If VnðW1Þ ¼ knVnðW2Þ and qðr; tÞ ¼ const, then fractality implies that
MDðW1Þ ¼ kDMDðW2Þ.

These two conditions cannot be satisfied if the mass of the medium is described by an integral of integer order. In this
case the mass is expressed by the fractional-order integral equation
MDðW; tÞ ¼
Z

W
qðr; tÞdVD; dVD ¼ c3ðD; rÞdV3; ð148Þ
where r is a dimensionless vector variable. As already noted, qðr; tÞ is a distribution function, and c3ðD; rÞ is a density of states
in the Euclidean space R3. The order of the integral in Eq. (148) is defined by the fractal mass dimension of the material. The
kernel of the fractional integral operator describes a density of permitted states c3ðD; rÞ in space, and its symmetry is defined
by the symmetry of the material structure. The particular form (Riesz, Riemann–Liouville, etc.) of the function c3ðD; rÞ is
defined by the properties of the fractal material at hand. Note that the final field equations that relate the various physical
variables of the system have a form that is independent of the numerical factor in the function c3ðD; rÞ. However the
dependence on r is important in these equations. In addition, we note that for D ¼ 2, we have the fractal mass distribution
in 3D Euclidean space R3. In general, this case is not equivalent to the distribution on a 2D surface.

4.3. Moment of inertia for fractal materials

A method for calculating the moment of inertia of fractal materials has been suggested in [34]. The moment of inertia has
two forms, a scalar form IðtÞ, which is used when the axis of rotation is known, and a more general tensor form that does not
require knowing the axis of rotation. The scalar moment of inertia (often called simply the ‘‘moment of inertia’’) of a rigid
body with density q0ðr0; tÞ with respect to a given axis is defined by the volume integral
I0ðtÞ ¼
Z

W
q0ðr0; tÞ r0 2? dV 03; ð149Þ
where ðr0Þ2? is the square of the perpendicular distance from the axis of rotation, and dV 03 ¼ dx01dx02dx03. If r0 ¼ x0kek denotes the
position vector from the origin to a point (x0k, k ¼ 1;2;3, are components of r0), then the tensor form of the moment of inertia
is
I0klðtÞ ¼
Z

W
q0ðr0; tÞ ðr0Þ2dkl � x0kx0l

� �
dV 03; ð150Þ
where dkl is the Kronecker delta. We note that the SI units of I0kl is kg �m2, i.e., ½I0kl� ¼ kg �m2.
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To generalize Eqs. (149) and (150) for fractional media, we express these equations through dimensionless coordinates.
We thus introduce the dimensionless variables xk ¼ x0k=l0; r ¼ r0=l0, where l0 is a characteristic length scale, and write the
density as qðr; tÞ ¼ l3

0 q0ðr l0; tÞ so its SI units is m, i.e., ½q� ¼ kg. We then define the following moments of inertia
IklðtÞ ¼ l�2

0 I0klðtÞ, IðtÞ ¼ l�2
0 I0ðtÞ to finally obtain the relations
IðtÞ ¼
Z

W
qðr; tÞ r2

? dV3; IklðtÞ ¼
Z

W
qðr; tÞ r2dkl � xkxl

� �
dV3; ð151Þ
where dV3 ¼ dx1dx2dx3 for Cartesian coordinates, and the variables xk, k ¼ 1;2;3 are now dimensionless. We note that the SI
units of Ikl is kg, i.e., ½Ikl� ¼ kg. This representation allows us to generalize Eq. (151) to fractal materials in the form
IðDÞðtÞ ¼
Z

W
qðr; tÞ r2

? dVD; IðDÞkl ðtÞ ¼
Z

W
qðr; tÞ ðr2dkl � xkxlÞ dVD; ð152Þ
where dVD ¼ c3ðD; rÞdV3 with D denoting, as usual, the mass dimension of the fractal material.

4.4. Equilibrium equations for fractal materials

Let us now derive the equilibrium equations for a fractal material with mass dimension D. Consider a finite region W in
the fractal material, supporting a volume force and a surface force. Let the density of force fðr; tÞ be a function of the dimen-
sionless vector r, and time t. The volume or mass force FMðWÞ, i.e. the force acting on a region W of a fractal medium with
dimension D, is defined by
FMðWÞ ¼
Z

W
fðr; tÞdVD: ð153Þ
The surface force FSðWÞ, i.e. the force acting on the surface @W with dimension d, is defined by
FSðWÞ ¼
Z
@W

rnðr; tÞdAd; ð154Þ
where r ¼ rðr; tÞ is the traction vector on a surface with unit normal n. As already mentioned, in general the dimension d is
not equal to ðD� 1Þ and it is not equal to 2. The resultant force that acts on the region W is then
FRðWÞ ¼ FMðWÞ þ FSðWÞ; ð155Þ
and by substituting Eqs. (153) and (154) into Eq. (155), we obtain
FRðWÞ ¼
Z

W
fðr; tÞdVD þ

Z
@W

rnðr; tÞdAd: ð156Þ
This fractional integral equation represents the resultant force acting on any region W of the fractal material. For D ¼ 3 and
d ¼ 2, Eq. (156) gives the usual equation for the resultant force in a non-fractal continuum. The force equilibrium condition
for the region W requires FRðWÞ ¼ 0. Therefore, we have the fractional integral equation of equilibrium
Z

W
fðr; tÞdVD þ

Z
@W

rnðr; tÞdAd ¼ 0: ð157Þ
In component form, this equation reads
Z
W

f kðr; tÞdVD þ
Z
@W

rn
kðr; tÞdAd ¼ 0; ð158Þ
where we use f ¼ f kek and rn ¼ rn
kek. Using the normal vector n ¼ njej, we can represent rn

k in the form rn
i ¼ rijnj, where rij

is the stress tensor.
The differential form of equilibrium equations follows directly from Eq. (158). Using the generalization of the Gauss the-

orem for fractal media [33], the surface integral can be represented as
Z
@W

rn dAd ¼
Z
@W

c2ðd; rÞrn dA2 ¼
Z

W

@ðc2ðd; rÞrlÞ
@xl

c�1
3 ðD; rÞdVD ¼

Z
W
rðD;dÞl rl dVD; ð159Þ
where a generalization of the nabla operator for fractal materials [60] was also used in the form
rðD;dÞk B ¼ c�1
3 ðD; rÞ

