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type and fractality. In this paper we consider extensions of elasticity theory that allow
us to describe elasticity of materials with fractional non-locality, memory and fractality.
The basis of our consideration is an extension of the usual variational principle for frac-
tional non-locality and fractality. For materials with power-law non-locality described
. . ) by Riesz derivatives of non-integer order, we suggest a fractional variational equation.
Fractional continuum mechanics . . . . s .
Fractional gradient elasticity Equations for f_ractal materials are derived by a generalization of tt}e variational prmcnple
Materials with memory for fractal media. We demonstrate the suggested approaches to derive corresponding gen-
Fractal materials eralizations of the Euler-Bernoulli beam and the Timoshenko beam equations for the con-
sidered fractional non-local and fractal models. Various equations for materials with
fractional non-locality, fractality and fractional acceleration are considered.
© 2014 Elsevier B.V. All rights reserved.

Keywords:

1. Introduction

Derivatives and integrals of non-integer orders [1-5] have wide applications in mechanics and physics [6-15]. The tools
of fractional derivatives and integrals allow us to investigate the behavior of materials and systems that are characterized by
power-law non-locality, power-law long-term memory and fractal properties. As concluded from the above listed works,
there are different definitions of fractional derivatives such as Riemann-Liouville, Riesz, Caputo, Griinwald-Letnikov, Mar-
chaud, Weyl, Sonin-Letnikov and others. The specific choice of fractional derivatives for a particular application, it thus
depends on the taste of the investigator and the nature of the material or system at hand. Many properties of standard dif-
ferentiation and integration do not extend in the fractional case and fractional counterpart of popular models need to be
rederived, each on individual basis.

Usually non-local continuum mechanics are treated with two approaches [16]: The gradient elasticity theory (weak non-
locality) and the integral non-local theory (strong non-locality). The fractional calculus can, in fact, be used to formulate a
generalization of non-local theory of elasticity in both forms: fractional gradient elasticity (weak power-law non-locality)
and fractional integral elasticity (strong power-law non-locality). In this paper, we consider fractional generalizations of
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the gradient elasticity theory only. In particular, we suggest fractional generalizations of a rather popular robust GRADELA
model proposed by Aifantis and co-workers [17-22] for the following cases:

(1) The elasticity of materials with power-law non-locality that can be described by derivatives of non-integer order. Both
1D and 3D models are discussed.

(2) The elasticity of materials with power-law memory that can be described by fractional time derivatives for the
internal inertia or combined strain-acceleration fractional gradient terms.

(3) The elasticity of materials with fractal structure that can be described by fractional integrals in the framework of
fractional continuum models.

The basis of our consideration is an extension of the usual variational principle for materials with fractional non-locality,
memory and fractality. For 3D spatial fractional models we also use the apparatus of fractional vector calculus. An extension
of the traditional calculus of variations for systems described by fractional derivatives was first proposed by Agrawal in [23]
for the Riemann-Liouville derivatives. Then it has been extended for other type of fractional derivatives [24-29], and frac-
tional integrals [30]. For materials with power-law non-locality and memory, we suggest a new fractional variational prin-
ciple for Lagrangians with Riesz fractional derivatives. A possible generalization of gradient elasticity theory for fractal
materials was alluded in [31]. In this paper we describe fractal materials by using the fractional continuum formalism sug-
gested in [32,33] (see also [34-37]). To obtain governing equations for fractional integral continuum models of fractal mate-
rials, we employ a generalization of the holonomic variational principle suggested in [36,35]. In this connection, we note that
extremum and variational principles for non-gradient but fractal elastic materials within a fractional continuum model
framework have been considered in [37,38].

The Euler-Bernoulli beam theory may be viewed as a benchmark example of the classical linear theory of elasticity. It
provides tools for calculating the load-carrying and deflection characteristics of beams subjected to lateral loads only. In
order to illustrate the implications of the suggested fractional approaches in this paper, we use a variational principle to
derive the corresponding generalizations of the static and dynamic Euler-Bernoulli beam model, as well as that of the Tim-
oshenko beam model for the fractional non-local and fractal cases. Solutions to some of these equations for fractional non-
local and fractal beams are considered.

Next, we list some non-standard generalizations of constitutive relations for gradient elasticity models. First, we recall the
linear elastic constitutive relations for isotopic and homogeneous bodies, i.e.,

gjj = ),Ekk(s,‘j + 2#8{1‘7 (1)

where g is the stress tensor, ¢; is the strain tensor, whereas / and u are the Lame coefficients. In [17-19] it was suggested a
generalization of the constitutive relations (1) by a gradient modification that contains the Laplacian A in the form

0 = (Aedi + 24e;) — B A (Aedij + 2145, 2)

where [ is an internal length scale parameter [16]. To describe complex materials characterized by non-locality of power-
law type, long-term memory, and fractality, we should further generalize Eq. (1) and its gradient counterpart given by Eq.
(2). In this paper, we consider the following non-standard generalizations of the gradient stress-strain relation.

(1) The fractional gradient elasticity models with power-law non-locality
N < /2
05 = (Deudy + 2Meq) — B(er) (—RA)"? (hewedy + 2uey), (3)
where (—RA)“/2 is the fractional generalization of the Laplacian in the Riesz form, and
0 = (Zewdy + 2M6;) — L (o) CAY, (280 + 214e), (4)

where €AY, is the fractional Laplacian in the Caputo form.
(2) The combined fractional strain gradient-internal inertia model with power-law memory and non-locality

0 = (Ledi + 2ue;) — (lf(“) (A" + ltzf(ﬂ) (RDf)2> (Aeidij + 2 Ue), (3)

where (RD{‘)2 is the square of the derivative of non-integer order  with respect to time t, which describes acceleration with
power-law memory.
(3) The gradient elasticity models for fractal materials

/2

i = (M6 + 2e5) — (D, d) AP (2ewdy + 2pe;), (6)

where AP is the “fractal-Laplacian” that takes into account the power-law density of states of the fractal medium under
consideration.

The plan of the paper is as follows: In Section 2, we consider one-dimensional (1D) fractional gradient elasticity models. A
variational principle for these models is suggested. Fractional Euler-Bernoulli and Timoshenko beam equations are derived.
Solutions for the fractional static and dynamic Euler-Bernoulli beam governing equations are proposed. Corresponding frac-
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tional beam models with combined strain-internal inertia gradient terms are also considered. Moreover, solutions of the rel-
evant generalized equation and dispersion law for this model are derived. In Section 3, three-dimensional (3D) fractional
gradient elasticity models are formulated and discussed. In particular, 3D problems with spherical symmetry based on
the Riesz fractional derivative are considered. In addition, fractional 3D gradient elasticity models based on fractional vector
calculus are suggested. The operator split method for solving the relevant fractional gradient elasticity equations is formu-
lated. To illustrate the potential of this method, a simple fractional gradient model is considered as an application and an
explicit solution is provided. In Section 4, some basic concepts for extending gradient elasticity models to fractal media
are suggested. The equilibrium equations for fractal materials are first derived. A variational principle for obtaining gradient
elasticity equations for fractal materials is then proposed. Finally, in Section 5, generalizations of the Euler-Bernoulli and
Timoshenko beam equations for fractal materials and the corresponding equations for the combined strain-acceleration gra-
dients fractal beam models are derived.

2. Fractional 1D gradient elasticity

Fractional elasticity models are those for which non-locality of power-law type is described by using derivatives and inte-
grals of non-integer order. We can derive such phenomenological fractional elasticity models by using a variational principle
for a Lagrangian with fractional derivatives. A generalization of the traditional calculus of variations for systems described by
Riemann-Liouville fractional derivatives has been suggested by Agrawal in [23]. Then, extensions of variational calculus for
the Riemann-Liouville derivatives [24], the Caputo derivative [25-27], the Hadamard derivative [28], the Riesz derivative
[29], as well as fractional integrals [30], have been derived.

If we use the fractional derivatives of Riemann-Liouville, Caputo, Liouville, Marchaud, then we should take into account
the left-sided and the right-sided fractional derivatives in the Lagrangian. The correspondent fractional Euler-Lagrange equa-
tions contain the left-sided and the right-sided fractional derivatives also. In addition, the integration by parts, which is used
in the derivation of the Euler-Lagrange equations from the variational principle, transforms the left-sided derivatives into the
right-sided (see Eq. 2.64 of [1]). As a result, we obtain a mixture of left-sided and the right-sided derivatives in the equations of
motion. Unfortunately, these Euler-Lagrange equations can be solved for a very narrow class of Lagrangians only.

In this paper, we suggest a fractional variational principle for systems that are described by Riesz fractional derivatives
[1,2]. The suggested principle differs from the one proposed in [29]. We take advantage of the fact that the Riesz derivative
does not involve two forms, i.e., left-sided and right-sided derivatives. In addition, integration by parts transforms the Riesz
fractional derivative into itself. The corresponding fractional Euler-Lagrange equations can be solved for a wide class of
Lagrangians that describe nonlocal materials by the methods described in [2]. Moreover, the Riesz fractional derivatives
naturally arise in the elasticity theory based on lattice models [52-56]. As an example, we derive the fractional gradient gen-
eralization of the Euler-Bernoulli beam model and provide some general solutions of the corresponding equations for both
static and dynamics configurations.

2.1. Fractional 1D gradient elasticity from variational principle

To generalize standard variational principles for fractional nonlocal models, we write all expressions in dimensionless
coordinate variables. We can introduce the dimensionless variables x; = x;,/lo, r =r'/ly, where I, is a characteristic scale.
This allows us to have usual physical dimensions of measured quantities.

The equation for the fractional gradient elasticity can be derived as the Euler-Lagrange equation of the following action

Sjw] = / dt / dx £(w,D{w,kD:w,RD%2w), 7
where £(w, D;w, RD*'w,RD*w) is the Lagrangian defining the 1D fractional elasticity model, w = w(x, t) denotes the displace-

ment field, and x is the dimensionless coordinate.
The variation of the action functional (7) with respect to w(x, t) and its derivatives is given by

B ' B oL oL . oL R oL Rt
oS[w] = /dt/ dxoL = /dt/dx {8w5w+ <8D}W> o(D,w) + <—8RD§IW> o("Di'w) + <—8RD;‘ZW) 5("Dy w)} (8)

where, in the absence of non-holonomic constraints, the variation and fractional derivatives commute, i.e.

(D;w) =D{(sw), 5(*DF'w) =D (sw), 3(*D2w) = *D2 (sw).

In order to utilize the fractional variational principle, we should perform the operation of integration by parts. Unfortu-
nately, integration by parts transforms left-sided derivatives into right-sided ones for the most commonly used types of frac-
tional derivatives. For the Liouville fractional derivatives

Ine (1" d" [*f(xF2)
(Di )(X):mﬁ o Zzo+1-n

the integration by parts (see Eq. 5.17 in Section 5.1 of [1]) has the form

dz, 9)
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[ s pgwax= [0t peseod (10)
For the Marchaud fractional derivatives, which is defined by

("D%f) (%) 1706 / [ ZMXJFZ) dz, (11)
the integration by parts (see Eq. 6.27 in Corollary 2 of Theorem 6.2 of [1]) has the form

[ s we= [0 pwemdx (12)

This relation is valid for functions f(x) € Ly(R), f(x) € L(R), such that (MD%g)(x) € L,(R) and (D* f)(x) € L-(R),
wherep > 1,r > 1,
1 1 1 1 1 1
—+-=1+0a, —-==--0a, —==-0a.
pr s p t r

We suggest the use of Riesz fractional derivatives. It is known (see Section 20.1 of [1]) that the connection of the Riesz
fractional derivative to the Marchaud fractional derivatives has the form
1
R o My M o
(DI = 5 cosizmrz) (D200 + (DN, (13)

where o > 0, and o # 1,2,3,.... Here DY is the Riesz fractional derivative defined by the equation

RIYF) () o “fx+2) - 2f(x)+f(x—2)

("Dif) (x) = 2T (1 — o) cos(om/2) / 7041 dz, (14)
where x € R. Note that the Riesz derivative for an integer o = 2n gives

("02f) (x) = (~1)" D x), (15)
where n € N, i.e.

