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Using a generalization of vector calculus for space with non-integer dimension, we consider 
elastic properties of fractal materials. Fractal materials are described by continuum models 
with non-integer dimensional space. A generalization of elasticity equations for non-integer 
dimensional space, and its solutions for the equilibrium case of fractal materials are 
suggested. Elasticity problems for fractal hollow ball and cylindrical fractal elastic pipe with 
inside and outside pressures, for rotating cylindrical fractal pipe, for gradient elasticity and 
thermoelasticity of fractal materials are solved.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Fractals are measurable metric sets with non-integer Hausdorff dimensions [1,2]. The main characteristic of a fractal set 
is the non-integer Hausdorff dimension that should be observed on all scales. The Hausdorff dimension is a local property, 
i.e. this dimension characterize (measure) property of a set of distributed points in the limit of a vanishing diameter, which 
is used to cover subset of the points. By definition the Hausdorff dimension requires the knowledge of the diameter of 
the covering sets to vanish. In general, real materials have a characteristic smallest length scale R0 such as the radius of 
a particle such as an atom or a molecule. In fractal materials, the fractal structure cannot be observed on all scales, but 
only on those for which R > R0, where R0 is the characteristic scale of the particles. For real materials, a non-integer mass 
dimension can be used instead of the Hausdorff dimension. The mass dimension described how the mass of a medium 
region scales with the size of this region, where we assume an unchanged density. For many cases, we have an asymptotic 
relation between the mass M(W ) of a ball region W of material, and the radius R of this ball. The mass of fractal material 
satisfies a power-law relation M(W ) ∼ R D . The parameter D is called the non-integer mass dimension of a fractal material. 
This parameter does not depend on the shape of the region W , or on whether the packing of sphere of radius R0 is a close 
packing, a random packing or a porous packing with a uniform distribution of holes. Therefore a fractal material can be 
considered as a medium with non-integer mass dimension. Although the non-integer dimension does not reflect completely 
the geometrical and dynamical properties of the fractal materials, it nevertheless permits to draw a number of important 
conclusions about the behavior of the materials. It allows us to use effective models that take into account non-integer 
dimensions.

We can distinguish the following approaches to formulate models of fractal materials.
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1) An approach based on methods of “analysis on fractals” [3–8] can be considered as the most rigorous approach to 
describe fractal materials. Unfortunately, a possibility of application of the “analysis on fractals” to solve real problems of 
fractal material is now very limited due to the weak development of this area of mathematics.

2) To describe a fractal material, we can apply a special continuum models suggested in [9–12] and then developed 
in the works [13–15,73]. These models can be called the fractional-integral continuum models. In this approach, we use 
integrations of non-integer orders, and two different notions such as the density of states and the distribution function [15]. 
The order of the fractional integrals is equal to the mass dimension of fractal materials. The kernels of these integrals are 
defined by the power-law type of the density of states.

3) Fractional derivatives of non-integer orders are used to describe some properties of fractal materials. This approach 
has been suggested in papers [16–18], where the so-called local fractional derivatives are used, and then developed in the 
works [19–25]. These models can be called the fractional-differential models.

4) Fractal materials can be described by using the theory of integration and differentiation for non-integer dimensional 
spaces [26–28]. Fractal materials are described as continuum in non-integer dimensional spaces. The dimensions of the 
spaces are equal to the mass dimensions of fractal materials.

Unfortunately, there are not enough differential equations that are solved for various problems for fractal materials in 
the framework of the fractional-differential model and by methods of “analysis on fractals”.

The fractional-integral continuum models are used to solve differential equations for various problems of elasticity of 
fractal materials [29–33,14], and of thermoelasticity of fractal materials [34,35].

Continuum models with non-integer dimensional spaces are not currently used to describe the elasticity of fractal materi-
als. In this paper, we consider an approach based on the non-integer dimensional space to describe the elasticity of isotropic 
fractal materials. The main difference of the continuum models with non-integer dimensional spaces and fractional-integral 
continuum models suggested in [9–12,15] may be reduced to the following: (a) the arbitrariness in the choice of the nu-
merical factor in the density of states is fixed by the equation of the volume of non-integer dimensional ball region. (b) In 
the fractional-integral continuum models, the differentiations are integer orders, whereas the integrations are non-integer 
orders. In the continuum models with non-integer dimensional spaces, the integrations and differentiations are defined for 
the spaces with non-integer dimensions. The power law M ∼ R D can be naturally derived by using the integrations in a 
non-integer dimensional space [26], whose dimension is equal to the mass dimension of the fractal material.

