Short communication

On chain rule for fractional derivatives

Vasily E. Tarasov*
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow 119991, Russia

A R T I C L E I N F O

Article history:

Received 20 April 2015
Revised 3 June 2015
Accepted 4 June 2015
Available online 11 June 2015

Keywords:

Fractional derivative
Chain rule
Modified Riemann-Liouville derivative

Abstract

For some types of fractional derivatives, the chain rule is suggested in the form $\mathcal{D}_{x}^{\alpha} f(g(x))=$ $\left(\mathcal{D}_{g}^{1} f(g)\right)_{g=g(x)} \mathcal{D}_{x}^{\alpha} g(x)$. We prove that performing of this chain rule for fractional derivative \mathcal{D}_{x}^{α} of order α means that this derivative is differential operator of the first order $(\alpha=1)$. By proving three statements, we demonstrate that the modified Riemann-Liouville fractional derivatives cannot be considered as derivatives of non-integer order if the suggested chain rule holds.

© 2015 Elsevier B.V. All rights reserved.

Derivatives and integrals of non-integer orders [1-3] have a long history [1,4-8]. and these operators have wide applications in physics and mechanics (for example, see [9] and references therein). There are various types of fractional derivatives and integrals that are suggested by Riemann, Liouville, Riesz, Grünwald, Letnikov, Marchaud, Weyl, Caputo.

These fractional derivatives have a set of unusual properties and rules such as violations of semigroup property, the Leibniz and chain rules. For example, the chain rule for fractional derivative of a composite function (see Eq. 2.209 in Section 2.7.3 of [2]) is

$$
\mathcal{D}_{x}^{\alpha} f(g(x))=\frac{x^{\alpha} f(g(x))}{\Gamma(1-\alpha)}+\sum_{k=1}^{\infty} C_{k}^{\alpha} \frac{k!x^{k-\alpha}}{\Gamma(k-\alpha+1)} \sum_{m=1}^{k}\left(D_{g}^{m} f(g)\right)_{g=g(x)} \sum \prod_{r=1}^{k} \frac{1}{a_{r}!}\left(\frac{\left(D_{x}^{r} g\right)(x)}{r!}\right)^{a_{r}}
$$

where $x>0, \Sigma$ extends over all combinations of non-negative integer values of $a_{1}, a_{2}, \ldots, a_{k}$ such that $\sum_{r=1}^{k} r a_{r}=k$ and $\sum_{r}^{k} a_{r}=m$. Obviously, this equation is much more complicated than the chain rule for the first order derivative

$$
\begin{equation*}
\mathcal{D}_{x}^{1} f(g(x))=\left(\mathcal{D}_{g}^{1} f(g)\right)_{g=g(x)} \mathcal{D}_{x}^{1} g(x), \tag{1}
\end{equation*}
$$

where $\mathcal{D}_{x}^{1}=d / d x$ is the usual derivative of first order. At the same time, the chain rule for the derivative of integer order $n \in \mathbb{N}$ has the form

$$
\begin{equation*}
D_{x}^{n} f(g(x))=n!\sum_{m=1}^{n}\left(D_{g}^{m} f(g)\right)_{g=g(x)} \sum \prod_{r=1}^{n} \frac{1}{a_{r}!}\left(\frac{D_{\chi}^{r} g(x)}{r!}\right)^{a_{r}} \tag{2}
\end{equation*}
$$

that is the Faá di Bruno's formula (for example, see [10] and references therein).
Authors of some papers ([11-18] and [24-28]) suggest new types of fractional derivatives and assume some usual or simplified rules for the suggested derivatives. For example, the chain rule, which is suggested in [11-16], has the form

$$
\begin{equation*}
\mathcal{D}_{x}^{\alpha} f(g(x))=\left(\mathcal{D}_{g}^{1} f(g)\right)_{g=g(x)} \mathcal{D}_{x}^{\alpha} g(x) \tag{3}
\end{equation*}
$$

[^0]where \mathcal{D}^{α} is the fractional derivative of order α with respect to x. The chain rule in the form (3) has been suggested for the modified Riemann-Liouville fractional derivatives (see Eq. 3.12 of [11], Eq. 3.8 of [12], Eq. 4.4 of [13], Eq. 3.13 of [14], Eq. 4.4 of [15], Eq. 4.4 of [16], Eq. 2.15 of [17], Eq. 48 of [18]).