D =-D;, "Dy=D; fDy=-D. (16)

Using relations (13) and (12), we obtain the equation of the integration by parts for the Riesz fractional derivative (13) in the
form

/ f(x) (*Dig)(x)dx = /j% (*DXf) (x) g(x) dx. (17)

As a result, integration by parts in Eq. (17) does not change the type of derivative, and also does not change the sign in front
of the integral.
Using the integration by parts given by Eq. (17), we can rewrite the variation in Eq. (8) as

1( oL Ry oL Ryt oL
oS[w] = /dt/dx —ow—D; <8D3w + "Dy D w + "Dy W

Then, the stationary action principle in the form of the holonomic variational equation
oSw] =0

ow. (18)

yields the equation

oL [ oL oL ‘ oL
ow D <aD1w> +Dy (m) + D (m) -0 (19)
t X

This is the fractional Euler-Lagrange equation for the model described by the Lagrangian £ = £(w, D{w, D w,RD?w). In the
next section, we use this equation to establish a fractional generalization of the Euler-Bernoulli beam model.

2.2. Fractional Euler-Bernoulli beam equation from variational principle

The Lagrangian of Euler-Bernoulli beams with gradient power-law non-locality has the form
2
L£(w,D!w, "D w, kD2 w) = % M (D}w(x, t)) - % (ED) ("DA wix, 1))’ —

— 5 (EDE(00) (DEw(x, 1)’ + q(x Ow(x. 1) (20)
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The curve w(x) = u,(x) describes the deflection of the beam in the y direction at some position x. As we have already noted, x
and lf(ocz) are dimensionless values. The first term represents the kinetic energy, where it = pA is the mass per unit length;
the second term describes the potential energy due to internal forces (when considered with a negative sign); and the third
term is the potential energy due to the external load q(x). Note that in the Lagrangian of Eq. (20) the second term has a neg-
ative sign, since integration by parts in Eq. (17) does not change the sign in front of the integral, in contrast to the standard
case.

For the usual case of «; = 2 and o3 = 3, the Lagrangian given by Eq. (20) is

1 2 1 2 1 2
£(w, D!w,D’w, Diw) =M (Dgw(x, t)) ~5(ED (Dﬁw(x., t)) +5EDE (Diw(x, r)) +q(x, OW(X, b). (21)
For the fractional case, the Lagrangian (20) leads to the expressions
oL oL 1
—=q(x,t ——=uD/w X, t), 22
ow = A0 o = HDW( ) (22)
O (ENDIWXY), e = —(EN (5 DEwW(x,0). (23)

ORDw(x, t) ORDR2wW(x, t)

Substitution of Eqs. (22) and (23) into the Euler-Lagrange Eq. (19) gives
{D*w +RD* ((EI) ("D )w) + D% ((51) P (o) RDwa) —q(x,t) =0, (24)

which is the governing equation for the dynamics of a fractional non-local Euler-Bernoulli beam.
When the beam is homogeneous, E and I are independent of x, and the fractional Euler-Bernoulli beam equation assumes
the simpler form

uD?w + (EI) (RDfl)zw + (EI) lsz(ocz) (RD‘;‘Z)ZW —q(x,t) =0. (25)
For a wide class of functions w(x) the properties of the fractional Riesz derivatives allows us to write Eq. (25) as
uD*w + (ENRD? w + (EI) I (02)RD?*2w — q(x,t) = 0. (26)

In general, we should consider an effective source term g, (x) instead of q(x), where q,;(x) contains the function g(x) and
deviations from the semigroup property for the Riesz derivatives as described for the fractional gradient model with Caputo
derivatives dealt with in [54].

For materials without non-locality and memory, we have «; = 2, a; = 3, and then Eq. (25) obtains the form

uD?w + EID*w — EII> Dw — q(x,t) = 0. (27)
This is the gradient elasticity Euler-Bernoulli beam equation derived earlier in [16] for the case of integer-order derivatives
and non-fractal media.

2.3. Solution of fractional static Euler-Bernoulli beam equation

For the static case (D}w = 0 and q(x,t) = q(x)), Eq. (26) has the form
D w + [ (02) D2 w = (ED) ' q(x). (28)

Using Corollary 5.14 of [2], we can state that a particular solution of Eq. (28) is
00
w(x) = (EI)’1 / Gauy 20, (X — X) q(x)dX (29)
where G, 4, (X) is a Green’s type function of the form
0 cos(Ax|)
Conzn )= || 5 50

Here o; > 0, o, > 0 and lf(ocz) # 0.
For a point load of intensity qy, i.e. a load g(x) of the form [66]

q(X) = qod(x), 31)
where d(x) denotes the Dirac delta-function, the displacement field w(x) has a simple form w(x) = (qo/EI) G2y, 24, (X) given by
expression
_2qy (¥ cos(Ax])

- e G VA 32
TEL Jo 721 4 B(ap)i?* 82)

w(x)
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where the definition given by Eq. (30) for Gy, 2., (X) has been used. For the usual non-fractional case, the solution of the static
Euler-Bernoulli beam equation with the external point-load is given by Eq. (32) with o; =2 and o3 = 3.

2.4. Solution of fractional dynamic Euler-Bernoulli beam equation

For a plane wave traveling in a fractional non-local material with frequency w, the governing fractional equation is
01\ 2 032
—p@? wy(x) + (ED) (DY) Wy (x) + (ED) [ (02) ("D2) Wip(X) — g, (X) = 0, (33)

where w(x,t) = e7'w,(x), and we have also used the notation q(x,t) = e=‘q,(x). For a wide class of functions wj(x),
Eq. (33) can be expressed as

R2% 2 Ry2% _,U_wz o -1
D Wy (x) + B (3) D wy () — £ wo(x) = (D) 4,0 (34)

Using Theorem 5.24 of [2], we can obtain a particular solution of Eq. (34) as
+oc
Wy (x, @) = (EI) ! / Gy 2y (X — X )G, (¥, (35)

where GY; ,, () is a Green's type function of the form
e cos(A|x])
Gao, 20, (X, 0) = 2 /
2 O) =2 J g P(02)72% — peo?/(El)

Here oy > 0, 0 > 0, lf(ocz) #0and uw? # 0, u = pA. For the point-load case (31), the solution given by Eq. (35) is reduced to

(36)

2qy [~ cos(A|x])
ET Jo 72 4 B(op)i® — pw?/(El)

Wy (X, 0) = (37)
For the usual non-fractional case, the solution of dynamic Euler-Bernoulli beam equation with an external point-load is
given by Eq. (37) with ay =2 and o3 = 3.

2.5. Fractional gradient Timoshenko beam equations

In the Timoshenko beam theory the displacement vector u(x,y, z,t) of the beam is assumed to be given by
Ux(X,y,Z, t) = 7Z(P(X7 t) uy(xvy',zv t) = 0-, Uz("?y, t) :W(X7 t)ﬂ (38)

where (x,y,z) are the coordinates of a point in the beam, (uy, uy, u,) are the corresponding components of the displacement
vector, ¢ = @(x, t) is the angle of rotation of the normal to the mid-surface of the beam, and w = w(x, t) is the displacement
of the mid-surface in the z-direction.

To obtain a fractional generalization of the relevant gradient beam equation we use a fractional variational principle and a
generalization of the Timoshenko beam Lagrangian. The appropriate form of such Lagrangian with fractional gradient non-
locality, is

L= %pl (ng)(x, t))2 +%pA (D}w(x, r))2 —%(kGA) (*DX w(x, 1) — @(x,1))* — %(EI) (RDfl o(x, t))2

2 2
— 2 (GA)E ("Dzwix. 1) - *Df )"~ 2 (ENE ("Degx.n)) (39)
where (x,y,z) are dimensionless coordinates. Note again that we use dimensionless coordinates. such that the relevant
quantities of fractional models have the same physical dimension as corresponding one for non-fractional models.

Then, in view of the expressions

oL oL
¢ X
oL L
%:/CGA(RD;IW—QD) aD](p:pID}(p, (41)
t
oL R 2 R 2 RpB
g~ EIDY o+ [2kGARD>w — [ kGARDL ¢, (42)
x P
mg—iw — —PkGA (RD:ZW —Rph (p), BR% - —BEIRD"p, (43)
X X
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the stationary action principle gives the following Euler-Lagrange equations

87»67 1 8[’ R a‘c Ry a‘c —

ow D <aDgw) 0 oDiw) " B RDPw =0, (44)
%—Dg af: +Rph a‘,f‘ +Rpl 8§ =0. (45)
op oD "Dy ¢ "D ¢

Eqgs. (44) and (45) are the Euler-Lagrange equations for the fractional gradient elasticity model described by the Lagrangian
(39).

Substitution of Eqs. (40)-(43) into Egs. (44) and (45) gives the following fractional gradient Timoshenko beam equations
for the displacement w = w(x) and the rotation ¢ = @(x),

pAD?w =*D? (~kGA (*D}'w — ¢)) + *D} (flf kGA (RD:ZW —Rph (p)), (46)
pID} = kGA (D' w — @) + "Dt (~EI"D]! ¢ + [ KGAD;?w — [} KGA™D]! ) + "D}z (- EI*D[2p ). (47)
For homogeneous materials, Eqs. (46) and (47) take the form
pAD}w = —kGARD? (RDw — @) — £ kGARD? (RD:ZW —p (p), (48)
pID?@ = kGA (RD:'w — @) — EIRDI'RD! ¢ + 2 kGARDRD 2w — 2 kGARDIRD! ¢ — I EIRDI2RDI2 . (49)
For a wide class of functions w(x, t) and @(x,t), Egs. (48) and (49) can be rewritten as
pAD?w = —kGA (RDﬁ“lw —Rpn (p> —~kGA (RD,Z(“ZW — Rpgath qo), (50)
pID?@ = kGA (RD:'w — @) — EIRD?' ¢ + EkGARD*"'w — 2 kGARDZ" ¢ — 2 EIFD2" p. (51)

Ifo; =By =1,and o, = B, = 0, Egs. (50) and (51) reduce to the well-known Timoshenko beam equations. If &y = ; = 1, and
o, = B, = 2, Egs. (50) and (51) reduce to the form of the gradient generalization of the Timoshenko beam equations. In gen-
eral, the Riesz fractional derivatives do not commute and

RDYRDJ 2 RDXH, (32)

In this case, Eqs. (48) and (49) give Egs. (50) and (51) with an additional term in the form of an effective source terms that
contain the deviations from the semigroup property for the Riesz derivatives as it was described in [54].

2.6. Combined strain-acceleration fractional gradients beam model

Let us now consider internal inertia effects, i.e. effects of combined strain-acceleration gradients on fractional nonlocal
beams. We start with the governing equation of a gradient elasticity Euler-Bernoulli beam equation with internal inertia
or acceleration gradients [16], i.e.,

pAD}w + EIDiw — EIEDSw + pII;D? Diw — q(x,t) = 0, (53)

2
s

where (p,A, E,I) have their usual meaning, (x, t) are dimensionless variables, and (I, lﬁ) are scale parameters. The fractional

generalization of Eq. (53) can be written in the form
—pARDY'w + EIRD* 1w + EIIZ (0, )RD2*2w — pI15(0t3)RD*RD*sw — q(x,t) = 0, (54)

where RD¥ is the Riesz fractional derivative [2] with respect to time. Using Eqgs. (16) and (54) with o; = 03 =2, § = 1 and
o, = 3 gives Eq. (53).
Eq. (54) can be obtained from the stationary action principle and the correspondent fractional Euler-Lagrange equation

L s OC RpEsRIng oL R [ OL ke [ 0L\
ow D <8Rwa)+ DD ORDZRDIw D ORDY'w +Dx ORD2w =0, (35)

where the Lagrangian

L :% pA(RDiw(x, t))2 7%51 ("D w(x, r))2 —%Ellz(ocz)(RDjfzw(x,t))z +% puﬁ(o@(RD:ﬂwa(x, t))2 +q(x,Hw(x,t), (56)
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is used and Eq. (16) is also taken into account.