A vector calculus for non-integer dimensional space proposed in this paper allows us to use continuum models, which are 
based on non-integer dimensional space, to describe fractal materials. This is due to the fact that although the non-integer 
dimension does not reflect all geometrical and dynamical properties of the fractal materials, it nevertheless allows us to get 
important results about the behavior of fractal materials. Therefore continuum models with non-integer dimensional spaces 
can describe a wide class of fractal materials.

Integration over non-integer dimensional spaces is actively used in the theory of critical phenomena and phase transi-
tions in statistical physics [36,37], and in the dimensional regularization of ultraviolet divergences in quantum field theory 
[38,39,26]. The axioms for integrations in a non-integer dimensional space are proposed in [40,27] and this type of integra-
tion is considered in the book by Collins [26] for rotationally covariant functions. In the paper [27], a mathematical basis 
of integration on a non-integer dimensional space is given, and a generalization of the Laplace operator for non-integer 
dimensional spaces is suggested. Using a product measure approach, the Stillinger’s methods [27] have been generalized 
by Palmer and Stavrinou [28] for multiple variables case with different degrees of confinement in orthogonal directions. 
The scalar Laplace operators suggested by Stillinger in [27] and by Palmer, Stavrinou in [28] for non-integer dimensional 
spaces, have successfully been used for effective descriptions in physics and mechanics. The Stillinger’s form of the Lapla-
cian for the Schrödinger equation in a non-integer dimensional space is used by He [41–43] to describe a measure of the 
anisotropy and confinement by the effective non-integer dimensions. Quantum mechanical models with non-integer (frac-
tional) dimensional space have been discussed in [27,28,44–48] and [49–52]. Recent progress in non-integer dimensional 
space approach also includes a description of the fractional diffusion processes in a non-integer dimensional space in [53], 
and the electromagnetic fields in a non-integer dimensional space in [54–56] and [57–60].

Unfortunately, in the articles [27,28], only second-order differential operators for scalar fields in the form of the scalar 
Laplacian for the non-integer dimensional space are proposed. A generalization of the vector Laplacian [61] for the non-
integer dimensional space is not suggested. The first-order operators such as gradient, divergence, curl operators, and vector 
Laplacian are not considered in [27,28] also. In the work [62], the gradient, divergence, and curl operators are suggested 
only as approximations of the square of the Laplace operator. Consideration only the scalar Laplacian in non-integer dimen-
sional space approach greatly restricts us in application of continuum models with non-integer dimensional space for fractal 
materials and material. For example, we cannot use the Stillinger’s form of Laplacian for the displacement vector field u(r, t)
in the theory of elasticity and thermoelasticity of fractal materials, for the velocity vector field v(r, t) in hydrodynamics of 
fractal fluids, for electric and magnetic vector fields in electrodynamics of fractal media in the framework of the non-integer 
dimensional space approach.

In this paper, we define the first- and second-order differential vector operations such as gradient, divergence, the scalar 
and vector Laplace operators for a non-integer dimensional space. In order to derive the vector differential operators in a 
non-integer dimensional space, we use the method of analytic continuation in dimension. For the sake of simplification, we 
consider rotationally covariant scalar and vector functions that are independent of angles. This allows us to reduce differen-
tial equations in non-integer dimensional space to ordinary differential equations with respect to r. The proposed operators 
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allow us to describe fractal materials to describe processes in the framework of continuum models with non-integer dimen-
sional spaces. In this paper, we solve elasticity problems for a fractal hollow ball with inside and outside pressures, for a 
cylindrical fractal elastic pipe with inside and outside pressures, and for a rotating cylindrical fractal pipe, for the gradient 
of elasticity and thermoelasticity of fractal materials.