It is obvious that Eq. (3) cannot give (2) for $\alpha=n \in \mathbb{N}$ for $n>1$. Therefore Eq. (3) cannot be considered as a correct generalization of the chain rule for fractional-order derivatives. In papers [11-16], the well-known equation for fractional derivative of power function

$$
\begin{equation*}
\mathcal{D}_{x}^{\alpha} x^{\beta}=\frac{\Gamma(\beta+1)}{\Gamma(\beta-\alpha+1)} x^{\beta-\alpha}, \quad(\alpha>0, \quad \beta>0, \quad x>0) \tag{4}
\end{equation*}
$$

is used (see Eq. 3.10 of [11], Eq. 3.6 of [12], Eq. 4.2 of [13], Eq. 3.11 of [14], Eq. 4.2 of [15], Eq. 4.2 of [16], Eq. 2.13 of [17], Eq. 46 of [18]).

Using the rule (3) and Eq. (4), we prove two following statements.
Statement 1. The chain rule (3) and Eq. (4), cannot be performed together for fractional derivatives of non-integer orders $\alpha \neq 1$.
Proof. To prove this statement, we use the functions $f(g)=g^{\beta}$ and $g(x)=x^{\gamma}$, where $\alpha, \beta, \gamma>0$. Using (4) for these functions, we get

$$
\begin{align*}
& \mathcal{D}_{x}^{\alpha} f(g(x))=\mathcal{D}_{x}^{\alpha} x^{\beta \gamma}=\frac{\Gamma(\beta \gamma+1)}{\Gamma(\beta \gamma-\alpha+1)} x^{\beta \gamma-\alpha}, \tag{5}\\
& \mathcal{D}_{x}^{\alpha} g(x)=\mathcal{D}_{x}^{\alpha} x^{\gamma}=\frac{\Gamma(\gamma+1)}{\Gamma(\gamma-\alpha+1)} x^{\gamma-\alpha}, \tag{6}\\
& \left(\mathcal{D}_{g}^{1} f(g)\right)_{g=g(x)}=\left(\mathcal{D}_{g}^{1} g^{\beta}\right)_{g=\chi \gamma}=\left(\beta g^{\beta-1}\right)_{g=x^{\gamma}}=\beta \chi^{\gamma(\beta-1)} . \tag{7}
\end{align*}
$$

Substitution of (5)-(7) into Eq. (3) gives

$$
\begin{equation*}
\left(\frac{\Gamma(\beta \gamma+1)}{\Gamma(\beta \gamma-\alpha+1)}-\frac{\beta \Gamma(\gamma+1)}{\Gamma(\gamma-\alpha+1)}\right) x^{\beta \gamma-\alpha}=0, \quad(x>0) \tag{8}
\end{equation*}
$$

As a result, we have the condition

$$
\begin{equation*}
\frac{\Gamma(\beta \gamma+1)}{\Gamma(\beta \gamma-\alpha+1)}-\frac{\beta \Gamma(\gamma+1)}{\Gamma(\gamma-\alpha+1)}=0, \quad(\alpha, \beta, \gamma>0) \tag{9}
\end{equation*}
$$

which must be performed if the chain rule (3) holds. For example, if we use $\beta=2$ and $\gamma=1$, then condition (9) can be represented in the form

$$
\begin{equation*}
\frac{2(\alpha-1)}{\Gamma(3-\alpha)}=0 \tag{10}
\end{equation*}
$$

that holds for $\alpha=1$ only. As a result, we prove that the chain rule (3) and Eq. (4) with $x \in \mathbb{R}_{+}$cannot satisfied together for non-integer $\alpha \neq 1$.