In the above we use the Riesz fractional derivatives (13) with respect to time to derive Eq. (54) from a variational prin-
ciple, instead of the Caputo derivatives that are commonly used. Moreover, the Riesz fractional derivatives allow us to obtain
a general harmonic solution of the combined strain-acceleration fractional gradient beam model, as we will see in the sequel.
At the same time, an interpretation of Riesz fractional derivatives with respect to time can be more complicated in compar-
ison with the left- sided Caputo derivative. In any case, the Riesz fractional time derivative describes a special form of power-
law material memory (acceleration with memory) and deserves to be explored in its own right.

2.7. Solution for the combined strain-acceleration fractional gradients beam model

Let us consider the Fourier transform F of the displacement field by utilizing the properties of the Riesz fractional deriv-
ative (see Property 2.34 in [2]) with respect to time
(FDiw(x, 1)) (k) = [K* (Fw(x, ) (X, @), (57)

where w(x, t) belongs to the space C;’(R?) of infinitely differentiable functions on R? with a compact support. Then Eq. (54)
takes the form

—pA|w'W + EIRD* W + EI (0)RD2*W — pI1(0t3) 0*RD*5W — G(x, ) = 0, (58)
where w(x, w) = (Fw(x, t))(x,w) and §(x, w) = (Fq(x,t))(x, w). By rewriting this equation in the form

EIE (01 RD?2 + EIRD?1W — p15(0t3) 0P RD? W — p AW = g (x, m), (59)
we can solve it by using Theorem 5.24 of [2] with the coefficients

ao = pAw*, a; = plli(oz)w*, ay=EI, as=EIF (). (60)

Noting that the Fourier transform of the Riesz fractional derivative with respect to coordinates is defined by

FERD*™W(x, w))(k, ) = [k** (FW)(k, @), (61)
and applying F to both sides of Eq. (59) by also using Eq. (61), we obtain

(FW)(k, w) = (a3 k1?2 + ay |K[?* — ay [K[** — ao) (i) (k, ). (62)
Next, we define the fractional analogue of Green’s function [2] as

Gu) = ! [(03 K2+ aa [k — an k™ ao)’]} 00 = [ (@l + aalk™ — ar k™ ~ o) " ek (63)
where o = (04, 02, 3) is @ multi-index. Then, the following relation holds

k) ny, en"? =, /2 )
[ s die= Sy [ 50 G (64)

for any function f such that the integral in the right-hand side of Eq. (64) is convergent (see Lemma 25.1 of [1]). Here J, is the
Bessel function of the first kind and we can use for n = 1 the expression

Jap@) = \/%COS(Z)- (65)

Using Eq. (64), the Green’s function given by Eq. (63) can be rewritten (see Theorem 5.22 of [2]) in the form

11/214/2(;~|XD d’.
as /12“2 + az )ule — /1213 — Qo

Go(r) = (2m) " | ) 7 (66)
0

where we used n = 1. If a; > 1, and a; # 0, then Eq. (59) is solvable [2]. A particular solution of Eq. (59) can be represented as
the convolution of the functions G(x) and q(x), i.e.,

WX, ) = / Gulx — X)q(x, ) dX, (67)

where the Green'’s function G,(z) is defined by Eq. (66).
For the case q(x, w) = q,6(x), Eq. (67) gives

. * cos(A|x|)dA
w(x,m) =2 / .
( ) %o 0o as J3 + a; PR (e8] 22— do

Using Eq. (60), we can write Eq. (68) in the form
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_2qy [* cos(4lx|)dA
EI Jo  P(ay)i®® + 0% — (p/E)[3(0z) 02 72 — (pA)/(El) 0

W(x, ) (69)
For a fractional non-local material without memory (8 = 1) and fractional acceleration gradient (lﬁ(og) = 0), the correspond-
ing solution is

2q, ™ cos(4lx|)dA

MW o Pam) 2 22— (pA) ED G "

This is in fact, the solution given by Eq. (37) for the fractional gradient Euler-Bernoulli beam equation of motion for the point
load case of Eq. (31).

2.8. Dispersion law and general harmonic solution of the combined strain-acceleration fractional gradient beam model

Let us now obtain a general harmonic solution of the combined strain-acceleration fractional gradient beam model
defined by Eq. (54). Using Property 2.34 in [2], the Fourier transform of (*Djw)(x) is given by Eq. (57), where w(x, t) belongs
to the space Cy’(R?) of infinitely differentiable functions on R? with a compact support.

The Fourier transform F of the fractional differential Eq. (54) with g = 0 gives

—pA|w* + EIKP™ + EIE (o) K[> — pIB(0ts) k[ |* = 0, (71)
implying that

o2t = E LK 4 (o) [k

CPAT (A E(as) k)P (72)

As a result, we obtain

| 1+ B (o) k2
o = CVP RS /8 % (73)
1+ R (o) k|

where

R=I/A, C.=+/R/p. (74)

The parameter R is called the gyration radius.
In the absence of memory, i.e. 8 =1, Eq. (73) yields

2 2(0p—0ty)
@ = CeRJk/™ % (75)
14 R[;(a3) |k|*

Ifoy =03 =2,=1and o, = 3, Eq. (73) gives

1+ Pk
®=CRK, | — T3 76
\1+REK" (76)

which is precisely the dispersion relation obtained earlier (Eq. (50) of [16]) for the non-fractional combined strain-acceler-
ation gradient beam model. Using Eq. (73), we can obtain the group velocity C, = dw(k)/dk for the combined strain-accel-
eration fractional gradient beam model as

(1-25)/(2p)
(1+ B (o) )

1
— (1=-R)/B R1/B
C R ) (1+25)/(2B)

C_ 1
C. 25

(1 + R2E(a5) |k
: (20(1 211 4 200 I (o) k227" + 2(0ty + 003) R* B (ot ) [K[2 ™71 4 2(0ty + o3) R? B (o) 3 (0t3) \k|2<“2“‘3“). (77)

Ifoe; =03 =2, =1 and o, = 3, Eq. (77) is reduced to

24 3Lk + RREL K°

)]/2 (1 +R2 l§k4)3/2 .

S _ Ri

(78)
Ce (1+ 22

This is the well-known normalized form of the corresponding group velocity (see Eq. (51) of [16]) for non-fractional coun-
terpart of the model.



206 V.E. Tarasov, E.C. Aifantis/Commun Nonlinear Sci Numer Simulat 22 (2015) 197-227
3. Toward 3D fractional gradient elasticity
To develop a fractional gradient elasticity theory in three-dimensions (3D), the following approaches may be used:

(1) An approach based on the Riesz fractional derivatives and integrals for R* [1,2,50]. This approach is best suited for 3D
problems with spherical symmetry. The Riesz fractional derivative can be considered as a non-integer power of the
Laplacian. Such a simple 3D fractional gradient elasticity model based on the Riesz fractional derivatives has already
been recently considered by the authors in [54], and it can be naturally derived from lattice models with long-range
interactions [52,53,55].

(2) An approach based on fractional vector calculus. Currently, however fractional vector calculus is formulated for a
Cartesian coordinate system only [13,60]. The transformation from Cartesian to cylindrical, spherical or other coordi-
nates is prohibitively complicated for fractional derivatives.It is connected with the fact that the formula of fractional
derivative of a composite function (see Eq. 2.209 in Section 2.7.3 of [59]) is very complex, i.e.,

00

<3< k ar
SDiF(E(0) = {80 + Y Fe s SRt ZHG,( 80), 79)

k=

where >~ extends over all combinations of non-negative integer values of a;,a,,...,a; such that

K K
< ra, = k, ( a,=m. (80)
r=1 T

These two approaches which allow us to construct 3D fractional nonlocal models of gradient elasticity are briefly dis-
cussed below.

3.1. Fractional gradient elasticity based on Riesz derivative

Three-dimensional fractional gradient elasticity models based on the Riesz fractional derivative are possible due to the
fact that this fractional derivative is a generalization of the Laplacian in R" and, in fact, it can be considered as a non-integer
power of the Laplacian. The corresponding 3D fractional gradient elasticity model is described by the following equation (for
details see [54])

G (—F8)2u)(r) + ¢ (F8) " u)(r) = (1) (2> p). (81)

where r € R® and r = |r| are dimensionless variables, and (—RA)“/2 is the Riesz fractional Laplacian of order o [2]. The coef-
ficients (c,, cg) are phenomenological constants and the rest of the symbols have their usual meaning, with u denoting the
radial component of the displacement.

For o > 0 and suitable functions u(r), r € R?, the Riesz fractional derivative can be defined [2] in terms of the inverse Fou-
rier transform F~! by

(=F8) ) (r) = 71 (K" (Fu) (K)), (82)

where k denotes the wave vector, « > 0 and x € R". The fractional Laplacian in the Riesz form is usually defined in terms of

the hypersingular integral

N0 = gy [ oo ANz (83)
dn(m, o) Jon |2

where m > o > 0, and (AJ'f)(x) is a finite difference of order m of a function f(x) with a vector step z € R" centered at the
point x € R":

o/2

(—Ra)”

m m m!
(AN = 31 i =g/~ )
where the constant d,(m, «) is defined by
TCPr”/ZAm(OC)
2°T(1 +o/2)T(n/2 + o/2) sin(mee/2)’

dn(m7 OC) =

with

m m!

Z jl(m — j)!ji'

j=0
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The definition given by Eq. (83) for the fractional Laplacian of order o does not depend on the choice of m > o. Its Fourier
transform F satisfies the relationship (F(—A)*2f)(k) = |k|*(Ff)(k), which is valid for the Lizorkin space [1] and the space
C*(R") of infinitely differentiable functions on R" with compact support.

If « = 4 and B = 2, we have the well-known equation of gradient elasticity [16] for the non-fractional case, i.e.,

o Au(r) — csA%u(r) + f(r) = 0, (84)
where
C = E7 Cq = :tlz E. (85)

Eq. (81) is a fractional partial differential equation with a particular solution (Section 5.5.1. of [2]) of the form
/ G, (r—1)f(r)dr, (86)
where the Green’s type function is given by the expression

. 1 4
G, (r) = / ——_ etikng’k 87
0= J culk* + k|’ (87)

Using Lemma 25.1 of [1], the kernel function in Eq. (87) can be represented by the equation
/°° 22 Jip(AIx])
(2m) 3/2 VIl i+ cpit

where J, ,(z) = \/2/(nz) sin(z) denotes Bessel function of the first kind.

If we consider the deformation of an infinite elastic continuum due to an external field f(r) applied to a very small region,

then for distances |r| which are large in comparison with the size of the region (neighborhood) of load application, we can
suppose that f(r) is applied at a point [66]:

f(®) =foo(r). (89)
Then, the displacement field u(r) has a simple form u(r) = f, G;j;v,f(r) given by

~ P J12(20x])

(2m 3/2\/‘1‘ / Cu A +C/5}ﬁ

G, 4(r) = di, (88)

u(r) =

(90)

3.2. Fractional vector calculus and 3D models

3.2.1. Fractional vector calculus

Fractional vector calculus is a very important tool for describing processes in complex media and materials with non-local
properties.It allows us to formulate a dynamical theory of materials with non-locality of power-law type in three dimen-
sions. At present, however, several formulations of fractional vector calculus are either incorrect or inconsistent, leading
to errors. It seems that it is possible to define a generalization of grad, div and curl operators by using a fractional derivative
D;, instead of the usual derivative D;k, where D are fractional (Liouville, Riemann-Liouville, Caputo, etc.) derivatives of
order o with respect to x, k = 1,2, 3. In such an approach, there is considerable arbitrariness in the definition of vector oper-
ators. The main problem in fractional vector calculus, however, appears when we try to generalize not only differential vec-
tor operators, but also the related integral theorems [60]. In general, a robust framework of fractional vector calculus must
include generalizations of the differential operators (gradient, divergence, curl), the integral operations (flux, circulation),
and the theorems of Gauss, Stokes and Green.

The main problem in the formulation of fractional integral vector operations is connected with the complex form of the
fractional analogue of the Newton-Leibniz formula I} ,Df(x) = f(b) — f(a). In fact, the non-commutativity of D" and ,I% does
not allows us to derive a convenient Riemann-Liouville fractional counterpart of the Newton-Leibniz formula. For fractional
Riemann-Liouville integrals and derivatives, we have the relation

off DI () Zw O @) o1

holding almost everywhere in [a, b], where D7 = d"7 /dx" are integer derivatives, and n — 1 < a < n. Here f(x) is a Lebesgue
measurable function on [a, b] for which 4I}f(x) < oo, and I} *f(x) has absolutely continuous derivatives up to order (1 — 1) on
[a, b]. This relation was proved in [1] (see Theorem 2.4 of Section 2.6). For 0 < o < 1, Eq. (91) gives

o—1
DI (x) = F(b) ‘b;(—‘;’) (), (92)
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Obviously, that Egs. (92) and (91) do not have the usual form of the Newton-Leibniz formula.