@ðc2ðd; rÞBÞ
@xk

; ð160Þ
where B ¼ BðrÞ is a function of the coordinates. This operator will be called ‘‘fractal-nabla’’ operator. We note that the oper-
ator given by Eq. (160) is not a fractional derivative [2] or an operator on a fractal set [69]. For example, if we use the density
of states c3ðD; rÞ and c2ðd; rÞ in the form
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c3ðD; rÞ ¼
23�DCð3=2Þ

CðD=2Þ jrj
D�3

; ð161Þ

c2ðd; rÞ ¼
22�d

Cðd=2Þ jrj
d�2

; ð162Þ
then the ‘‘fractal-nabla’’ operator is given by
rðD;dÞk B ¼ 2D�d�1CðD=2Þ
Cð3=2ÞCðd=2Þ jrj

3�D @

@xk
jrjd�2B
� �

: ð163Þ
For non-fractal materials (D ¼ 3 and d ¼ 2), we have
rð3;2Þk B ¼ @B
@xk

:

We note that the rule of term-by-term differentiation for the operator rðD;dÞk is not satisfied, i.e.
rðD;dÞk ðBCÞ– BrðD;dÞk ðCÞ þ CrðD;dÞk ðBÞ:
The operator rðD;dÞk satisfies the following rule
rðD;dÞk ðBCÞ ¼ BrðD;dÞk ðCÞ þ cðD;d; rÞCr1
kB; ð164Þ
where
cðD;d; rÞ ¼ c�1
3 ðD; rÞc2ðd; rÞ:
For example, the density of states given by Eqs. (161) and (162), can be expressed as
cðD;d; rÞ ¼ 2D�d�1CðD=2Þ
Cð3=2ÞCðd=2Þ jrj

dþ1�D
:

Note that, in general, rðD;dÞk ð1Þ – 0 since
rðD;dÞk ð1Þ ¼ cðD;d; rÞ ðd� 2Þ xk

r2 :
Using now Eqs. (159) and (157) takes the form
Z
W

f þrðD;dÞl rl

� �
dVD ¼ 0; ð165Þ
or in components form (with f ¼ f kek, and rn
l ¼ rklek), we have
Z

W
f k þrðD;dÞl rkl

� �
dVD ¼ 0; ðk ¼ 1;2;3Þ: ð166Þ
This equation is satisfied for all regions W . As a result, we have
rðD;dÞl rkl þ f k ¼ 0; ðk ¼ 1;2;3Þ: ð167Þ
Using the usual notation, we have
c�1
3 ðD; rÞD

1
xl

c2ðd; rÞrklð Þ þ f k ¼ 0; ðk ¼ 1;2;3Þ: ð168Þ
These are the differential equations of equilibrium for fractal materials.
Let us derive next, the equilibrium equation for the moment of forces. The moment MMðWÞ of the mass force (153), can be

written as
MMðWÞ ¼
Z

W
½r; f�dVD: ð169Þ
The moment MSðWÞ of the surface force (154) is given by
MSðWÞ ¼
Z
@W
½r;rn�dAd: ð170Þ
In Eqs. (169) and (170), the brackets ½:; :� denotes vector product of vector fields. The resultant moment MRðWÞ is the sum
MRðWÞ ¼MMðWÞ þMSðWÞ: ð171Þ
Substituting Eqs. (169) and (170) into Eq. (171), we obtain
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MRðWÞ ¼
Z

W
½r; f�dVD þ

Z
@W
½r;rn�dAd: ð172Þ
The equilibrium condition for the region W surrounded by its surface @W of a fractal material leads to MRðWÞ ¼ 0, yielding
the fractional integral equation
Z

W
½r; f�dVD þ

Z
@W
½r;rn�dAd ¼ 0: ð173Þ
In component form, this equation reads
Z
W
�ijk xj f k dVD þ

Z
@W
�ijk xj rkl nl dAd; ð174Þ
where �ijk is the Levi–Civita symbol. Using then the generalization of Gauss theorem for fractal materials given by Eq. (159),
we obtain
Z

@W
�ijk xj rkl nl dAd ¼

Z
@W
�ijk xj rkl nl c2ðd; rÞdA2 ¼

Z
@W
�ijk D1

l xj rkl c2ðd; rÞ
� �

dV3

¼
Z
@W
�ijk c�1

3 ðD; rÞD
1
l xj c2ðd; rÞrkl

� �
dVD ¼

Z
@W

cðD; d; rÞ�ilk rkl dVD þ
Z
@W
�ijk xjrðD;dÞl rkl dVD

¼
Z
@W

cðD;d; rÞ�ilk rkl dVD �
Z
@W
�ijk xj f k dVD; ð175Þ
where Eq. (167) is also used. Substitution of Eq. (175) into Eq. (174) givesZ

@W

cðD;d; rÞ�ilk rkl dVD ¼ 0: ð176Þ
This equation is satisfied for all regions W . Therefore we have the condition
�ijkrkj ¼ 0; ð177Þ
or, equivalent,
rij ¼ rji: ð178Þ
This equilibrium equation for the moment of the force in fractal materials is the same as for the non-fractal case, and sug-
gests that the stress tensor is symmetric.