2. Differential and integral operators in non-integer dimensional space

To derive equations for vector differential operators in a non-integer dimensional space, we use equations for the differ-
ential operators in the spherical (and cylindrical) coordinates in Rn for arbitrary n to highlight the explicit relations with 
dimension n. Then the vector differential operators for a non-integer dimension D can be defined by continuation in di-
mension from integer n to non-integer D . To simplify, we will consider only scalar fields ϕ and vector fields u that are 
independent of angles

ϕ(r) = ϕ(r), u(r) = u(r) = urer

where r = |r| is the radial distance, er = r/r is the local orthogonal unit vector in the directions of increasing r, and ur =
ur(r) is the radial component of u. We will work with rotationally covariant functions only. This simplification is analogous 
to the simplification for definition of integration over the non-integer dimensional space described in Section 4 of the 
book [26].

2.1. Vector differential operators for spherical and cylindrical cases

Explicit definitions of differential operators for non-integer dimensional space can be obtained by using continuation 
from integer n to arbitrary non-integer D . We note that the same expressions can be obtained by using the integration in a 
non-integer dimensional space and the correspondent Gauss’ theorem.

We define the differential vector operations such as gradient, divergence, the scalar and vector Laplacian for non-integer 
dimensional space. For simplifications, we assume that the vector field u = u(r) is radially directed and the scalar and vector 
fields ϕ(r), u(r) are not dependent on the angles.

The divergence in a non-integer dimensional space for the vector field u = u(r) is:

divD
r u = ∂ur

∂r
+ D − 1

r
ur (1)

The gradient in non-integer dimensional space for the scalar field ϕ = ϕ(r) is:

gradD
r ϕ = ∂ϕ

∂r
er (2)

The scalar Laplacian in a non-integer dimensional space for the scalar field ϕ = ϕ(r) is:

S�D
r ϕ = divD

r gradD
r ϕ = ∂2ϕ

∂r2
+ D − 1

r

∂ϕ

∂r
(3)

The vector Laplacian in a non-integer dimensional space for the vector field u = ur(r)er is:

V �D
r u = gradD

r divD
r u =

(
∂2ur

∂r2
+ D − 1

r

∂ur

∂r
− D − 1

r2
ur

)
er (4)

If D = n, Eqs. (1)–(4) give the well-known formulas for the integer dimensional space Rn .
We can consider materials with axial symmetry, where the fields ϕ(r) and u(r) = ur(r)er are also axially symmetric. Let 

the Z -axis be directed along the axis of symmetry. Therefore we use a cylindrical coordinate system.
The divergence in non-integer dimensional space for the vector field u = u(r) is:

divD
r u = ∂ur

∂r
+ D − 2

r
ur (5)

The gradient in non-integer dimensional space for the scalar field ϕ = ϕ(r) is:

gradD
r ϕ = ∂ϕ

∂r
er (6)

The scalar Laplacian in non-integer dimensional space for the scalar field ϕ = ϕ(r) is:

S�aD
r ϕ = ∂2ϕ

2
+ D − 2 ∂ϕ

(7)

∂r r ∂r
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The vector Laplacian in non-integer dimensional space for the vector field u = v(r)er is:

V �D
r u =

(
∂2ur

∂r2
+ D − 2

r

∂ur

∂r
− D − 2

r2
ur

)
er (8)

Eqs. (5)–(8) can be easily generalized for the case ϕ = ϕ(r, z) and u(r, z) = ur(r, z)er + ur(r, z)ez . In this case, the curl 
operator for u(r, z) is different from zero, and:

CurlD
r u =

(
∂ur

∂z
− ∂vz

∂r

)
eθ (9)

Eqs. (1)–(8) with D = 3 and (9) give the well-known expressions for the gradient, divergence, curl operator, scalar, and 
vector Laplacian operators

The proposed operators for 0 < D < 3 allow us to reduce the non-integer dimensional vector differentiations (1)–(4) and 
(5)–(8) to derivatives with respect to r = |r|. It allows us to reduce partial differential equations for fields in non-integer 
dimensional space to ordinary differential equations with respect to r.