A consistent formulation of fractional vector calculus has been realized in [60] by using fractional derivatives and frac-
tional integrals of different types. For this purpose, the Riemann-Liouville integration and the Caputo differentiation are
used. The main property is that the Caputo fractional derivative provides an operation that is inverse to the Riemann-Liou-
ville fractional integration from the left. As a result, we can formulate a fractional analogue of the Newton-Leibniz formula in
the usual form if the integral is of Riemann-Liouville type and the derivative is of the Caputo type. i.e.,

aly D fx) =f(b) —f(@), (0<a<1), (93)
where Dy, is the Caputo fractional derivative defined by the equation

1 /" dx' DY F(x')
Fn—o) Jo (x—x)""*"

SDIF(x) = of} "DF(X) =
where n — 1 < a <n,and I} is the Riemann-Liouville fractional integral

peey 1 [F 0 fX) /
u[xf(x) T F(OC) -/a (X _ X/)l—x dx..
Here f(x) is a real-valued function defined on a closed interval [a, b] such that f(x) € AC'[a, b] or f(x) € C'[a, b]. For details, the
reader may consult [60], where the fractional differential operators are defined such that fractional generalizations of
integral theorems (Green'’s, Stokes’, Gauss’) can be realized. Using this fractional vector calculus [60], fractional differential
equations for the conservation of mass, momentum and energy can be obtained for a continuum with power-law non-
locality. This allows us to formulate 3D fractional models of continuum mechanics for fluids and solids with non-local prop-
erties. In the next subsection, we show how the fractional vector calculus can be used to formulate a fractional generalization
of gradient elasticity for the 3D case.

3.2.2. Fractional differential vector operators
To properly define fractional vector operations, we will first introduce the operators that correspond to fractional
differentiation and fractional integration. The left-sided Riemann-Liouville fractional integral operator is defined as

I T E R ¥,
aIX[x]::m/a ﬁ (@ > 0). (94)

To designate that the operator given by Eq. (94) acts on a real-valued function f(x) € L[a, b], we employ the notation
7 [X1f(x'). We define the left-sided Caputo fractional differential operator on [a, b] in the form

1 X dx’ o
CNY% [yl o — —
aDilx] = I'n—o) /1 (x —x) o™ (n=1<a<n). ©5)
The Caputo operator defined by Eq. (95) acts on real-valued functions f(x) € AC"[a, b] as {DZ[x'f (x'). We note that the Caputo
operator can be represented as

DY) = ol WD), (n—1<a<n),

Eq. (93) can be rewritten in the form
o3 X DX () =f(b) - f(a), (0O<o<1). (96)

In the notations ./} [x] and D [x'], we indicate the variable of integration by the brackets [], and the lower indices show the
limits of integration. Note that in Eq. (96) the variable of integration is x since the result of the integration with respect to x’
in the operator (D} [x'] depends on x only. These notations are more convenient than the ones usually used (see Eq. (93)),
since it allows us to take into account the variables of integration and the domain of the operators.

We define a fractional generalization of nabla operator by

Vi, = Dy, = €Dy, [x] + e,°Di [y] + e3°Df [z, (n—1<a<n), (97)
where €Dy, [x,] denotes the Caputo fractional derivative with respect to coordinates x,. For the parallelepiped
W:={a<x<b, c<y<d, g<z<h}, wehave

Dyl = (Dylxl. Dyl = (D3, “Dylel = ¢Djlal.
Let us now give the definitions of fractional gradient, divergence and curl operators in Cartesian coordinates [13,60]. We
assume that f(x) and F(x) are real-valued functions with continuous derivatives up to order (n — 1) on W c R?, such that

their (n — 1) derivatives are absolutely continuous, i.e., f,F € AC"[W].
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(1) The fractional gradient is defined by
Gradyf = “Dyf = e Dy [xlf(x.y.z) = & Dy [XIf(x.y.2) + & Dy WIf (x.y,2) +es Dy [2lf (x.y,2), (98)

here f =f(x,y,z) is a (n—1) times continuously differentiable scalar field such that the derivative D’X",’lf is absolutely
continuous.
(2) The fractional divergence is defined by the equation

DiviyF = (“Dy,, F) = “Djy [x|Fi(x,y,2) = Dy [X|Fx(x,y,2) + Dy yIFy(x,y,2) + Dy [2)Fx(x,y,2), (99)

where F(x,y,z) is a (n — 1) times continuously differentiable vector field such that the derivatives D;‘l’lF, are absolutely
continuous.
(3) The fractional curl operator is defined by

CUFI“WF = [CD‘\Q/CVa F] = € Emk CD\Q/CV [Xm]Fk
= e ("D}, y|F, — D, [Z]F,) + e>(°D}, [z]F, — Dy, [X]F;) + es(“Djy[x]F, — “Dj,[y]Fy), (100)
where Fy = Fi(x,y,2) € AC"[W), (k=1,2,3).

(4) Using the notation introduced in Eq. (97), the operator (CD&,)2 can be considered as the fractional Laplacian of the Cap-
uto type:

3
o o o o \2 o 2
Ay = (‘Diy, D) = (DY) =D _(Diylxl)". (101)
=1
Note that in the general case we have the inequality
o 2 o
(‘Diylx)” # Dy [x)- (102)

Let us now give the basic relations for the fractional differential vector operators (for details of proofs see [13,60]).
(i) For the scalar field f = f(x,y,z), we have
3
Divj, Grad,f = “Diyfxi] D [xlf = > (D [xi))’f. (103)

=1
Using then the notations introduced in Eqs. (97) and (101), we conclude

Divy, Grady, = (“Dj,, °D},) = “AY,. (104)
(ii) The second relation for the scalar field f = f(x,y,z) is

Curl, Grady,f = 0. (105)
(iii) For the vector field F = e, F,,, it is easy to prove the relation

Divy, Curly, F(x,y,2) = 0. (106)
(iv) The following identity also holds for the double curl operator

Curl?, Curl?, F = Grad?, Div%, F — (°D%)’F. (107)
(v) The Leibniz rule for fractional differential vector operators [58] does not hold, i.e.,

Grady, (fg) # (Grady,f)g + (Gradyg)f, (108)

Divy, (fF) # (Grady,f,F) + f Divy,F. (109)

We define the fractional differential vector operators such that the fractional vector integral operators (circulation, flux,
and volume integral) exist as inverse operations. This allows us to establish the fractional analogues of Green’s, Stokes’ and
Gauss’ integral theorems [13,60]. It is also noted that the fractional differential operators are nonlocal by definition. The frac-
tional gradient, divergence and curl operators depend on the region W. This property allows for the use of fractional vector
calculus to describe complex materials with power-law non-locality in three dimensional space. Note that these continuum
fractional vector operators can be connected with the fractional-order operators on lattices with long-range interactions [61].

3.3. Fractional 3D gradient elasticity model

The simplest form of the stress-strain relation of gradient elasticity theory can be written [16] as

gj = Cijkl (gkl + l? ASH), (110)
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where Cjj is the matrix of elastic modulus, [ is a length scale parameter, oy is the stress, and ¢ is the strain tensor. For
homogenous and isotropic materials we have

Cijkl = /1(5,']'(3[(1 + 2,[1 (Sik(sjh (1 1 1)

where 1 and p are the usual Lame constants, and d; is the Kronecker delta.
The equation of motion based on Eq. (110) has the form

Cya (DD}, % 2D (D}, Dy, Dy ) i+ = p Dfu, (112)

where f; are the components of the external force field, and u; are the components of the displacement vector field. For
homogenous and isotropic materials, Eq. (112) can be written as

7(D}D}, % ED} D} (D}, D}, )) i + 21 (D} D}) % £ (D} D})(D}, Dy, ) ) ui + f; = p Dfus (113)
Using now operations of the vector calculus operators, this equation can be rewritten in the following vector form
i(l il?A) grad divu + 2 (AilfAz)UJrf:pru. (114)
A formal fractional generalization of Eq. (112) can be obtained in the form
Cia D3] iy ) = I (2) i o] (“Dj ] Dt ) “Diy ] ) i + f; = p Dy (115)
where o = (04, %2, ¢3) is @ multi-index. For the isotropic case (o; = o, = o3 = o), we have the fractional equation
Cia (D] “Diy ) = £ (2) Dy ] (Dl xn] Dy kn]) “Diy ] ) i + f; = p D (116)

Using the properties of the fractional differential vector operators, Eq. (116) for homogenous and isotropic materials can be
rewritten in the following vector form

A (1 + lf(oc)CAgv) Grad? Div*u + 2u (CA;‘V + lf(oc)(CAf,‘v)z) u+f=pDu 117)

Note that, in general, the following inequality holds
2
<CA3V> #= CAY, (118)

2
since <CD§> #= CD*,

In general, the fractional equations of motion may contain expressions of the form A,(x;) D}, [x;] with a given function
Ay(x) instead of the fractional derivative °Dj,[x;]. The explicit form of the function A,(x) is deduced by the conservation
law for non-local media by using the fractional vector calculus [13,60]. In this case, the resulting 3D gradient elasticity mod-
els are more complicated and the corresponding equations of motion are much more difficult to solve. To solve the governing
equations of 3D fractional models we should also take into account an explicit form of the violation of the semigroup prop-
erty for the Caputo derivative [54] that gives the relationship between the product ‘D%, °D?, and the derivative D'’

Using Eq. (107) in the form

Grady, Divy, u = Curly, Curly, u + “Ayu, (119)
we can rewrite Eq. (117) as

7 (1 B (@) Ay ) Curly, Curly,u+ (24200 (A3 £ E(2)(°A7)"Ju+f = pDfu. (120)
If we further assume that the displacement vector u is radial and function of r = |r| alone (1, = uk(|r|)), we have

Curly,u =0,
and, as a result, Eq. (120) has the form

(7 +2u) (1 ilﬁ(a)CA“W>CA°V‘Vu+f:pru. (121)

This is the governing fractional gradient elasticity equation for homogenous and isotropic materials with spherical
symmetry.
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3.4. The square of fractional derivative is not equal to a dual-order derivative
In order to solve the governing equations of fractional gradlent elasticity, we should give first the explicit form of the rela-

tionship between the square of the Caputo derivative (D} +) and the Caputo derivative CDﬁi. To obtain this relation we use
Eq. 2.4.6 of [2], in the form

cno __ (RLpo = Dkf ) k—o
(Def) = (DN =X gy oy -0 (122)
=0
and Eq. 2.1.16 of [2], in the form
Ex—af = LD gy (123)

T(o+ p)

where o > 0 and g > —1. The condition 8 > —1 gives another restriction for « in the form « < 1. The relationship between the
square of the Caputo derivative of order « and the Caputo derivative of order 2« takes then the form

(°DZ)’f(x) = “DZf(x) +%(x —a)'** (0<a<), (124)

where o # 1/2. Using Eq. (124), we can represent the fractional Laplacian of Caputo type as
2 3. (Dyf)(a)
o 2o X o 1-2a
= kEZI Dxi + kE:] 71_‘(] — 2@) (Xk ak) . (]25)

Note that the relation given by Eq. (124) cannot be used for o > 1. As a result, additional difficulties for solving fractional
gradient equations arise. To solve these problems, we can use a generalization of the Ru-Aifantis operator split method
[19,22].