4.5. Conservation laws for fractal materials

In the framework of fractional integral continuum model, the fractional conservation laws for fractal media have been
derived in [33] (see also [39,13]). For future reference, the differential equations of the conservation laws are also summa-
rized below:

(1) The conservation law for mass
d
dt

� �
ðD;dÞ

q ¼ �qrðD;dÞk uk: ð179Þ
(2) The conservation law for momentum
q
d
dt

� �
ðD;dÞ

uk ¼ f k þrðD;dÞl rkl: ð180Þ
(3) The conservation law for energy
q
d
dt

� �
ðD;dÞ

e ¼ cðD;d; rÞrkl D1
l uk þrðD;dÞk qk: ð181Þ
It is noted that these equations are differential equations with derivatives of integer order (see Eq. (163)). It is also pointed
out that the generalized total time derivative is defined by
d
dt

� �
ðD;dÞ
¼ @

@t
þ cðD;d; rÞul D1

l ; ð182Þ
where r ¼ jrj, xk, k ¼ 1;2;3, are dimensionless variables, the operator D1
l is defined as usual by D1

l ¼ @=@xk, and
cðD;d; rÞ ¼ c�1
3 ðD; rÞc2ðd; rÞ:
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The above listed differential equations of balance for the density of mass, the density of momentum, and the density of inter-
nal energy make up a set of five equations, which are not closed. In addition to the fields qðr; tÞ, uðr; tÞ, eðr; tÞ, Eqs. (181) and
(182) include the tensor of stress rklðr; tÞ ¼ rlkðr; tÞ and the vector of thermal flux qkðr; tÞ. It is also remarked that the con-
servation laws for fractal media, which are suggested in [39] are different from the conservation laws given by (179) and
(181) derived in [33,13]. In [39] all equations contain the derivatives c�1

1 ðaxi
; xiÞD1

xi
only, where the density of states

c�1
1 ðaxi

; xiÞ can be considered as c�1
3 ðD; rÞc2ðD� axi

; r� xieiÞ. 179,181,182 contain two types of derivatives: D1
l and rðD;dÞk .

4.6. Constitutive relations for fractal materials

For the theory of non-fractal gradient elasticity of isotropic materials the constitutive relations [17–19] has the form
rij ¼ kekkdij þ 2leij
� �

� l2 D kekkdij þ 2leij
� �

; ð183Þ
where rij and eij are the stress and strain tensors and l denotes an internal length. As usual, k and l are the Lame coefficients;
and D is the Laplace operator defined by the scalar product of the nabla operators
D ¼ ðr;rÞ ¼
X2

k

ðrkÞ2: ð184Þ
It is easy to see that the balance equations for fractal media considered herein contain in addition to the usual derivatives D1
k

the ‘‘fractal-nabla’’ operator rðD;dÞk of Eq. (160),
rðD;dÞk :ð Þ ¼ c�1
3 ðD; rÞrk c2ðd; rÞ :ð Þ ð185Þ
that takes into account the density of states of fractal media with non-integer mass dimensions. Therefore, we can assume
that corresponding generalizations of constitutive relations can be obtained by the replacement of the usual nabla operator
by the ‘‘fractal-nabla’’ operator.For example, a fractal generalization of the gradient elasticity model given by Eq. (183) can be
represented by the constitutive relations in the form
rij ¼ kekkdij þ 2leij
� �

� l2F DðD;dÞ kekkdij þ 2leij
� �

; ð186Þ
where we use the ‘‘fractal-Laplacian’’ that is defined by
DðD;dÞ ¼ rðD;dÞ;rðD;dÞ
� �

¼
X2

k

rðD;dÞk

� �2
: ð187Þ
For non-fractal materials, we have D ¼ 3, d ¼ 2 and Dð3;2Þ ¼ D. More generally, we can assume that the constitutive relations
for fractal materials are of the form
rij ¼ kekkdij þ 2leij
� �

� l2S D kekkdij þ 2leij
� �

� l2
F DðD;dÞ kekkdij þ 2leij

� �
; ð188Þ
where two types of Laplacians are taken into account.
In general, fractal materials cannot be defined as media distributed over a fractal set. Naturally, in real materials the frac-

tal structure cannot be observed on all scales. Materials demonstrate fractality only in a range of scales Rmin < R < Rmax. If the
sample material has a size RS greater than Rmax, or the region of scales ½Rmin;Rmax� is narrow,then the material is ‘‘semi-fractal’’
material. The parameter l2

S in constitutive relation given by Eq. (188) is a measure of spatial non-fractality of the material,
whereas the parameter l2

F is a measure of spatial fractality of material for the fractal gradient elasticity theory considered
herein. Which of the two models of Eq. (186) or Eq. (188) is more appropriate to describe a particular fractal material, must
be determined experimentally.

4.7. Strain–displacement relation for fractal materials

In [39–41] it is postulated that the strain eij for small deformations of fractal materials is given in terms of the displace-
ment uk by the equation
eij ¼
1
2

c�1
1 ðaxi

; xiÞD1
xi

uj þ c�1
1 ðaxj

; xjÞD1
xj

ui

� �
: ð189Þ
The one-dimensional analogue of Eq. (189) has been considered in [40,41] in the form
eðxÞ ¼ c�1
1 ða; xÞD

1
x uðxÞ; ð190Þ
where c1ða; xÞ is the density of states. As a basis for using this definition, reference is made the differential form of a linear
element dla ¼ c�1

1 ðax; xÞdx, which takes into account the 1D density of states. Another argument [40,41] to support this choice
is a possibility to obtain the same 1D elastic wave equation from a variational principle, as the wave equation obtained from
the balance equations. However, it is not quite clear the necessity to consider the density of states in the definition of the
strain.
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It thus seems that the definitions given by Eqs. (189) or (190) are not sufficiently rigorously justified. The inclusion of the
density of states c1ða; xÞ into the strain-displacement relation looks like an artificial reception. The relation between the
strain tensor eij and the displacement vector uk should be derived directly from the relevant distance changes (for example,
see Section 1.1 of [66]), and this relation should not be postulated in definition. For example, in the 1D case, the strain–dis-
placement relation for fractal materials should be derived from the equation
ðdl0aÞ
2 ¼ ðdlaÞ2 ð1þ 2eðxÞÞ ð191Þ
that describes the deformation of a linear element dla ¼ c1ðax; xÞdx of 1D fractal medium. From Eq. (191) it is apparent that
the strain eðxÞ does not contain the density of states c1ða; xÞ. The relation between strain and displacement should define the
deformation of a volume element dVD ¼ c3ðD; rÞdV3 of a fractal material through the condition
dV 0D ¼ dVD½1þ e11ðxÞ þ e22ðxÞ þ e33ðxÞ�; ð192Þ
which is the fractal analogue of Eq. 1.6 of [66], we see that eiiðxÞ does not contain the density of states also.