For a function ϕ = ϕ(r, θ) of radial distance r and related angle θ measured relative to an axis passing through the 
origin, the scalar Laplacian in a non-integer dimensional space proposed by Stillinger [27] is:

St�D = 1

rD−1

∂

∂r

(
rD−1 ∂

∂r

)
+ 1

r2 sinD−2 θ

∂

∂θ

(
sinD−2 θ

∂

∂θ

)
(10)

where D is the dimension of space (0 < D < 3), and the variables r ≥ 0, 0 ≤ θ ≤ π . Note that (St�D)2 �= St�2D . If the 
function depends on the radial distance r only (ϕ = ϕ(r)), then

St�Dϕ(r) = 1

rD−1

∂

∂r

(
rD−1 ∂ϕ(r)

∂r

)
= ∂2ϕ(r)

∂r2
+ D − 1

r

∂ϕ(r)

∂r
(11)

It is easy to see that the Stillinger’s form of the Laplacian St�D for radial scalar functions ϕ(r) = ϕ(r) coincides with the 
scalar Laplacian S �D

r defined by (3), i.e.,

St�Dϕ(r) = S�Dϕ(r) (12)

The Stillinger’s Laplacian can be applied for scalar fields only. It cannot be used to describe vector fields u = ur(r)er , because 
this Laplacian for D = 3 is not equal to the usual vector Laplacian for R3,

St�3u(r) �= �u(r) =
(

∂2ur

∂r2
+ 2

r

∂ur

∂r
− 2

r2
ur

)
er (13)

The gradient, divergence, curl operator and vector Laplacian are not considered by Stillinger in the paper [27].

2.2. Integration over a non-integer dimensional space

Integration for non-integer values of dimension D is defined by continuation in D [39,26]. The following properties 
suggested in [40] for integrals in D-dimensional space are necessary for applications [26].

a) Linearity:∫ (
af1(r) + bf2(r)

)
dD r = a

∫
f1(r)dDr + b

∫
f2(r)dD r (14)

where a and b are arbitrary real numbers.
b) Translational invariance:∫

f (r + r0)dD r =
∫

f (r)dD r (15)

for any vector r0.
c) Scaling property:∫

f (λr)dD r = λ−D
∫

f (r)dD r (16)

for any positive λ.
Note that linearity is true of any integration, while translation and rotation invariance are basic properties of a Euclidean 

space. The scaling property embodies the D-dimensionality. Not only the above three axioms are necessary, but they also 
ensure that integration is unique, aside from an overall normalization [40]. These properties must be used in order to 
have non-integer dimensional integrations [26]. These properties are natural in application of dimensional regularization to 
quantum field theory [26].



V.E. Tarasov / C. R. Mecanique 343 (2015) 57–73 61
In general, we can consider any functions of the components of its vector argument r. However, we do not know the 
meaning of the components of a vector in non-integer dimensions. In this paper, we will work with rotationally covariant 
functions for simplification. So we will assume that f is a scalar or vector function only of scalar products of vectors or 
of length of vectors. For example, in the elasticity theory, we consider the case, where the displacement vector u(r), is 
independent of the angles u(r) = u(r), where r = |r|. The integration defined by Eq. (17) satisfies the properties (14)–(16).

The non-integer dimensional integration for scalar functions f (r) = f (|r|) can be defined in terms of ordinary integration 
by the equation:

∫
dD r f (r) =

∫
ΩD−1

dΩD−1

∞∫
0

dr rD−1 f (r) (17)

where ∫
ΩD−1

dΩD−1 = 2π D/2

Γ (D/2)
= S D−1 (18)

Eq. (18) with integer D = n gives the well-known area Sn−1 of the (n − 1)-sphere with unit radius.
As a result, we have [26] the explicit definition of the continuation of integration from integer n to arbitrary fractional 

D in the form∫
dD r f

(|r|) = 2π D/2

Γ (D/2)

∞∫
0

dr rD−1 f (r) (19)

This equation reduces a non-integer dimensional integration to an ordinary integration. Therefore, the linearity and transla-
tion invariance follow from linearity and translation invariance of ordinary integration. The scaling and rotation covariance 
are explicit properties of the definition.

As an example of applications of Eq. (19), we can consider non-integer dimensional integration for the function

f
(
r2) = r2 + a

r2 + b
(20)

where a and b are real numbers. The integral for (20) can be explicitly computed∫
dD r

r2 + a

r2 + b
= (πb)D/2(a/b − 1)Γ (1 − D/2) (21)

The other example of a non-integer dimensional integration is:∫
dD r

r2α

(r2 + a2)β
= Γ (α + D/2)Γ (β − α − D/2)

Γ (D/2)Γ (β)
π D/2aD+2α−2β (22)

where r = |r|.