3.5. Operator split method for fractional gradient elasticity

In 1993, Ru and Aifantis [19] suggested an operator split method to solve static problems of gradient elasticity. Let us
consider a generalization of this method to solve the fractional gradient elasticity problems. For the static case, Eq. (117)
can be written in the form

(14 E(@) A% ) [2Grady,Div* + 2uA% ] u + £ = 0. (126)
By introducing lf(oc) =0 in Eq. (126), we obtain the fractional differential equation

@u+f=0, (127)
where we use the fractional operator

L™ = 2 Grad],Div* 4+ 2 AY,. (128)
For the gradient-dependent case Isz(cx) # 0, Eq. (126) has the form

(1i1§( )CA"> “u+f=0. (129)

In general, it is necessary to solve the fractional partial differential equation of order 4o, which has a very complex form
caused by the inequality (CA“W)2 = CAZ for the fractional Laplacian of Caputo type. The following observation can reduce the
complexity of this task and greatly facilitate the obtaining of solutions in certain cases. For the radial displacement case
(Curl¥, u = 0), the operators L and €A%, commute, i.e.,

L™ €AY, — ALY = 0.
Therefore, we can see from Eq. (129) that the vector field (1 + lsz(oc) CA&,) u satisfies the non-gradient expression of Eq. (127)

for the field u. Thus, if (1 + lsz(cx) CA{“,V) u can be identified with the non-gradient displacement field u¢ of fractional non-gra-

dient elasticity theory given by Eq. (127), which can be solved, then the original fractional gradient elasticity theory given by
Eq. (126) is reduced to the following fractional equation

(1 + () fAsv) =, (130)
where u° is a classical (“non-gradient”) solution of the fractional equation

[Pu +f=0.
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Obviously, the solution of Eq. (130) can be more conveniently obtained. This establishes a connection between the “gradient”
(g) and the non-gradient “classical” (c) fractional elasticity solutions. For the non-radial case (Curly, u # 0), the fractional gra-
dient elasticity theory given by Eq. (116) takes the form

L (1 + lf(oc)CA“W) U+ f; =0, (131)

ik
where

Ly = Cyju“ D}y [x] Dy [x1]. (132)

ik
Using the operator split approach, Eq. (131) can be solved as an uncoupled sequence of two sets of fractional equations, that
is

L ui+fi =0 (133)
followed by
(1 + (o) Csz) uf =g, (134)

where two separate displacement fields are distinguished. Firstly, u§, obeys the non-gradient fractional elasticity as given by
Eq. (133). Secondly, u are the same as u, in Eq. (131), but they are now appended with a superscript g to emphasize that they
incorporate fractional gradient effects.

3.6. Solutions by fractional operator split method

Unfortunately, the applicability of fractional vector calculus to solve 3D fractional differential equations, such as Eq. (117),
is very limited due to the weak development of this area of mathematics. Therefore, we demonstrate an application of the
suggested generalization of the operator split method to obtain solutions of fractional gradient elasticity equation for a 1D
case only. The 1D counterpart of Eq. (121) reads

(3 +2M) (1 ilf(oc)CA;‘) CA*u(x) + f(x) = 0. (135)
Using the operator split method in Eq. (135), we derive two uncoupled fractional equations

LPu(x) + f(x) = 0, (136)
and

(1 + () CAf) U (x) = U(x), (137)
where the notation L = (1 + 2u) ‘A was used.

Let us first consider the equation for the non-gradient case. Using (124), Eq. (136) can be represented as
) cp2a (A+2pu(@ i _
(A4 2p) "Dy u(x) + T - 29) (x—a) +f(x)=0. (138)

We can rewrite this equation in the form
(2+ 200 DZU(X) + fop (x) = 0, (139)
where we have used the effective body force given by the expression

Furo0 = (x- @)f), (140)

If fo(x) € Cyla; b] with 0 <y < 1 and y < 20, then (see Section 4.1.3 and Theorem 4.3 of [2]) Eq. (139) has a unique solution
u‘(x) belonging to the space Ci“‘”[a; b], where n — 1 < 2a < n, defined by the expression

. B n-1 u(k)(a) X 1 X fejf(z)
e =) =3 k- a) _(;,+2u)r(2oc)/a x—2) 2 (14D

where n —1 < 20 < n.
Next, we consider the corresponding equation for the gradient case. Eq. (137) can be rewritten as

. )
CDﬁi us(x) £ L7 (o) ud(x) = £u(x). (142)
Using (124), Eq. (142) can be represented as

u'(a)

D) + T -2%)

(x—a)"2 + [ (o) ul(x) = £uc(x), (143)
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where u¢(x) is defined by Eq. (141). We rewrite this equation in the form

CAT U (x) £ 1% (o) uE (X) = Uy (X), (144)
ugy(X) = £u(x) — %(){ —a)'. (145)

If ug; (x) € Cyla; b) with 0 < y < 1 and y < 20, then (see Theorem 4.3 of [2]) Eq. (144) has a unique solution u#(x) belonging to
the space Ci“‘"[a; b], where n — 1 < 2o < n, defined by the expression

n-1

W) = > uf(@) (x = @)y [F 17 () (x— @] + / - 27 By 12 (2) (x = 27 uy (2)dz (146)
k=0 a

The quantity E, 4(z) is the Mittag-Leffler function [2]| defined by the relation

o k
E,sl7 = };m (@>0,f € R). (147)

Note also that E 1[z] = €.

4. Toward gradient elasticity of fractal materials

Fractals are measurable metric sets with non-integer Hausdorff dimension [44,45] that should be observed on all scales.-
Real fractal materials can be characterized by an asymptotic relation between the mass M(W) and the volume V(W) of
regions W of the fractal medium. For example, for a homogeneous fractal medium, a ball of radius R > Ry contains the mass
Mp (W) = Mo(R/Ro)P, where the number D is called the mass dimension, and Ry is a characteristic size related to the arrange-
ment of the medium particles. The mass dimension D does not depend on the shape of the region W, or on the packing of
particles (close packing, random packing or porous packing with uniform distribution of holes).

As a result, we can define a fractal material as a medium with non-integer mass (or number of particles) dimension.
Although, the non-integer dimension does not reflect completely the geometric and dynamic properties of a fractal medium,
it nevertheless permits a number of important conclusions about its behavior.

4.1. Fractional continuum model for fractal materials

In general, a fractal material cannot be considered as a usual continuum, since there are places and areas that are not
filled with particles. Nevertheless it can be described by special continuum models [32,33,13] based on the use of the
integrals with non-integer order. The order of these integrals should be defined by the fractal mass dimension. The kernel
of the fractional integral operator describes a density of permitted states (permitted places) in space. The fractional-order
integrals can be considered as integrals over a non-integer dimensional space up to a numerical factor by using the well-
known formulas of dimensional regularization [46].

Fractional integral continuum models of fractal media may have a wide range of applications [13] due to the relatively
small numbers of parameters that define a fractal material of great complexity and rich structure. One of the advantages
of such models is the ability to describe dynamics of fractal materials and media (for details see [13]).

To describe fractal materials by a fractional integral continuum model, we use two different notions: the density of states
cn(D,r) and the distribution function p(r, t).

(1) The function ¢, (D, r) is a density of states in the n-dimensional Euclidean space R". The density of states describes how
closely packed permitted states of particles in the space R". The expression c,(D, r) dV, represents the number of states
(permitted places) between V,, and V, + dV,,. We note that the symmetry of the density of states c,(D,r) must be the
defined by the symmetry properties of the fractal medium.

(2) The function p(r,t) is a distribution function in the n-dimensional Euclidean space R". It describes the distribution of
physical values (for example, mass, electric charge, number of particles, probability) on a set of possible (permitted)
states in the space R".

For example, the mass of a region dV, in fractal media is defined by the equation

dM(r,t) = p(r,t)cy(D,1)dV,.

In general, we cannot consider the value p(r, t)c,(D,r) as a new distribution function or a particle number density, since the
notions of density of states and of distribution function are different. We cannot reduce all properties of the system to a
description of the distribution function. This fact is well-known in statistical and condensed matter physics, where the den-
sity of states is usually considered as a density of energy states or as a density of wave vector states [57] that describe how
closely packed the allowed states in energy or wave-vector spaces. For fractal distributions of particles in a coordinate space
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R", we must use a density of states in this space. The density of states c,(D,r) in R" is chosen such that du,(r,n) = c,(D,r)dV,
describes the number of states in dV,. We use the notations

dVD = Cg(D, l')dV37 de = Cz(d7l')d527 dl/; = C]([ﬁr)dll

to describe densities of states in n-dimensional Euclidean spaces with n =1,2,3.
4.2. Mass of fractal materials

The cornerstone of fractal media is the non-integer mass dimension. One of the best static experimental methods to
determine the mass dimension D of fractal materials is the box-counting method (see, for example [49] and references
therein). It involves the selection of a box of size R and counting the mass inside to estimate D from corresponding power
law relation M ~ RP.

Let us now consider a region W of a fractal material in the Euclidean space R?, with its boundary denoted by 8W. Suppose
that the medium in the region W has a mass dimension D, and the medium on the boundary oW has a dimension d. In
general, the dimension d is not equal to (D — 1) and it is not equal to 2. The mass of the region W in the fractal medium
is denoted by Mp(W). The fractality means that the mass in any region W c R? increases slower than the 3D volume of this
region, i.e., according to the power law Mp(W) ~ R®, where R is the radius of the ball used to measure D.

A fractal material is called homogeneous if the power law My (W) ~ R” does not depend on the translation of the region
W. In other words, for any two regions W; and W, of the homogeneous fractal material with equal volumes
Vp(W;) = Vp(W,), the corresponding masses are equal Mp(W;) = Mp(W;). A wide class of fractal media satisfies the
homogeneous property. Many porous materials, polymers, colloid aggregates, and aerogels can be considered as homoge-
neous fractal materials. However, the fact that a material is porous or random does not necessarily imply that this material
is fractal. To describe fractal materials by a fractal integral continuum model, the fractality and homogeneity properties are
implemented as follows:

e Homogeneity: The local density of a homogeneous fractal material can be described by the constant density
p(r) = py = const. This property means that if p(r) = const and V(W,) = V(W,), then Mp(W;) = Mp(W>).

e Fractality: The mass of the ball region W of a fractal homogeneous material obeys a power law relation M ~ RP, where
0<D<3, and R is the radius of the ball. If V,(W;)=2"V,(W3) and p(r,t) = const, then fractality implies that
Mp(W1) = iPMp(W5).

These two conditions cannot be satisfied if the mass of the medium is described by an integral of integer order. In this
case the mass is expressed by the fractional-order integral equation

MD(W,t)z/ p(r,0)dVp, dVp = c3(D,r)dVs, (148)
w

where r is a dimensionless vector variable. As already noted, p(r, t) is a distribution function, and c;(D, r) is a density of states
in the Euclidean space R>. The order of the integral in Eq. (148) is defined by the fractal mass dimension of the material. The
kernel of the fractional integral operator describes a density of permitted states c;(D, r) in space, and its symmetry is defined
by the symmetry of the material structure. The particular form (Riesz, Riemann-Liouville, etc.) of the function c3(D,r) is
defined by the properties of the fractal material at hand. Note that the final field equations that relate the various physical
variables of the system have a form that is independent of the numerical factor in the function c3(D,r). However the
dependence on r is important in these equations. In addition, we note that for D = 2, we have the fractal mass distribution
in 3D Euclidean space R®. In general, this case is not equivalent to the distribution on a 2D surface.