4.8. Variational principle for fractal materials

Another way to derive the governing equations for fractional integral continuum models for fractal materials is the use of
variational principles. A holonomic variational principle for fractal materials has been suggested in [35,36] in the framework
of a fractional integral continuum model. Variational principles for fractal elasticity are also considered in [37,38]. The equa-
tion for fractal elasticity can be derived as the Euler–Lagrange equations from a holonomic functional.

Let us consider a fractional integral continuum model for fractal materials in R3 that is described by the action
SF ½u� ¼
Z

dt
Z

R3
dVDLðui;ui;t ;ui;k;ui;kl; ui;klmÞ ð193Þ
with Lagrangian Lðui;ui;t; ui;k;ui;kl;ui;klmÞ, where ui ¼ uiðr; tÞ is the displacement vector. To take into account the fractality of
the material in coordinate space R3, we use
dVD ¼ c3ðD; rÞdV3;
where the function c3ðD; rÞ describes the density of states in R3. Note that x, y, z and r are dimensionless variables.
The variation of the action functional given by Eq. (193) is
dSF ½u� ¼
Z

dt
Z

R3
dVD dL

¼
Z

dt
Z

R3
dVD

@L
@ui

dui þ
@L
@ui;t

� �
dui;t þ

@L
@ui;k

� �
dui;k þ

@L
@ui;kl

� �
dui;kl þ

@L
@ui;klm

� �
dui;klm

� 	
: ð194Þ
If the fractal material is not subjected to non-holonomic constraints, then the variation and fractional derivatives commute,
dui;t ¼ D1
t ðdwÞ; dui;k ¼ rkðdwÞ; dui;kl ¼ rkrlðdwÞ; dui;klm ¼ rkrlrmðdwÞ:
Using integration by parts, we can express Eq. (194) in the form
dSF ½u� ¼
Z

dt
Z

R3
dV3 c3ðD; rÞ

@L
@ui

dui � D1
t c3ðD; rÞ

@L
@ui;t

� �
þ�rk c3ðD; rÞ

@L
@ui;k

� ��

þrkrl c3ðD; rÞ
@L
@ui;kl

� �
�rkrlrm c3ðD; rÞ

@L
@ui;klm

� �	
dui: ð195Þ
Then, the stationary action principle, in the form of the holonomic variational equation dSF ½u� ¼ 0, gives the Euler–Lagrange
equations for the fractional integral continuum model of the fractal material considered in the form
@L
@ui

dui � D1
t

@L
@ui;t

� �
� c�1

3 ðD; rÞrk c3ðD; rÞ
@L
@ui;k

� �
þ c�1

3 ðD; rÞrkrl c3ðD; rÞ
@L
@ui;kl

� �

� c�1
3 ðD; rÞrkrlrm c3ðD; rÞ

@L
@ui;klm

� �
¼ 0: ð196Þ
It follows that a mathematical model for a fractal material is entirely determined by the choice of the Lagrangian. We dem-
onstrate an application of this approach by considering the example of the Euler–Bernoulli fractal beam in the next section.

5. Gradient elasticity model for fractal beam

In this section we derive a gradient elasticity model for fractal materials in the form of the Euler–Bernoulli beam equation
of motion by using the holonomic variational principle for fractal media [35,36]. We will consider the gradient fractal beam
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by using the fractional integral continuum approach suggested in [33,32,13]. In this connection, it is noted that a non-
gradient fractal beam has been considered in [40,41] in the framework of a fractional integral continuum model.

5.1. Variational equation for 1-dimensional model of fractal materials

Let us consider a 1D fractional continuum model for fractal materials described by the action
SF ½w� ¼
Z

dt
Z

dlax Lðx; t;w;D
1
t w;D2

x w;D3
x wÞ ð197Þ
with Lagrangian Lðx; t;w;D1
t w;D2

x w;D3
x wÞ, where dlax ¼ c1ðax; xÞdx and x is dimensionless. The function c1ðax; xÞ denotes the

density of states along the x-axis. For the Euler–Bernoulli fractal beam model,the field wðxÞ ¼ uyðxÞ is the curve that describes
the deflection of the beam in the y direction at some position x.

The variation of the action functional given by Eq. (197) is
dSF ½w� ¼
Z

dt
Z

dxc1ðax; xÞdL

¼
Z

dt
Z

dxc1ðax; xÞ
@L
@w

dwþ @L
@D1

t w

 !
dðD1

t wÞ þ @L
@D2

x w

 !
dðD2

x wÞ þ @L
@D3

x w

 !
dðD3

x wÞ
" #

: ð198Þ
If non-holonomic constraints are not involved, the variation and fractional derivatives commute, i.e.
dðD1
t wÞ ¼ D1

t ðdwÞ; dðD2
x wÞ ¼ D2

x ðdwÞ; dðD3
x wÞ ¼ D3

x ðdwÞ:
Using integration by parts, we express Eq. (198) in the form
dSF ½w� ¼
Z

dt
Z

dx c1ðax; xÞ
@L
@w

dw� D1
t c1ðax; xÞ

@L
@D1

t w

 !
þ D2

x c1ðax; xÞ
@L
@D2

x w

 !
� D3

x c1ðax; xÞ
@L
@D3

x w

 !" #
dw:

ð199Þ
The stationary action principle implies the holonomic variational equation dSF ½w� ¼ 0. This equation gives the Euler–
Lagrange equation in the form
@L
@w
� c1ðax; xÞD1

t
@L
@D1

t w

 !
þ D2

x c1ðax; xÞ
@L
@D2

x w

 !
� D3

x c1ðax; xÞ
@L
@D3

x w

 !
¼ 0: ð200Þ
This equation describes the fractional continuum model of a fractal material distributed in R1 with dimension az.