Statement 2. Performing of the chain rule (3) and Eq. (4) for fractional derivative \mathcal{D}_{x}^{α} of order α allows us represent this derivative as a differential operator of the first order, i.e.

$$
\mathcal{D}_{x}^{\alpha} f(x)=a(x) \mathcal{D}_{x}^{1} f(x)
$$

with some function $a(x)$.
Proof. The chain rule (3) with $g(x)=x^{\beta}$ has the form

$$
\begin{equation*}
\mathcal{D}_{x}^{\alpha} f(g(x))=\left(\mathcal{D}_{g}^{1} f(g)\right)_{g=x^{\beta}} \mathcal{D}_{x}^{\alpha} x^{\beta} \tag{11}
\end{equation*}
$$

Using (4), Eq. (11) gives

$$
\begin{equation*}
\mathcal{D}_{x}^{\alpha} f(g(x))=\frac{\Gamma(\beta+1) x^{\beta-\alpha}}{\Gamma(\beta-\alpha+1)} \frac{d f(x)}{d\left(x^{\beta}\right)} \tag{12}
\end{equation*}
$$

where $d f(x) / d\left(x^{\beta}\right)$ is the first order derivative of $f(x)$ with respect to x^{β}. The well-known expression

$$
\begin{equation*}
\frac{d f(x)}{d\left(x^{\beta}\right)}=\frac{d f(x)}{d x}\left(\frac{d\left(x^{\beta}\right)}{d x}\right)^{-1}=\frac{1}{\beta x^{\beta-1}} \frac{d f(x)}{d x} \tag{13}
\end{equation*}
$$

and $\Gamma(\beta+1)=\beta \Gamma(\beta)$ allows us to represent expression (11) in the form

$$
\begin{equation*}
\mathcal{D}_{x}^{\alpha} f(g(x))=a(x) \frac{d f(x)}{d x} \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
a(x)=\frac{\Gamma(\beta)}{\Gamma(\beta-\alpha+1)} x^{1-\alpha} \tag{15}
\end{equation*}
$$

As a result, we prove that the chain rule (3) together with Eq. (4) for fractional derivative \mathcal{D}_{x}^{α} of order α gives that this derivative is a differential operator of integer order $\alpha=1$ such that $\mathcal{D}_{x}^{\alpha}=a(x) D_{\chi}^{1}$.

In the paper [18] it has been suggested three new simple chain rules for fractional derivatives.
The first chain rule, which is suggested by Eq. (63) in Lemma 12 of [18], has the form

$$
\begin{equation*}
\mathcal{D}_{x}^{\alpha} f(g(x))=\left(\mathcal{D}_{g}^{\alpha} f(g)\right)_{g=g(x)}\left(\mathcal{D}_{x}^{1} g(x)\right)^{\alpha} \tag{16}
\end{equation*}
$$

The second chain rule suggested by Eq. (64) in Lemma 13 of [18] is

$$
\begin{equation*}
\mathcal{D}_{x}^{\alpha} f(g(x))=\left(\frac{f(g(x))}{g(x)}\right)^{1-\alpha}\left(\left(\mathcal{D}_{g}^{1} f(g)\right)_{g=g(x)}\right)^{\alpha} \mathcal{D}_{x}^{\alpha} g(x) \tag{17}
\end{equation*}
$$

The third chain rule that is given by Eq. (68) in Lemma 14 of [18] has the form

$$
\begin{equation*}
\mathcal{D}_{x}^{\alpha} f(g(x))=\Gamma(2-\alpha) g^{\alpha-1}(x)\left(\mathcal{D}_{g}^{\alpha} f(g)\right)_{g=g(x)} \mathcal{D}_{x}^{\alpha} g(x) \tag{18}
\end{equation*}
$$

Using Eq. (4) we can prove the following statement.
Statement 3. The chain rules (16), (17), (18) and Eq. (4) hold for fractional derivatives \mathcal{D}_{x}^{α} of order $\alpha>0$ only if $\alpha=1$.
Proof. Using (4) for the functions $f(g)=g^{\beta}$ and $g(x)=x^{\gamma}$ with $\alpha, \beta, \gamma>0$, chain rules (16), (17), (18) gives the following conditions.