4.3. Moment of inertia for fractal materials

A method for calculating the moment of inertia of fractal materials has been suggested in [34]. The moment of inertia has
two forms, a scalar form I(t), which is used when the axis of rotation is known, and a more general tensor form that does not
require knowing the axis of rotation. The scalar moment of inertia (often called simply the “moment of inertia”) of a rigid
body with density p'(r,t) with respect to a given axis is defined by the volume integral

10~ [ pw.or?av, (149)
w
where (r')? is the square of the perpendicular distance from the axis of rotation, and dV = dx, dx,dx;. If r' = x,e, denotes the
position vector from the origin to a point (x;, k = 1,2, 3, are components of r), then the tensor form of the moment of inertia
is
)= [ .0 (00~ xx) av;, (150)

where Jy is the Kronecker delta. We note that the SI units of I}, is kg - m?, i.e., [I,;] = kg - m?.
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To generalize Egs. (149) and (150) for fractional media, we express these equations through dimensionless coordinates.
We thus introduce the dimensionless variables x, = x; /lo, 1 =1'/ly, where [, is a characteristic length scale, and write the
density as p(r,t) =2 p/(rlp,t) so its SI units is m, i.e., [p] = kg. We then define the following moments of inertia
Lu(t) = [2I,(t), I(t) = [I'(t) to finally obtain the relations

I(t) :/ p(r, )2 dVs, Iyt / p(r,t) (o — xix)) Vs, (151)
w

where dV; = dx;dx,dx; for Cartesian coordinates, and the variables x;, k = 1,2, 3 are now dimensionless. We note that the SI
units of I is kg, i.e., [Ix)] = kg. This representation allows us to generalize Eq. (151) to fractal materials in the form

D) = /w p(r,t)r2 dVp, I)(1) / p(r,t) (8 — X,x1) dVp, (152)
where dVp = ¢5(D,r)dV3 with D denoting, as usual, the mass dimension of the fractal material.
4.4. Equilibrium equations for fractal materials
Let us now derive the equilibrium equations for a fractal material with mass dimension D. Consider a finite region W in
the fractal material, supporting a volume force and a surface force. Let the density of force f(r, t) be a function of the dimen-

sionless vector r, and time t. The volume or mass force Fy (W), i.e. the force acting on a region W of a fractal medium with
dimension D, is defined by

= / f(r,t)dVp. (153)
w
The surface force Fs(W), i.e. the force acting on the surface 9W with dimension d, is defined by
Fs(W) = / o"(r,t)dAq, (154)
oW

where ¢ = a(r, t) is the traction vector on a surface with unit normal n. As already mentioned, in general the dimension d is
not equal to (D — 1) and it is not equal to 2. The resultant force that acts on the region W is then

Fx(W) = Fy(W) + Fs(W), (155)
and by substituting Egs. (153) and (154) into Eq. (155), we obtain
W) = / f(r,t)dVp +/ o’ (r,t)dAy. (156)
w ow

This fractional integral equation represents the resultant force acting on any region W of the fractal material. For D = 3 and
d =2, Eq. (156) gives the usual equation for the resultant force in a non-fractal continuum. The force equilibrium condition
for the region W requires Fs(W) = 0. Therefore, we have the fractional integral equation of equilibrium

/ f(r,t)dVp +/ o"(r,t)dAs = 0. (157)
w ow
In component form, this equation reads

/fk avD+/ a(r,t) dAg = (158)

where we use f = f,e, and ¢" = o}e,. Using the normal vector n = n;e;, we can represent ¢}, in the form ¢ = o;n;, where o
is the stress tensor.

The differential form of equilibrium equations follows directly from Eq. (158). Using the generalization of the Gauss the-
orem for fractal media [33], the surface integral can be represented as

/ " dA; = / co(d,r) 0" dA; = / MCEI(D,I‘)C’\/D: / VP g,dvp, (159)
ow ow w ox w

where a generalization of the nabla operator for fractal materials [60] was also used in the form

d(cy(d,r)B)

VP98 = ¢;(D, 1) o

(160)
where B = B(r) is a function of the coordinates. This operator will be called “fractal-nabla” operator. We note that the oper-
ator given by Eq. (160) is not a fractional derivative [2] or an operator on a fractal set [69]. For example, if we use the density
of states c;(D,r) and cy(d,r) in the form
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- 2’r3)2)

D-3
C3(D7 l') - F(D/Z) |r| ) (]61)
c(d, ) —i\r\“*z (162)
2\U, = r(d/Z) )
then the “fractal-nabla” operator is given by
20-4-11(D/2) o
(Ddp _ 3-D d-2
Vi B=ramrany T o (" B). (163)
For non-fractal materials (D = 3 and d = 2), we have
OB
(B2)p
V. 7B = o

We note that the rule of term-by-term differentiation for the operator V;f) 9 is not satisfied, i.e.
vP9(BC) = BV (C) + CVPY(B).
The operator V\"? satisfies the following rule
vP9(BC) = BV"Y(C) + ¢(D,d,r)CV;B, (164)
where
¢(D,d,r) = c;'(D,r)c2(d, T).
For example, the density of states given by Eqs. (161) and (162), can be expressed as

_227'T(D/2) ap
“teardn

Note that, in general, V,QD'd)(l) # 0 since

c(D,d,r)

VPN (1) = (D, d.1)(d - 2) 5.

Using now Egs. (159) and (157) takes the form

/ <f + V§D~d>a,) dvp =0, (165)
w
or in components form (with f = f,ey, and ¢} = g,€;), we have
/ (fk + V;D%k,) dvp =0, (k=1,2,3). (166)
w
This equation is satisfied for all regions W. As a result, we have
VP +f =0, (k=1,2,3). (167)
Using the usual notation, we have
¢;'(D.1)Dy (c2(d, 1) 0u) +f, =0, (k=1,2,3). (168)

These are the differential equations of equilibrium for fractal materials.
Let us derive next, the equilibrium equation for the moment of forces. The moment My (W) of the mass force (153), can be
written as

Mu(W) = [ [r.0dVs. (169)
Jw
The moment Ms(W) of the surface force (154) is given by
MsW) = [ [r.0"dA. (170)
ow

In Egs. (169) and (170), the brackets [.,.] denotes vector product of vector fields. The resultant moment Mz (W) is the sum
Mz (W) = My (W) + Mg(W). (171)
Substituting Egs. (169) and (170) into Eq. (171), we obtain
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MZ(W)=/W[r,f}dvu+/aw[r,a"}dAd. (172)

The equilibrium condition for the region W surrounded by its surface 9W of a fractal material leads to Ms(W) = 0, yielding
the fractional integral equation

/ it £)dV + / it 0" dAq = 0. (173)
w ow
In component form, this equation reads

/ € XifdVp + / €ijk Xj O Ny dAq, (174)
w ow
where € is the Levi-Civita symbol. Using then the generalization of Gauss theorem for fractal materials given by Eq. (159),
we obtain

/ GUkaUklnldAd:/ Ei’jkxjo-klnICZ(dvr)dAZ:/ Eijlel (Xj01<1C2(d71'))dV3
ow ow

oW

:/ €i5" (D, 1) D} (x;c2(d. 1) G14) dVD:/ ¢(D,d,r)€y O'kldVD+/ € X V" oy dVp

oW oW oW

= / ¢(D,d,r)€w 00 dVp — / € X fidV, (175)
ow w

0

where Eq. (167) is also used. Substitution of Eq. (175) into Eq. (174) gives

/ (D, d.r)cu odVp = 0. (176)
This equation is satisfied for all regions W. Therefore we have the condition

€01 = 0, (177)
or, equivalent,

gjj = Oj. (178)
This equilibrium equation for the moment of the force in fractal materials is the same as for the non-fractal case, and sug-
gests that the stress tensor is symmetric.

4.5. Conservation laws for fractal materials

In the framework of fractional integral continuum model, the fractional conservation laws for fractal media have been
derived in [33] (see also [39,13]). For future reference, the differential equations of the conservation laws are also summa-
rized below:

(1) The conservation law for mass

d
<a> p==pViu. (179)
(D.d)
(2) The conservation law for momentum
d
p (E) u=fr+ V"0 (180)
(D.d)
(3) The conservation law for energy
d
0 <a> e =c(D,d,r)ouDluy + V. (181)
(D.d)

It is noted that these equations are differential equations with derivatives of integer order (see Eq. (163)). It is also pointed
out that the generalized total time derivative is defined by

d\y 9 .
(E) oo "3 c(D,d,r)u;D}, (182)

where r = |r|, X, k = 1,2, 3, are dimensionless variables, the operator D,] is defined as usual by D} = 0/0xy, and

¢(D,d,r) = c;'(D,1)ca(d, ).
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The above listed differential equations of balance for the density of mass, the density of momentum, and the density of inter-
nal energy make up a set of five equations, which are not closed. In addition to the fields p(r, t), u(r, t), e(r, t), Eqs. (181) and
(182) include the tensor of stress gy (r,t) = oy (r,t) and the vector of thermal flux g, (r,t). It is also remarked that the con-
servation laws for fractal media, which are suggested in [39] are different from the conservation laws given by (179) and
(181) derived in [33,13]. In [39] all equations contain the derivatives cl“(ocx,,x,v)D;i only, where the density of states
c;'(ay,, X;) can be considered as c3'(D,r)c,(D — oy, 1 — x;€;). 179,181,182 contain two types of derivatives: D} and V;f)'d).

4.6. Constitutive relations for fractal materials

For the theory of non-fractal gradient elasticity of isotropic materials the constitutive relations [17-19] has the form
Ojj = (;LS]<k(3ij + Z,USU) —PA (/18;{1(5{] + 2#81]) (183)
where g and ¢; are the stress and strain tensors and I denotes an internal length. As usual, 2 and u are the Lame coefficients;

and A is the Laplace operator defined by the scalar product of the nabla operators

2
A=(V, V)= (V). (184)
k
It is easy to see that the balance equations for fractal media considered herein contain in addition to the usual derivatives D,l
the “fractal-nabla” operator V> of Eq. (160),

VPO ) =6 (D,0)Vie(d ) ) (185)

that takes into account the density of states of fractal media with non-integer mass dimensions. Therefore, we can assume
that corresponding generalizations of constitutive relations can be obtained by the replacement of the usual nabla operator
by the “fractal-nabla” operator.For example, a fractal generalization of the gradient elasticity model given by Eq. (183) can be
represented by the constitutive relations in the form

0y = (Zewdy + 2e;) — I AP (Jewedy + 2puey), (186)
where we use the “fractal-Laplacian” that is defined by
2 2
A(D,d) _ V(D.d)7 V(Dd) _ Z V;D‘d) ) (187)
(790,9%9) = $-(5)
For non-fractal materials, we have D = 3, d = 2 and A®? = A, More generally, we can assume that the constitutive relations

for fractal materials are of the form
0 = (Zewdy + 208;) — B A (2o + 2eq) — [ AP (Gewedy + 21ue;), (188)

where two types of Laplacians are taken into account.

In general, fractal materials cannot be defined as media distributed over a fractal set. Naturally, in real materials the frac-
tal structure cannot be observed on all scales. Materials demonstrate fractality only in a range of scales Ryin < R < Rigy. If the
sample material has a size Rs greater than R4, or the region of scales [Ryin, Rmax] is narrow,then the material is “semi-fractal”
material. The parameter l§ in constitutive relation given by Eq. (188) is a measure of spatial non-fractality of the material,
whereas the parameter lﬁ is a measure of spatial fractality of material for the fractal gradient elasticity theory considered
herein. Which of the two models of Eq. (186) or Eq. (188) is more appropriate to describe a particular fractal material, must
be determined experimentally.

4.7. Strain-displacement relation for fractal materials

In [39-41] it is postulated that the strain ¢; for small deformations of fractal materials is given in terms of the displace-
ment u, by the equation

1
B =3 (cfl (ot X) D Uy + €5 (00, X;) D;ju,»). (189)
The one-dimensional analogue of Eq. (189) has been considered in [40,41] in the form
£(x) = ¢;" (e, %) D u(x), (190)

where c;(a,x) is the density of states. As a basis for using this definition, reference is made the differential form of a linear
element dl, = cy! (o, x)dx, which takes into account the 1D density of states. Another argument [40,41] to support this choice
is a possibility to obtain the same 1D elastic wave equation from a variational principle, as the wave equation obtained from
the balance equations. However, it is not quite clear the necessity to consider the density of states in the definition of the
strain.
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It thus seems that the definitions given by Egs. (189) or (190) are not sufficiently rigorously justified. The inclusion of the
density of states c;(a,x) into the strain-displacement relation looks like an artificial reception. The relation between the
strain tensor ¢; and the displacement vector u;, should be derived directly from the relevant distance changes (for example,
see Section 1.1 of [66]), and this relation should not be postulated in definition. For example, in the 1D case, the strain-dis-
placement relation for fractal materials should be derived from the equation

(dL)* = (dl,)* (1 + 2&(x)) (191)

that describes the deformation of a linear element dl, = c; (o, x)dx of 1D fractal medium. From Eq. (191) it is apparent that
the strain ¢(x) does not contain the density of states c; («, x). The relation between strain and displacement should define the
deformation of a volume element dVp = c3(D,r)dV5 of a fractal material through the condition

dVy, = dVp[1 + 11 (%) + &22(%) + €33(X)], (192)

which is the fractal analogue of Eq. 1.6 of [66], we see that &;(x) does not contain the density of states also.
4.8. Variational principle for fractal materials

Another way to derive the governing equations for fractional integral continuum models for fractal materials is the use of
variational principles. A holonomic variational principle for fractal materials has been suggested in [35,36] in the framework
of a fractional integral continuum model. Variational principles for fractal elasticity are also considered in [37,38]. The equa-
tion for fractal elasticity can be derived as the Euler-Lagrange equations from a holonomic functional.