5.2. Euler–Lagrange equation for the Euler–Bernoulli fractal beam

The Lagrangian for the Euler–Bernoulli fractal beams has the form
Lðx; t;w;D1
t w;D2

x w;D3
x wÞ ¼ 1

2
l D1

t wðx; tÞ
� �2

þ 1
2
ðEIðdÞÞ D2

x wðx; tÞ
� �2

� 1
2
ðEIðdÞÞ l2

F ðdÞ D3
x wðx; tÞ

� �2
� qðx; tÞwðx; tÞ: ð201Þ
The first term represents the kinetic energy, where l ¼ qA is the mass per unit length; the second one represents the poten-
tial energy due to an internal forces (when considered with a negative sign); and the third term represents the potential
energy due to the external load qðx; tÞ. Note that (x, y, z) are dimensionless variables, and l2

F ðdÞ is a dimensionless parameter.
The Lagrangian looks similar the usual Lagrangian for an Euler–Bernoulli gradient elastic beam. A difference is in the pres-

ence of the moment of inertia IðdÞ of the fractal material only. In the Lagrangian we used the second moment of area
(IðdÞ ¼ IðdÞz ) of the fractal beam’s cross-section defined by
IðdÞ ¼ IðdÞz ¼
ZZ

A
y2 dAxðdÞ; ð202Þ
where we take into account the density of states c2ðd; y; zÞ in the expression of a fractal surface differential element, i.e.
dAxðdÞ ¼ c2ðd; y; zÞdAx:
In [40,41] it has been suggested to use the derivatives c�1
1 ðax; xÞD1

x instead of the usual derivatives D1
x for fractal materials. If

we use the derivatives c�1
1 ðax; xÞD1

x instead of D1
x for fractal materials according to [40,41], then the Lagrangian for Euler–

Bernoulli fractal beams takes the following form
Lðx; t;w;D1
t w;D2

x w;D3
x wÞ ¼ 1

2
l D1

t wðx; tÞ
� �2

þ 1
2
ðEIðdÞÞ ðc�1

1 ðax; xÞD1
x Þ

2
wðx; tÞ

� �2
� 1

2

�ðEIðdÞÞ l2F ðdÞ ðc�1
1 ðax; xÞD1

x Þ
3
wðx; tÞ

� �2
� qðx; tÞwðx; tÞ: ð203Þ
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Using the Lagrangian (201), the corresponding terms in the relevant Euler–Lagrange equation, i.e. Eq. (200), are
@L
@w
¼ �qðx; tÞ; @L

@D1
t wðx; tÞ

¼ lD1
t wðx; tÞ; ð204Þ

@L
@D2

x wðx; tÞ
¼ ðEIðdÞÞD2

x wðx; tÞ; @L
@D3

x wðx; tÞ
¼ ðEIðdÞÞ l2

F ðdÞD
3
x wðx; tÞ: ð205Þ
Substitution of Eqs. (204) and (205) into Eq. (200) gives
lD2
t wþ c�1

1 ðax; xÞD2
x c1ðax; xÞ ðEIðdÞÞ ðD2

x Þw
� �

� l2
F ðdÞc�1

1 ðax; xÞD3
x c1ðax; xÞ ðEIðdÞÞD3

x w
� �

� qðx; tÞ ¼ 0; ð206Þ
which is the governing equation of motion for a fractal Euler–Bernoulli beam. For a non-fractal beam, we have
ax ¼ 1,c�1

1 ðax; xÞ ¼ 1, and the standard gradient elasticity Euler–Bernoulli beam equation is recovered
lD2
t wþ D2

x ðEIÞ ðD2
x Þw

� �
� l2s D3

x ðEIÞD3
x w

� �
� qðx; tÞ ¼ 0; ð207Þ
where the beam can be non-homogeneous, and E and I may depend on x.
If the fractal beam is homogeneous (see Section 4.2), then E and IðdÞ are independent of x, and the beam equation has a

simpler form
lD2
t wþ ðEIðdÞÞc�1

1 ðax; xÞD2
x c1ðax; xÞD2

x w
� �

� l2
F ðdÞ ðEIðdÞÞc�1

1 ðax; xÞD3
x c1ðax; xÞD3

x w
� �

� qðx; tÞ ¼ 0: ð208Þ
This equation can be expressed as
lD2
t wþ EIðdÞD4

x;ax
w� l2

F ðdÞEIðdÞD6
x;ax

w� qðx; tÞ ¼ 0; ð209Þ
where we have used the notation
D2n
x;ax
¼ c�1

1 ðax; xÞDn
x c1ðax; xÞDn

x : ð210Þ
If ax ¼ 1, then c1ðax; xÞ ¼ 1 and D2n
x;ax
¼ D2n

x .
Using the Lagrangian given by Eq. (203), the corresponding Euler–Lagrange equation has the form of Eq. (208),where the

derivatives D2n
x;ax

are replaced by
@2n
x;ax
¼ ðc�1ðax; xÞD1

x Þ
2n
;

such that
lD2
t wþ EIðdÞ @4

x;ax
w� l2

F ðdÞEIðdÞ @6
x;ax

w� qðx; tÞ ¼ 0: ð211Þ
For non-fractal materials, we have ax ¼ 1 and Eqs. (209) and (211) have the form
lD2
t wþ EI D4

x w� EI l2
F ð2ÞD

6
x w� qðx; tÞ ¼ 0: ð212Þ
This is the gradient elasticity Euler–Bernoulli beam equation for media without fractional non-locality, memory and
fractality [16].

5.3. Second moment of area for fractal beam

In this section, we give an example of computation a second moment of the fractal beam’s cross-section by the method
suggested in [34]. Let us consider a homogeneous fractal beam with circular cross-section. The second moment IðdÞ ¼ IðdÞz of
the fractal beam’s cross-section is
IðdÞz ¼
ZZ

A
y2 dAxðdÞ; ð213Þ
where d ¼ dyz is the fractal dimension of the circular cross-section of the beam. In Eq. (213) we take into account the density
of states c2ðd; y; zÞ in the fractal material through the relation dAxðdÞ ¼ c2ðd; y; zÞdAx, where (x, y, z) are dimensionless
variable.

Let us derive the polar moment of inertia IðdÞp for the circular cross-section. By using the equalities
IðdÞy ¼ IðdÞz ; IðdÞp ¼ IðdÞy þ IðdÞz ;
we find the moment of inertia by using the relationship
IðdÞy ¼ IðdÞz ¼
1
2

IðdÞp : ð214Þ
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The equation for the polar moment of inertia Ið2Þp can be written in the form
Ið2Þp ¼ q0

Z
A
ðy2 þ z2ÞdA2; ð215Þ
where dA2 ¼ dydz, (x ¼ x1, y ¼ x2, z ¼ x3) are dimensionless Cartesian coordinates, and q0 is the constant surface mass
density.