The first chain rule (16) gives

$$
\begin{equation*}
\frac{\Gamma(\beta \gamma+1)}{\Gamma(\beta \gamma+1-\alpha)}-\frac{\gamma^{\alpha} \Gamma(\beta+1)}{\Gamma(\beta+1-\alpha)}=0 . \tag{19}
\end{equation*}
$$

The rule (17) gives the condition

$$
\begin{equation*}
\frac{\Gamma(\beta \gamma+1)}{\Gamma(\beta \gamma+1-\alpha)}-\frac{\beta^{\alpha} \Gamma(\gamma+1)}{\Gamma(\gamma+1-\alpha)}=0 . \tag{20}
\end{equation*}
$$

The third chain (18) leads to the condition

$$
\begin{equation*}
\frac{\Gamma(\beta \gamma+1)}{\Gamma(\beta \gamma+1-\alpha)}-\frac{\Gamma(2-\alpha) \Gamma(\beta+1) \Gamma(\gamma+1)}{\Gamma(\beta+1-\alpha) \Gamma(\gamma+1-\alpha)}=0 . \tag{21}
\end{equation*}
$$

Let us use $\beta=3, \gamma=2$ for condition (19) and $\beta=2, \gamma=3$ for condition (20). Then these conditions can be represented in the form of the equation

$$
\begin{equation*}
2^{\alpha}(\alpha-6)(\alpha-5)(\alpha-4)+120=0 . \tag{22}
\end{equation*}
$$

This equation has solution for $\alpha=0$ and $\alpha=1$ only.
For $\beta=2$ and $\gamma=2$, conditions (21) gives

$$
\begin{equation*}
\alpha(\alpha-1)=0 \tag{23}
\end{equation*}
$$

As a result, we can see that (19), (20) and (20) with $\alpha>0$ hold only for $\alpha=1$. Therefore, the chain rules (16), (17), (18) for fractional derivatives of order $\alpha>0$ cannot hold for $\alpha \neq 1$.

The possible assumption that (3) holds only for non-differentiable functions $f(x)$ and $g(x)$. is incorrect also. Eq. (3) means that the fractional derivatives $\mathcal{D}_{x}^{\alpha} g(x), \mathcal{D}_{x}^{\alpha} f(x)$ and $\mathcal{D}_{g}^{1} f(g)$ exist, i.e. the functions $f(x)$ and $g(x)$ should be fractional differentiable. Therefore arbitrary non-differentiable functions cannot be considered in the chain rule (3). Using Eq. (4), which is used in ([1116], we can see that author assumes that the power functions $\chi^{\gamma}(\gamma>0)$ are fractional differentiable. Using that power functions are fractional differentiable, we can consider the chain rule (3) for the power functions including integer values of β and γ. As a result, we get that the chain rule (3) holds only for $\alpha=1$ and derivative \mathcal{D}_{x}^{α} is integer derivative of first order. Simple chain rule (3) should be violated for fractional-order derivatives (see also [23]).

It should be noted that the unviolated Leibniz rule in the form

$$
\begin{equation*}
\mathcal{D}_{x}^{\alpha}(f(x) g(x))=\left(\mathcal{D}_{x}^{\alpha} f(x)\right) g(x)+f(x)\left(\mathcal{D}_{x}^{\alpha} g(x)\right) \tag{24}
\end{equation*}
$$

cannot hold for fractional derivatives of order $\alpha \neq 1$ for sets of differentiable and non-differentiable functions [19-22].
Unusual properties of fractional derivatives of non-integer orders that are represented by deformation of the usual Leibniz rule and the usual chain rule can be considered as the characteristic properties of fractional-order derivatives. Furthermore these properties allow us to describe new unusual type of physical systems and media.