Let us consider a fractional integral continuum model for fractal materials in R® that is described by the action

Srlu] = /dt /3 dVp L(ui, Ui, Uik, Uik, Uiam) (193)
B JR

with Lagrangian £(u;, U, Uik, Uik, Uikm), Where u; = u;(r, t) is the displacement vector. To take into account the fractality of
the material in coordinate space R?, we use

dVp = C3(D, l')dVg7

where the function ¢3(D,r) describes the density of states in R>. Note that x, y, z and r are dimensionless variables.
The variation of the action functional given by Eq. (193) is

(5SF[u]=/dt / VoL
[R3

oL oL\ . oL oL\ . oL \ .
= /dt /[R3 dVD |:(97ul bul' + (M) ()ul‘_[ + <M> 5Ui_k + <7aui‘kl> bUi‘kl + <8ui_klm) ()ui7klm:| . (]94)

If the fractal material is not subjected to non-holonomic constraints, then the variation and fractional derivatives commute,

(Su,-,r = D: ((SW)7 5ui7k = vk((SW) (SU,‘M = Vle(éW), (3u,3k,m = VkVIVm ((SW)

Using integration by parts, we can express Eq. (194) in the form

. aL . oL oL
()SF[U] = /dt /[RB dV3 |:C3(D, l') %OU,‘ — D: (C?,(D, l') —Bu-t> + —Vi (Cg (D7l') —OU'k>
oL oL
+Vi .V, (C3(D,l‘) m) - ViViVn (C3(D,l‘) m)} ou;. (195)

Then, the stationary action principle, in the form of the holonomic variational equation 6S¢[u] = 0O, gives the Euler-Lagrange
equations for the fractional integral continuum model of the fractal material considered in the form

ai ._n! oL _ 1 oL -1 oL
aui 5u1 Dt (311,'1) C3 (D7 l’) vk <C3 (D7 l') aui7k) +C3 (D, l') VkV, C3 (D7 l') TULM
—¢;'(D,1) ViV Vi <C3 (D,r) i) =0. (196)
OU; kim

It follows that a mathematical model for a fractal material is entirely determined by the choice of the Lagrangian. We dem-
onstrate an application of this approach by considering the example of the Euler-Bernoulli fractal beam in the next section.

5. Gradient elasticity model for fractal beam

In this section we derive a gradient elasticity model for fractal materials in the form of the Euler-Bernoulli beam equation
of motion by using the holonomic variational principle for fractal media [35,36]. We will consider the gradient fractal beam
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by using the fractional integral continuum approach suggested in [33,32,13]. In this connection, it is noted that a non-
gradient fractal beam has been considered in [40,41] in the framework of a fractional integral continuum model.

5.1. Variational equation for 1-dimensional model of fractal materials
Let us consider a 1D fractional continuum model for fractal materials described by the action
Se[w] = / dt / dl,, L(x,t,w,D}w,D2w, D;w) (197)
with Lagrangian £(x, t, w, D} w, D>w, D3w), where dl,, = c; (o, ) dx and x is dimensionless. The function c; (o, x) denotes the
density of states along the x-axis. For the Euler-Bernoulli fractal beam model,the field w(x) = u,(x) is the curve that describes
the deflection of the beam in the y direction at some position x.

The variation of the action functional given by Eq. (197) is

OSp[w] = /dt/dxa(ocx,x)éﬁ

- / dt / dxcy (0, X) g—fvéw+ (agfw> 3(D'w) + (ag§w> S3(D2w) + <8ng) 5(D§w)} (198)
t X X

If non-holonomic constraints are not involved, the variation and fractional derivatives commute, i.e.

8(D}w) =D} (6w), &(D2w) = D(éw), d(D2w) = D2 (ow).

Using integration by parts, we express Eq. (198) in the form
oL oL oL oL
(55W=/dt/dXCO(.X—5W7D]CO(,X7+D)2(CO€,X77D,3(COC,X7
F[ ] [1( X )8W t 1( X )8D2w 1( X )OD,Z(W 1( X )aDi,W

The stationary action principle implies the holonomic variational equation 6Sg[w] = 0. This equation gives the Euler-
Lagrange equation in the form

oL [ oL 5 oL 3 oL
— —C1(0g,X) D, | —— | + Dy | ¢1(0tx,X) —— | — D, [ c1(0tx,X) —— | = 0. 200
ow 1( X ) t <0D3W> X < 1( X )8D§W> X < 1( X )aD?(W) ( )

(199)

This equation describes the fractional continuum model of a fractal material distributed in R! with dimension o,.
5.2. Euler-Lagrange equation for the Euler-Bernoulli fractal beam

The Lagrangian for the Euler-Bernoulli fractal beams has the form
1 2 1 2 1 2
£(x,t,w. Djw, Dw, Djw) = 5 1 (Diw(x, 1)) + 5 (EI) (Diw(x,0))” — 5 (EI) L (d) (Dwix,t))” — q(x,wlx.t).  (201)

The first term represents the kinetic energy, where yt = pA is the mass per unit length; the second one represents the poten-
tial energy due to an internal forces (when considered with a negative sign); and the third term represents the potential
energy due to the external load q(x, t). Note that (x, y, z) are dimensionless variables, and lﬁ(d) is a dimensionless parameter.

The Lagrangian looks similar the usual Lagrangian for an Euler-Bernoulli gradient elastic beam. A difference is in the pres-
ence of the moment of inertia IV of the fractal material only. In the Lagrangian we used the second moment of area
(I = 1) of the fractal beam’s cross-section defined by

19 -1~ [ v da@, (202)
A
where we take into account the density of states c,(d,y,z) in the expression of a fractal surface differential element, i.e.

dAx(d) = Cz(d:}’7z) dAx
In [40,41] it has been suggested to use the derivatives c; (o, x) D} instead of the usual derivatives D}( for fractal materials. If
we use the derivatives c;' (o, X) D} instead of D! for fractal materials according to [40,41], then the Lagrangian for Euler—
Bernoulli fractal beams takes the following form
2 2
L(x,t,w,Diw,D2w, Diw) = % u(Diwix,0))" + % (E1) ((e1" () D}) ' w(x, 1)) = %

x (EIDYE(d) ((c;l (o, ) D} w(x, t))2 —q(x, Hw(x, t). (203)
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Using the Lagrangian (201), the corresponding terms in the relevant Euler-Lagrange equation, i.e. Eq. (200), are

oL oL 1

v X7t7 P TN DWX,’:7 204

gw= "I oy = R (204)
oL oL

WD) (EI') Diwi(x,t), WD~ (EI) [ (d) Dywix,t). (205)

Substitution of Egs. (204) and (205) into Eq. (200) gives
HDIW + ¢; (0, X) D} (1(0,2) (EI) (DR)W) = B(d) ;" (0,0 D} (€1 (0, %) (EI¥) Dw ) — q(x, 1) = O, (206)

which is the governing equation of motion for a fractal Euler-Bernoulli beam. For a non-fractal beam, we have
o = 1,c71 (o, X) = 1, and the standard gradient elasticity Euler-Bernoulli beam equation is recovered

uD}w + D} ((ED (DY)w) — £ D} ((ENDIw) — qx,t) = 0, (207)

where the beam can be non-homogeneous, and E and I may depend on x.
If the fractal beam is homogeneous (see Section 4.2), then E and I are independent of x, and the beam equation has a
simpler form

D} -+ (E1?) ¢ (06,%) D} (1 (o, X) Diw) = L2 () (ET) ¢ (0, ) D3 (€1 (2, ) D3w) = q(x, ) = 0. (208)
This equation can be expressed as

uDiw + EI DY, w— [F(d)EI' DS, w — q(x,t) = 0, (209)
where we have used the notation

D27, = ¢ (0, X) D ¢4 (0, X) DY (210)

If o = 1, then ¢ (o, x) = 1 and D? = DZ".
Using the Lagrangian given by Eq. (203), the corresponding Euler-Lagrange equation has the form of Eq. (208),where the
derivatives D2", are replaced by

o = (¢ (e, )D)™",

X,0lx

such that

pDiw + EIO9%, w—[F(d)EI 88, w — q(x,t) = 0. (211)
For non-fractal materials, we have o, = 1 and Eqgs. (209) and (211) have the form

uD?w + EID*w — EII>(2) DSw — q(x,t) = 0. (212)
This is the gradient elasticity Euler-Bernoulli beam equation for media without fractional non-locality, memory and
fractality [16].

5.3. Second moment of area for fractal beam

In this section, we give an example of computation a second moment of the fractal beam'’s cross-section by the method
suggested in [34]. Let us consider a homogeneous fractal beam with circular cross-section. The second moment [@ = I;d) of
the fractal beam’s cross-section is

1~ [ v . (213)

where d = d,;, is the fractal dimension of the circular cross-section of the beam. In Eq. (213) we take into account the density
of states c,(d,y,z) in the fractal material through the relation dA,(d) = c»(d,y,z) dAs, where (x, y, z) are dimensionless
variable.

Let us derive the polar moment of inertia I;d) for the circular cross-section. By using the equalities

(d _ (d) _ ) 4
9 =1, [9=[9 119,

we find the moment of inertia by using the relationship

1
Ij(/d) _ I;d) =5 1@ (214)
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The equation for the polar moment of inertia I'?’ can be written in the form
P = po [ 07 +2)dh (215)
where dA; = dydz, (x = x;, y = X,, Z=X3) are dimensionless Cartesian coordinates, and p, is the constant surface mass

density.
The fractional generalization of Eq. (215) is given by expression

= po [ 07+ 2)ds (216)
where
42 2-d
dAg = c(d)(x/yz +22) dA;, c(d) = %, 0<d<2. (217)

Substitution of Eq. (217) into Eq. (216) gives

19 = pyc(d) /A 02 +2)

" da,. (218)

In Eq. (216) we use the numerical factor c(d) such that the limits d — (2 — 0) give the usual integral formula (215). Ford = 2,
Eq. (216) gives Eq. (215). The parameter d = d,, denotes the fractal mass dimension of the circular cross-section of the beam.
This parameter can easily be calculated from the experimental data by using the box counting method for the cross-section
of the beam.