The fractional generalization of Eq. (215) is given by expression
IðdÞp ¼ q0

Z
A
ðy2 þ z2ÞdAd; ð216Þ
where
dAd ¼ cðdÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p� �d�2
dA2; cðdÞ ¼ 22�d

Cðd=2Þ ; 0 < d 6 2: ð217Þ
Substitution of Eq. (217) into Eq. (216) gives
IðdÞp ¼ q0cðdÞ
Z

A
ðy2 þ z2Þd=2

dA2: ð218Þ
In Eq. (216) we use the numerical factor cðdÞ such that the limits d! ð2� 0Þ give the usual integral formula (215). For d ¼ 2,
Eq. (216) gives Eq. (215). The parameter d ¼ dyz denotes the fractal mass dimension of the circular cross-section of the beam.
This parameter can easily be calculated from the experimental data by using the box counting method for the cross-section
of the beam.

Let us now consider the circular region A that is defined by
A ¼ fðy; zÞ : 0 6 y2 þ z2
6 R2g: ð219Þ
In polar coordinates ð/; rÞ, we have
dA2 ¼ dydz ¼ rdrd/; ðy2 þ z2Þd=2 ¼ rd: ð220Þ
Substitution of Eq. (220) into Eq. (218) gives
IðdÞp ¼ 2pq0cðdÞ
Z R

0
rdþ1dr ¼ 2pq0cðdÞ

ðdþ 2Þ Rdþ2: ð221Þ
This equation defines the second moment of the fractal beam’s cross-section. If d ¼ 2, we obtain the well-known equation
Ið2Þp ¼ ð1=2Þpq0R4.

The mass of the homogeneous fractal beam is
Md ¼ q0

Z
A

dAd; ð222Þ
where dAd is defined by Eq. (217), and q0 is the constant surface mass density. Using the polar coordinates (220), we obtain
the following mass expression
Md ¼ 2pq0 cðdÞ
Z R

0
rd�1dr ¼ 2pq0 cðdÞ

d
Rd: ð223Þ
Substituting (223) into (221), we get
IðdÞp ¼
d

dþ 2
MdR2; ð224Þ
where d is the fractal mass dimension of the beam’s circular cross-section (1 < d 6 2). If d ¼ 2, we derive the well-known
relation Ið2Þp ¼ ð1=2ÞMR2. If we consider a fractal beam with mass and radius that are equal to the mass and radius of a beam
with integer mass dimension, then these second moments are connected by the equation
IðdÞp ¼
2d

dþ 2
Ið2Þp ; ð225Þ
where Ið2Þp is the moment for the homogeneous beam with the integer cross-section mass dimension d ¼ 2.
Using the relation (214), we get
IðdÞ ¼ IðdÞz ¼
pq0

4
R4 ¼ d

2ðdþ 2ÞMdR2 ¼ 2d
dþ 2

Ið2Þz : ð226Þ
This is the second moment of a circular cross-section of the fractal beam with cross-section in the yz-plane and fractal
dimension d ¼ dyz, which should be determined by experiment.
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5.4. Gradient Euler–Bernoulli static equation for fractal beam

The gradient Euler–Bernoulli fractal homogeneous beam equation for the static case (D1
t w ¼ 0 and qðx; tÞ ¼ qðxÞ) is

obtained from Eq. (208) as
D2
x c1ðax; xÞD2

x w
� �

� l2
F ðdÞD

3
x c1ðax; xÞD3

x w
� �

¼ c1ðax; xÞ
EIðdÞ

qðxÞ: ð227Þ
For a non-fractal beam (ax ¼ 1), the static gradient Euler–Bernoulli beam equation takes the form
D4
x w� l2

s D6
x w ¼ 1

EIð2Þ
qðxÞ: ð228Þ
It is noted that Eq. (227) for a fractal beam is analogous to the static case of Eq. (207) for a non-fractal beam (ax ¼ 1 and
c1ðax; xÞ ¼ 1), which is non-homogeneous such that the product EIð2Þeff depends on x as well as c1ðax; xÞ, i.e. EIð2Þeff 	 xax�1

(0 < ax < 1). This effective static equation for a gradient Euler–Bernoulli non-homogeneous beam is expressed by
D2
x ðEIð2Þeff Þ ðD

2
x Þw

� �
� l2

s D3
x ðEIð2Þeff ÞD

3
x w

� �
¼ qeff ðxÞ ð229Þ
with the effective external load qeff ðxÞ ¼ c1ðax; xÞqðxÞ.
For the homogeneous case (qðxÞ ¼ 0), Eq. (227) can be written in the form
xD4
x wðxÞ þ ðax � 1ÞD4

x wðxÞ � l�2
F ðdÞxD2

x wðxÞ ¼ C5 x2�a þ C6 x3�a; ð230Þ
where we take into account the form of the density of states c1ðax; xÞ ¼ xax�1=CðaxÞ and x > 0. Here C5 and C6 are constants
defined by the boundary conditions for the initial problem given by Eq. (227), which is a differential equation of 6th order.
The general solution of Eq. (230) has the form
wðxÞ ¼ C1 þ C2 xþ C3 1F2 �1=2; 1=2;ax=2� 1; l�2
F ðdÞx2=4

h i
þ C4 l�1

F ðdÞx2�ax=2 Kax=2�1ðl�1
F ðdÞxÞ þ la�x=2�2

F ðdÞxIðl�1
F ðdÞx;axÞ

� �
; ð231Þ
where C1, C2, C3 and C4 are constants defined by appropriate boundary conditions; 1F2½a1; b1; b2; c� denotes the hypergeomet-
ric function; KaðxÞ denotes the modified (hyperbolic) Bessel function of the second kind; and Iðx;aÞ is the integral of the Bes-
sel function of the form
Iðx;aÞ ¼
Z

x1�ax=2 Ka=2�1ðxÞdx: ð232Þ
We can also use the fundamental solution for ordinary differential equations (2.105) in Kamke’s book [51] for the case b < 0
and 0 < a < 2 where b ¼ �la�x=2�2

F ðdÞ and a ¼ ax � 1.