3. Mass and moment of inertia for fractal materials

3.1. Mass of fractal materials

Fractal materials can be characterized by the relation between the mass M(W ) of a region W of the fractal material, 
and the size R of the region containing this mass:

MD(W ) = M0

(
R

R0

)D

, R/R0 � 1 (23)

The parameter D is called the non-integer mass dimension of the fractal material. The parameter D does not depend on 
the shape of the region W , or on whether the packing of a sphere of radius R0 is a close packing, a random packing or a 
porous packing with a uniform distribution of holes. The cornerstone of fractal materials is the non-integer mass dimension. 
The mass dimension of real fractal materials can be measured by the box-counting method, which means drawing a box of 
size R and counting the mass inside.

The fractality of a material means than the mass of the region W ⊂ R
3 increases more slowly than the 3-dimensional vol-

ume of this region. For the ball region of the fractal medium, this property can be described by the power law MD (W ) ∼ R D , 
where R is the radius of the ball.

A fractal material is called homogeneous if the power law MD(W ) ∼ R D does not depend on the translation of the 
region. The homogeneity property of the material can be formulated in the form: for all two regions W1 and W2 of 
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the homogeneous fractal material with the equal volumes V D(W1) = V D(W2), the masses of these regions are equal: 
MD(W1) = MD(W2).

The power law (23) can be naturally derived by using the integration in the non-integer dimensional space such that the 
space dimensions is equal to the mass dimension of the material.

The mass of the region W of fractal material in W can be calculated by the integral in non-integer dimensional space:

MD(W ) =
∫
W

ρ(r)dD r (24)

where r is dimensionless vector variable. For a ball region W with radius R and density ρ(r) = ρ0 = const, we get the mass 
is defined by:

MD(W ) = ρ0 V D = π D/2ρ0

Γ (D/2 + 1)
R D (25)

This equation define the mass of the fractal homogeneous ball. For D = 3, Eq. (25) gives the well-known equation for the 
mass of the non-fractal ball M3 = (4ρ0π)/3R3 because Γ (3/2) = √

π/2 and Γ (z + 1) = zΓ (z).

3.2. Moment of inertia of fractal materials

Let us consider a calculation of scalar moment of inertia I(t), which is used when the axis of rotation is known. The 
scalar moment of inertia of a rigid body with density ρ ′(r′, t) with respect to a given axis is defined by the volume integral

I ′(t) =
∫
W

ρ ′(r′, t
)
r′2⊥ d3r′ (26)

where (r′)2⊥ is the perpendicular distance from the axis of rotation, and dV ′
3 = dx′

1dx′
2dx′

3. We note that SI units of I ′kl is 
kg · m2.

To generalize Eq. (26) for a non-integer dimensional space, we should represent this equation through the dimensionless 
coordinate variables. We can introduce the dimensionless values xk = x′

k/R0, r = r′/R0, where R0 is a characteristic scale, 
and the density ρ(r, t) = R3

0ρ
′(rR0, t). The SI unit of ρ is kg. We define the following moments of inertia I(t) = R−2

0 I ′(t). 
As a result, we obtain

I =
∫

W3

ρ(r)r2⊥ d3r (27)

where xk (k = 1, 2, 3) and r are dimensionless. We note that the SI unit of Ikl is kg.
This representation allows us to generalize the equation of the scalar moment of inertia for a fractal material

I(D)(t) =
∫
W

ρ(r, t)r2⊥ dV D (28)

where D is a mass dimension of the fractal material.

3.3. Moment of inertia of a fractal solid ball

Let us consider a fractal solid ball with radius R , and mass M . Note that the component of the radius perpendicular is

r2⊥ = (r sin θ)2

Using the integration in a non-integer dimensional space, we have:

I(D) =
∫
W

dr(r sin θ)2ρ(r, θ) = 2π(D−1)/2

Γ ((D − 1)/2)

∞∫
0

dr rD−1

π∫
0

dθ sinD−2 θ(r sin θ)2ρ(r, θ) (29)

For homogeneous materials ρ(r) = ρ0, we get

I(D) = 2π(D−1)/2ρ0

Γ ((D − 1)/2)