References

[1] Samko SG, Kilbas AA, Marichev OI. Fractional Integrals and Derivatives Theory and Applications. Gordon and Breach. New York; 1993.
[2] Podlubny I. Fractional differential equations. San Diego: Academic Press; 1998.
[3] Kilbas AA, Srivastava HM, Trujillo JJ. Theory and applications of fractional differential equations. Amsterdam: Elsevier; 2006.
[4] Ross B. A brief history and exposition of the fundamental theory of fractional calculus. In: Fractional calculus and its applications: proceedings of the international conference held at the University of New Haven. Berlin: Springer-Verlag; 1975. p. 1-36. doi:10.1007/BFb0067096.
[5] Debnath L. A brief historical introduction to fractional calculus. Int J Math Educ Sci Technol 2004;35(4):487-501.
[6] Machado JT, Kiryakova V, Mainardi F. Recent history of fractional calculus. Commun Nonlinear Sci Numer Simul 2011;16(3):1140-53.
[7] Machado JAT, Galhano AM, Trujillo JJ. Science metrics on fractional calculus development since 1966. Fract Calc Appl Anal 2013;16(2):479-500.
[8] Machado JAT, Galhano AMSF, Trujillo JJ. On development of fractional calculus during the last fifty years. Scientometrics 2014;98(1):577-82.
[9] Tarasov VE. Fractional dynamics: applications of fractional calculus to dynamics of particles, fields and media. New York: Springer; 2011.
[10] Encinas LH, Masque JM. A short proof of the generalized Faá di Bruno's formula. Appl Math Lett 2003;16(6):975-9.
[11] Jumarie G. Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Comput Math Appl 2006;51(9-10):1367-76.
[12] Jumarie G. The Minkowski's space-time is consistent with differential geometry of fractional order. Phys Lett A 2007;363(1-2):5-11.
[13] Jumarie G. Lagrangian mechanics of fractional order, Hamilton-Jacobi fractional PDE and Taylor's series of nondifferentiable functions. Chaos Solitons Fractals 2007;32(3):969-87.
[14] Jumarie G. Oscillation of non-linear systems close to equilibrium position in the presence of coarse-graining in time and space. Nonlinear Anal Modell Control 2009;14(2):177-97.
[15] Jumarie G. Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for non-differentiable functions. Appl Math Lett 2009;22(3):378-85.
[16] Jumarie G. From Lagrangian mechanics fractal in space to space fractal Schrödinger's equation via fractional Taylor's series. Chaos Solitons Fractals 2009;41:1590-604.
[17] Jumarie G. An approach via fractional analysis to non-linearity induced by coarse-graining in space. Nonlinear Anal Real World Appl 2010;11(1):535-46.
[18] Jumarie G. On the derivative chain-rules in fractional calculus via fractional difference and their application to systems modelling. Open Phys 2013;11(6):617-33.
[19] Tarasov VE. No violation of the Leibniz rule. No fractional derivative. Commun Nonlinear Sci Numer Simul 2013;18(11):2945-8.1402.7161
[20] Tarasov VE. Comments on "The Minkowski's space-time is consistent with differential geometry of fractional order", [Physics Letters A 363 (2007) 5-11]. Phys Lett A 2015;379(14-15):1071-2.
[21] Tarasov VE. Comments on Riemann-Christoffel tensor in differential geometry of fractional order application to fractal space-time [Fractals 21 (2013) 1350004]. Fractals 2015;23(2):3p. 1575001
[22] Tarasov VE. Local fractional derivatives of differentiable functions are integer-order derivatives or zero. Int J Appl Comput Math 2015;1(3). doi:10.1007/s40819-015-0054-6.
[23] Liu Cheng-shi. Counterexamples on Jumarie's two basic fractional calculus formulae. Commun Nonlinear Sci Numer Simul 2015;22(1-3):92-4.
[24] Kolwankar KM, Gangal AD. Fractional differentiability of nowhere differentiable functions and dimension. Chaos 1996;6(4):505-13. chao-dyn/9609016.
[25] Kolwankar KM, Gangal AD. Hölder exponents of irregular signals and local fractional derivatives. Pramana J Phys 1997;48(1):49-68. chao-dyn/9711010.
[26] Kolwankar KM, Gangal AD. Local fractional Fokker-Planck equation. Phys Rev Lett 1998;80(2):214-17. cond-mat/9801138.
[27] Adda FB, Cresson J. About non-differentiable functions. J Math Anal Appl 2001;263(2):721-37.
[28] Babakhani A, Daftardar-Gejji V. On calculus of local fractional derivatives. J Math Anal Appl 2002;270(1):66-79.

[^0]: * Tel.: +7 4959395989.

 E-mail address: tarasov@theory.sinp.msu.ru