5.5. Gradient Timoshenko equations for fractal beam

In this section we consider a gradient generalization of the Timoshenko beam equations for a fractal beam, as suggested in
[40,41]. In the Timoshenko beam theory without axial effects, the displacement vector uðx; y; z; tÞ of the beam is assumed to
be given by
uxðx; y; z; tÞ ¼ �zuðx; tÞ uyðx; y; z; tÞ ¼ 0; uzðx; y; tÞ ¼ wðx; tÞ; ð233Þ
where ðx; y; zÞ are the coordinates of a point in the beam, (ux, uy, uz) are the components of the displacement vector u ,
u ¼ uðx; tÞ is the angle of rotation of the normal to the mid-surface of the beam, and w ¼ wðx; tÞ is the displacement of
the mid-surface in the z-direction.

In [40,41] it is suggested to use the derivatives
@x;a ¼ c�1
1 ðax; xÞD1

x ; @n
x;a ¼ ð@x;aÞn ðn 2 NÞ ð234Þ
instead of the usual derivatives D1
x and Dn

x for fractal materials. If we use the derivatives given by Eq. (234) for fractal mate-
rials according to [40,41], then the gradient Timoshenko equation for a fractal beam can be derived from the force and
moment balance equations
qAD2
t w ¼ @x;aQ ; q IðdÞD2

t u ¼ Q � @x;aM; ð235Þ
with the bending moment M given by
M ¼ �EIðdÞ @x;a u� l2
s @

2
x;au

� �
; ð236Þ
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and the shear force Q is
Q ¼ k GA @x;aw�uð Þ � l2
s kG A@2

x;a @x;aw�uð Þ: ð237Þ
Then, the gradient Timoshenko equations for a homogeneous fractal beam have the form
qAD2
t w ¼ kGA@x;að@x;aw�uÞ � l2

s kGA@3
x;a @x;aw�uð Þ; ð238Þ

q IðdÞD2
t u ¼ kGA ð@x;aw�uÞ þ EIðdÞ @2

x;au� l2
s kGA@2

x;a @x;aw�uð Þ � EIðdÞ l2
s @

4
x;au: ð239Þ
The gradient Timoshenko fractal beam Eqs. (238) and (239) can also be derived from an appropriate variational principle. The
Lagrangian for a Timoshenko fractal beam with gradient non-locality has the form
LGTFB ¼
1
2
q IðdÞ D1

t uðx; tÞ
� �2

þ 1
2
qA D1

t wðx; tÞ
� �2

� 1
2
ðkGAÞ @x;awðx; tÞ �uðx; tÞð Þ2 � 1

2
ðEIðdÞÞ @x;auðx; tÞð Þ2

� 1
2
ðkGAÞ l2

s @2
x;awðx; tÞ � @x;au

� �2
� 1

2
ðEIðdÞÞ l2

s @2
x;auðx; tÞ

� �2
: ð240Þ
Then, the stationary action principle gives the equations
@L
@w
� D1

t
@L
@D1

t w

 !
� D1

x
@L
@D1

x w

 !
þ D2

x
@L
@D2

x w

 !
¼ 0; ð241Þ

@L
@u
� D1

t
@L
@D1

t u

 !
� D1

x
@L
@D1

xu

 !
þ D2

x
@L
@D2

xu

 !
¼ 0: ð242Þ
Eqs. (241) and (242) are the Euler–Lagrange equations for the fractal beams considered herein, as described by the Lagrang-
ian given by Eq. (240). Substitution of Eq. (240) into (241) and (242) suggests that the gradient Timoshenko fractal beam
equations (238) and (239) can be expressed as
qAD2
t w ¼ kGA@x;a 1� l2

s @
2
x;a

� �
@x;aw�uð Þ; ð243Þ

q IðdÞD2
t u ¼ kGA 1� l2

s @
2
x;a

� �
@x;aw�uð Þ þ EIðdÞ @2

x;a u� l2
s @

2
x;au

� �
: ð244Þ
If a ¼ 1, then Eqs. (243) and (244) reduce to the gradient Timoshenko equations for a beam made by a homogeneous non-
fractal material.

For the models based on [39–43], solutions of equations for fractal materials can be obtained from solutions of equations
for non-fractal materials. Let wcðx; tÞ and ucðx; tÞ be solutions of Eqs. (243) and (244) with a ¼ 1 and x > 0, i.e., of the gradient
Timoshenko equations for homogeneous non-fractal beams. Then, the solutions wFðx; tÞ and uFðx; tÞ of Eqs. (243) and (244)
for a fractal beam with 0 < a < 1 can be represented in terms of wc and uc as follows:
wFðx; tÞ ¼ wcðxa=Cðaþ 1Þ; tÞ; uFðx; tÞ ¼ ucðxa=Cðaþ 1Þ; tÞ: ð245Þ
As an example, we consider the equation for an Euler–Bernoulli homogeneous fractal beam in the absence of a transverse
load (qðxÞ ¼ 0),
qAD2
t wðx; tÞ þ EIðdÞ @4

x;awðx; tÞ ¼ 0: ð246Þ
This equation can be solved using the Fourier decomposition of the displacement into the sum of harmonic vibrations of the
form wðx; tÞ ¼ Re½wðxÞ expð�ixtÞ�, where x is the frequency of vibration. Then, for each value of frequency, we can solve the
ordinary differential equation
�qAx2wðxÞ þ EIðdÞ @4
x;awðxÞ ¼ 0: ð247Þ
The boundary conditions for a cantilevered fractal beam of length L fixed at x ¼ 0 are
wð0Þ ¼ 0; ð@1
x;awÞð0Þ ¼ 0; ð248Þ

ð@2
x;awÞðLÞ ¼ 0; ð@3

x;awÞðLÞ ¼ 0: ð249Þ
The solution for the Euler–Bernoulli homogeneous fractal beam is defined by
wF;nðxÞ ¼ w0 coshðknxaÞ � cosðknxaÞ þ CnðaÞ ½sinðknxaÞ � sinhðknxaÞ�ð Þ; x 2 ½0; L�; ð250Þ
where w0 is a constant, and
CnðaÞ ¼
cosðknLaÞ þ coshðknLaÞ
sinðknLaÞ þ sinhðknLaÞ

; kn ¼
1

Cðaþ 1Þ
qAx2

n

E IðdÞ

� �1=4

: ð251Þ
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For the boundary conditions given by Eqs. (248) and (249), the solution (250) exist only if kn are defined by
coshðknLÞ cosðknLÞ þ 1 ¼ 0: ð252Þ
This trigonometric equation is solved numerically. The corresponding natural frequencies of vibration are

xn ¼ k2
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEIðdÞÞ=qA

q
. For a non-trivial value of the displacement, w0 ia assumed to be arbitrary, and the magnitude of the

displacement is taked as unknown for free vibrations. Usually, w0 ¼ 1 is used when plotting mode shapes.