Let us now consider the circular region A that is defined by

A={(y,2): 0<y*+2> <R*}. (219)

In polar coordinates (¢, 1), we have

dA; = dydz = rdrde, (2 +22)"° = . (220)

Substitution of Eq. (220) into Eq. (218) gives

R 271p,c(d)
(d) _ d+1 4y _ 0 d-+2
I} =2mp,c(d) /0 rtidr = d+2) R™=. (221)

This equation defines the second moment of the fractal beam’s cross-section. If d = 2, we obtain the well-known equation
I = (1/2)mpyR".
The mass of the homogeneous fractal beam is

My = p, /A dAq, (222)

where dA, is defined by Eq. (217), and p, is the constant surface mass density. Using the polar coordinates (220), we obtain
the following mass expression

R
Mg = 27 p, c(d) / r-ldr = MPTOC@R‘P (223)
JOo
Substituting (223) into (221), we get
d
d) _ 2
b = g Mk, (224)

where d is the fractal mass dimension of the beam’s circular cross-section (1 < d < 2). If d = 2, we derive the well-known
relation I;P = (1/2)MR?. If we consider a fractal beam with mass and radius that are equal to the mass and radius of a beam
with integer mass dimension, then these second moments are connected by the equation

2d
(d) _ (2)
L=l (225)

where Iff) is the moment for the homogeneous beam with the integer cross-section mass dimension d = 2.
Using the relation (214), we get

@ _ ) _TPypa_d 2 2d
19— 1)~ Z20R 72(d+2)MdR ST LE (226)

This is the second moment of a circular cross-section of the fractal beam with cross-section in the yz-plane and fractal
dimension d = dy,, which should be determined by experiment.
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5.4. Gradient Euler-Bernoulli static equation for fractal beam
The gradient Euler-Bernoulli fractal homogeneous beam equation for the static case (D;w =0 and q(x,t) = q(x)) is

obtained from Eq. (208) as

€1 (0, X)
EIY
For a non-fractal beam (o, = 1), the static gradient Euler-Bernoulli beam equation takes the form

D? (q(ocx,x)Dﬁw) ~ B(d)D? (c] (004, X) Dﬁw) = q(x). (227)

1
Diw — EDSw = g A0)- (228)

It is noted that Eq. (227) for a fractal beam is analogous to the static case of Eq. (207) for a non-fractal beam (o, = 1 and
c1(o, X) = 1), which is non-homogeneous such that the product Elgf) depends on x as well as c; (o, x), i.e. Elgf) ~ x%1
(0 < oy < 1). This effective static equation for a gradient Euler-Bernoulli non-homogeneous beam is expressed by

D} ((E1) (DY)w) — D} ((EI) Diw) = deg ) (229)

with the effective external load gz (x) = ¢1 (0, X)q(X).
For the homogeneous case (q(x) = 0), Eq. (227) can be written in the form

xDiw(x) + (o — 1) Diw(x) — [2(d) X D*w(x) = Csx* % + CeX* ™%, (230)

where we take into account the form of the density of states c; (o, x) = x*~1/T"(ox) and x > 0. Here Cs and Cg are constants
defined by the boundary conditions for the initial problem given by Eq. (227), which is a differential equation of 6th order.
The general solution of Eq. (230) has the form

W(x) = C; + CX + C31F; [—1/2; 1/2,0/2 - 1; I;Z(d)x2/4]
+ Gl (@A) Ky (B (@)X) + 2 @) X1 (@)%, %)), (231)

where Cy, C3, C3 and C4 are constants defined by appropriate boundary conditions; 1F,[a;; by, by; c] denotes the hypergeomet-
ric function; K,(x) denotes the modified (hyperbolic) Bessel function of the second kind; and I(x, ) is the integral of the Bes-
sel function of the form

I(x,00) = / X2 K (%) dx. (232)

We can also use the fundamental solution for ordinary differential equations (2.105) in Kamke’s book [51] for the case b < 0
and 0 < a < 2 where b = —[*7%(d) and a = o, — 1.

5.5. Gradient Timoshenko equations for fractal beam

In this section we consider a gradient generalization of the Timoshenko beam equations for a fractal beam, as suggested in
[40,41]. In the Timoshenko beam theory without axial effects, the displacement vector u(x,y, z, t) of the beam is assumed to
be given by

ux(xayvz7 t) = _Z(P(X7 t) uy(x7y7z7 t) = Oa uZ(X7y7 t) :W(X7 t)* (233)

where (x,y,z) are the coordinates of a point in the beam, (u, uy, u,) are the components of the displacement vector u ,
@ = @(x,t) is the angle of rotation of the normal to the mid-surface of the beam, and w = w(x, t) is the displacement of
the mid-surface in the z-direction.

In [40,41] it is suggested to use the derivatives

Ao =€ (0, X) Dy, N, = (8xs)" (MEN) (234)

instead of the usual derivatives D} and D! for fractal materials. If we use the derivatives given by Eq. (234) for fractal mate-
rials according to [40,41], then the gradient Timoshenko equation for a fractal beam can be derived from the force and
moment balance equations

pAD*w = 0,,Q, pI“D*p =Q — .M, (235)
with the bending moment M given by

M=-EI0(p-£d,0), (236)
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and the shear force Q is

Q =kGA(Oyuw — @) — lf kGA aﬁ‘l(amw — Q). (237)
Then, the gradient Timoshenko equations for a homogeneous fractal beam have the form

PADIW = KGADy o (dxuW — @) — EKGAS ,(DxuW — @), (238)

pI D2 = kGA(DyuW — @) + EIV 32 . — EkGAD? (s — ) —EIVE 0% . (239)

The gradient Timoshenko fractal beam Egs. (238) and (239) can also be derived from an appropriate variational principle. The
Lagrangian for a Timoshenko fractal beam with gradient non-locality has the form

1 2 1 2 1 1

L =5p1¥ (Dig(x.0))" +5pA(Diwx.1))" =5 (KGA) (9uaW(x,t) = 9(x. 1))* = 5 (EI) (Dap(x, 1))’
1 2 1 2
— 3 (KGAVE (9, w(x,0) = 0rp)” =5 (EI)E (3, 000.1))" (240)
Then, the stationary action principle gives the equations

oL oc 1 o 2 [ OL
—=-D -D +D =0, 241
ow (aD} w) * (E)D,ﬁw) g (aniw) (241
9L _pr 815 - D, 8f +D; af =0. (242)
o aD; ¢ Dy aD;

Eqgs. (241) and (242) are the Euler-Lagrange equations for the fractal beams considered herein, as described by the Lagrang-
ian given by Eq. (240). Substitution of Eq. (240) into (241) and (242) suggests that the gradient Timoshenko fractal beam
equations (238) and (239) can be expressed as

pAD*w = kGAd,, (1 —P ai“) (BeaW — @), (243)

pI9D?¢p = kGA (1 —P aﬁii) (OyaW — @) + EIV 2, ((p —P aﬁvdq)). (244)

If « = 1, then Eqgs. (243) and (244) reduce to the gradient Timoshenko equations for a beam made by a homogeneous non-
fractal material.

For the models based on [39-43], solutions of equations for fractal materials can be obtained from solutions of equations
for non-fractal materials. Let wc(x, t) and ¢, (x, t) be solutions of Egs. (243) and (244) with o = 1 and x > 0, i.e., of the gradient
Timoshenko equations for homogeneous non-fractal beams. Then, the solutions wr(x,t) and @g(x,t) of Eqs. (243) and (244)
for a fractal beam with 0 < o < 1 can be represented in terms of w, and ¢, as follows:

WE(X, t) = We(X* /T (o +1),8),  @p(x,t) = @ (x*/T(ac+ 1), 8). (245)

As an example, we consider the equation for an Euler-Bernoulli homogeneous fractal beam in the absence of a transverse
load (g(x) = 0),

pAD?w(x,t) + EI') 9% ,w(x,t) = 0. (246)

This equation can be solved using the Fourier decomposition of the displacement into the sum of harmonic vibrations of the

form w(x, t) = Re[w(x) exp(—iwt)], where w is the frequency of vibration. Then, for each value of frequency, we can solve the
ordinary differential equation

—pAw*w(x) + EIV 8%, w(x) = 0. (247)
The boundary conditions for a cantilevered fractal beam of length L fixed at x = 0 are

w(0) =0, (9,,w)(0)=0, (248)

(@) (L) =0, (3;,w)(L)=0. (249)
The solution for the Euler-Bernoulli homogeneous fractal beam is defined by

Wrn(X) = Wo(cosh(k,x*) — cos(k.x*) + Cp(c) [sin(kn.x*) — sinh(k,x*)]), x € [0;L], (250)
where w is a constant, and

Colo) = cQS(IanZ) + cpsh(lan:) k= 1 (PAwﬁ) 1/4. os1)

sin(k,L*) + sinh(k,L*) I'(a+1) \ E[@
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For the boundary conditions given by Eqgs. (248) and (249), the solution (250) exist only if k, are defined by
cosh(k,L) cos(k,L) + 1 =0. (252)
This trigonometric equation is solved numerically. The corresponding natural frequencies of vibration are

Wy = ki\/(EI(d))/pA. For a non-trivial value of the displacement, wy ia assumed to be arbitrary, and the magnitude of the
displacement is taked as unknown for free vibrations. Usually, wo = 1 is used when plotting mode shapes.

5.6. Combined strain-acceleration gradients for fractal beam
Let us consider a 1D model for a fractal material that is described by the action
Sjw] = / dt / dl,, £(x,t,w,D}w,D>w,D>w, D’D}w), (253)
with the Lagrangian

1 21 2 1
1 2 3 _ - 1 2 pyd) 2 _ -
£(x,t,w, D}w, Diw. Diw) = 5 pA (th(x7 r)) +5El (wa(x, t)> >
where dl,, = dxc (o, x), takes into account combined strain-acceleration gradients [16]. The stationary action principle

dSr[w] = 0, gives the Euler-Lagrange equation in the form

oL [ OL 5 oL 3 oL 12 oL B
W 1 (0, X) D; <8D]W> + Dy <c1(ocx,x) 302 ) - Dy <cl(ocx,x) 8D,3(w) —D; D; <c1(ax,x) m) =0. (255)

t D,w

EI9R(d) (Dﬁw(x, t))z —qx,Ow(x, ),  (254)

For a homogeneous fractal beam, we obtain
pAD}w +EI'' D}, w— F(d)EI DS, w + [} (d) pI' D} D}, w — q(x,1) = 0, (256)

where the notation (210) was used.
In we use the fractional continuum model [33,32,13] with some changes suggested in [39-41], we degive the Euler-
. . . . n
Lagrange equation in the form of Eq. (256), where the derivatives [Df'; are replaced by 82" = (c™'(ox,x)D})”" such that

X,00x

pAD}w +EIV 9y, w—[F(d)EI 9%, w+ IF (d) pI' D 9, w — q(x,t) = 0. (257)

t “xox

If the beam is non-fractal, then D = 3, o, = 1, ¢1(a,X) = 1, and Eqgs. (256) and (257) take the form
pAD?w + EI® Diw — PEI® DSw + B pI® D? Diw — q(x,t) = 0. (258)

This is the usual combined strain-acceleration gradient beam model [16].

Note that Eq. (256) for a fractal beam is analogous to the equation for the usual combined strain-acceleration gradient
non-fractal beam (o, = 1 and ¢;' (o, x) = 1), which is non-homogeneous, such that the product Elfjf) depends on x, as well
as on ¢y (o, X); i.e. Elgf) ~ x*1(0 < oy < 1). Eq.(257) can be solved by the method suggested in Section 5.5 from the solutions

of Eq. (258) for non-fractal materials.
6. Conclusions

In this paper, we consider non-standard generalizations of the gradient elasticity theory [17-22] for complex materials
with power-law non-locality, long-term memory and fractality. These non-standard generalizations may be important in
describing unusual properties of nanomaterials [67,68].

To obtain the governing equations for the new fractional generalizations of gradient elasticity theory for materials with
power-law non-locality, we use a new fractional variational principle for Lagrangians with Riesz fractional derivatives. New
generalizations can also be obtained through extensions of the traditional variational calculus for Lagrangians by using other
types of fractional derivatives [23-28], as well as with Riesz derivatives in the form suggested in [29]. We also assume that
new fractional integral elasticity models can be derived by using the variational principle suggested in [30], where the
Lagrangian contains fractional integrals instead of fractional derivatives.

The fractional approach, which is suggested in this paper, allows us to obtain exact analytical solutions of the fractional
differential equations for models of a wide class of material with fractional gradient non- locality. A characteristic feature of
the behavior of a fractional non-local continuum is the appearance of spatial power-tails of non-integer order. The fractional
gradient models, which are suggested in this paper to describe complex materials with fractional non-locality, can be char-
acterized by a common or universal spatial behavior of elastic materials in analogy to the universal temporal behavior of
low-loss dielectrics [62-65].

The proposed generalization of gradient elasticity theory for fractal materials is based on the fractional continuum models
proposed in [32-35] (see also [13,37]). In particular, equations for gradient models of fractal materials are obtained by a frac-
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tional integral generalization of the variational principle suggested in [35,36] (see also [13]). In the framework of the fractional
integral continuum model for fractal materials, modified variational principles considered in [37,38] can also be used.

We assume that new non-standard generalizations of the gradient elasticity models of fractal materials can be obtained
by using the analysis on fractals [69,70], as well as by using the methods of the vector calculus for non-integer-dimensional
spaces [47,48], and by also using a generalization of fractal lattice models [71-73].

The approach proposed in this paper is based on fractional integral continuum models and it may have a wide application
because of the relatively small numbers of parameters that define fractal media of great complexity and rich structure. The
fractional continuum model of fractal elastic materials can be used not only to calculate global values and stationary char-
acteristics, but also to describe dynamical properties of fractal materials.
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