5.6. Combined strain-acceleration gradients for fractal beam

Let us consider a 1D model for a fractal material that is described by the action
S½w� ¼
Z

dt
Z

dlax Lðx; t;w;D
1
t w;D2

x w;D3
x w;D2

x D1
t wÞ; ð253Þ
with the Lagrangian
Lðx; t;w;D1
t w;D2

x w;D3
x wÞ ¼ 1

2
qA D1

t wðx; tÞ
� �2

þ 1
2

EIðdÞ D2
x wðx; tÞ

� �2
� 1

2
EIðdÞ l2

F ðdÞ D3
x wðx; tÞ

� �2
� qðx; tÞwðx; tÞ; ð254Þ
where dlax ¼ dxc1ðax; xÞ, takes into account combined strain-acceleration gradients [16]. The stationary action principle
dSF ½w� ¼ 0, gives the Euler–Lagrange equation in the form
@L
@w
� c1ðax; xÞD1

t
@L
@D1

t w

 !
þ D2

x c1ðax; xÞ
@L
@D2

x w

 !
� D3

x c1ðax; xÞ
@L
@D3

x w

 !
� D1

t D2
x c1ðax; xÞ

@L
@D2

x D1
t w

 !
¼ 0: ð255Þ
For a homogeneous fractal beam, we obtain
qAD2
t wþ EIðdÞD4

x;ax
w� l2

F ðdÞEIðdÞD6
x;ax

wþ l2
f ðdÞq IðdÞD2

t D4
x;ax

w� qðx; tÞ ¼ 0; ð256Þ
where the notation (210) was used.
In we use the fractional continuum model [33,32,13] with some changes suggested in [39–41], we derive the Euler–

Lagrange equation in the form of Eq. (256), where the derivatives D2n
x;ax

are replaced by @2n
x;ax
¼ ðc�1ðax; xÞD1

x Þ
2n

such that
qAD2
t wþ EIðdÞ @4

x;ax
w� l2F ðdÞEIðdÞ @6

x;ax
wþ l2

f ðdÞq IðdÞD2
t @

4
x;ax

w� qðx; tÞ ¼ 0: ð257Þ
If the beam is non-fractal, then D ¼ 3, ax ¼ 1, c1ðax; xÞ ¼ 1, and Eqs. (256) and (257) take the form
qAD2
t wþ EIð2ÞD4

x w� l2
s E Ið2ÞD6

x wþ l2
d q Ið2ÞD2

t D4
x w� qðx; tÞ ¼ 0: ð258Þ
This is the usual combined strain-acceleration gradient beam model [16].
Note that Eq. (256) for a fractal beam is analogous to the equation for the usual combined strain-acceleration gradient

non-fractal beam (ax ¼ 1 and c�1
1 ðax; xÞ ¼ 1), which is non-homogeneous, such that the product EIð2Þeff depends on x, as well

as on c1ðax; xÞ; i.e. EIð2Þeff 	 xax�1 (0 < ax < 1). Eq. (257) can be solved by the method suggested in Section 5.5 from the solutions
of Eq. (258) for non-fractal materials.

6. Conclusions

In this paper, we consider non-standard generalizations of the gradient elasticity theory [17–22] for complex materials
with power-law non-locality, long-term memory and fractality. These non-standard generalizations may be important in
describing unusual properties of nanomaterials [67,68].

To obtain the governing equations for the new fractional generalizations of gradient elasticity theory for materials with
power-law non-locality, we use a new fractional variational principle for Lagrangians with Riesz fractional derivatives. New
generalizations can also be obtained through extensions of the traditional variational calculus for Lagrangians by using other
types of fractional derivatives [23–28], as well as with Riesz derivatives in the form suggested in [29]. We also assume that
new fractional integral elasticity models can be derived by using the variational principle suggested in [30], where the
Lagrangian contains fractional integrals instead of fractional derivatives.

The fractional approach, which is suggested in this paper, allows us to obtain exact analytical solutions of the fractional
differential equations for models of a wide class of material with fractional gradient non- locality. A characteristic feature of
the behavior of a fractional non-local continuum is the appearance of spatial power-tails of non-integer order. The fractional
gradient models, which are suggested in this paper to describe complex materials with fractional non-locality, can be char-
acterized by a common or universal spatial behavior of elastic materials in analogy to the universal temporal behavior of
low-loss dielectrics [62–65].

The proposed generalization of gradient elasticity theory for fractal materials is based on the fractional continuum models
proposed in [32–35] (see also [13,37]). In particular, equations for gradient models of fractal materials are obtained by a frac-
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tional integral generalization of the variational principle suggested in [35,36] (see also [13]). In the framework of the fractional
integral continuum model for fractal materials, modified variational principles considered in [37,38] can also be used.

We assume that new non-standard generalizations of the gradient elasticity models of fractal materials can be obtained
by using the analysis on fractals [69,70], as well as by using the methods of the vector calculus for non-integer-dimensional
spaces [47,48], and by also using a generalization of fractal lattice models [71–73].

The approach proposed in this paper is based on fractional integral continuum models and it may have a wide application
because of the relatively small numbers of parameters that define fractal media of great complexity and rich structure. The
fractional continuum model of fractal elastic materials can be used not only to calculate global values and stationary char-
acteristics, but also to describe dynamical properties of fractal materials.
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