∞∫
0

dr rD+1

π∫
0

dθ sinD θ = 2π(D−1)/2ρ0

Γ ((D − 1)/2)

π1/2Γ (D/2)

Γ (D/2 + 1)

R D+2

D + 2

= 2π D/2Γ (D/2)ρ0 R D+2

= π D/2(D − 1)ρ0
R D+2 (30)
Γ (D/2 − 1/2)Γ (D/2 + 1) D + 2 (D + 2)Γ (D/2 + 1)
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where we use

π∫
0

dθ sinD θ = π1/2Γ (D/2)

Γ (D/2 + 1)
(31)

Using the expression for mass (25), we can rewrite (30) as

I(D) = 2Γ (D/2)

(D + 2)Γ (D/2 − 1/2)
MD R2 = D − 1

D + 2
MD R2 (32)

where we use Γ (z) = (z − 1)Γ (z − 1). For D = 3, Eq. (32) gives the well-known equation for the moment of inertia of a 
non-fractal ball I3 = (2/5)M R2.

4. Elasticity theory of a fractal material

4.1. Elasticity theory of a non-fractal material

The linear elastic constitutive relations for isotropic case is the well-known Hooke’s law, which has the form

σi j = λεkkδi j + 2μεi j (33)

where λ and μ are the Lame coefficients, σi j is the stress, and εkl is the strain tensor. This expression determines the stress 
tensor in terms of the strain tensor for an isotropic material.

For homogenous and isotropic materials, the constitutive relation (33) gives the equation for the displacement vector 
fields u = u(r, t) in the form

λgrad div u + 2μ�u + f = ρD2
t u (34)

where f = u(r, t) is the vector field of the external force density.
If the deformation in the material is described by u(r, t) = u(r, t)er , then Eq. (34) has the form:

(λ + 2μ)�u(r, t) + f(r, t) = ρD2
t u(r, t) (35)

A formal generalization of Eqs. (35) for fractal material in the framework of non-integer dimensional models is:

(λ + 2μ)V �D
r u(r, t) + f(r, t) = ρD2

t u(r, t) (36)

where V �D
r is defined by (4). Eq. (36) describes the dynamics of the displacement vector for fractal elastic materials.

4.2. Strain and stress in a non-integer dimensional space

Any deformation can be represented as the sum of a pure shear and a hydrostatic compression. To do so for fractal 
materials, we can use the identity:

εkl =
(
εkl − 1

D
δklεii

)
+ 1

D
δklεii (37)

The first term on the right is a pure shear, since the sum of diagonal terms is zero. Here we use the equation δii = D
for a non-integer dimensional space (for details see Property 4 in Section 4.3 of [26]). The second term is a hydrostatic 
compression. For D = 3, Eq. (37) has the well-known form:

εkl =
(
εkl − 1

3
δklεii

)
+ 1

3
δklεii (38)

where δii = 3 is used.
The stress tensor can be represented as

σkl = Kεiiδkl + 2μ

(
εkl − 1

D
δklεii

)
(39)

where the bulk modulus (modulus of hydrostatic compression) is related to the Lame coefficients by

K = λ + 2μ

D
(40)

In the hydrostatic compression of a body, the stress tensor is:
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σkl = −pδkl (41)

Hence we have

σkk = −pD (42)

If we use the Hooke’s law for isotropic case in the form, then

σii = (λD + 2μ)εii (43)

The components of the strain tensor is

εrr = ∂ur

∂r
= (

er,gradD
r ur

)
(44)

Using (1), and the trace of the strain tensor, one has:

e(r) = Tr[εkl] = εkk = DivD
r u = ∂ur

∂r
+ D − 1

r
ur (45)

Note that we can consider

e(r) − εrr(r) = DivD
r u − (

er,GradD
r ur

) = D − 1

r
ur

as a sum of the angle diagonal components in the spherical coordinates of the strain tensor. For D = 3, we have the 
well-known sum of the angle diagonal components in the spherical coordinates of the strain tensor

εθθ + εϕϕ = 2

r
ur

When we consider the fractal medium distributed in three-dimensional space, we can define the effective value of the 
diagonal angular components of the strain tensor:

εeff
θθ = εeff

ϕϕ = D − 1

2r
ur (46)

Using (44) and (45), the components of the stress tensor σkl = σkl(r) in the spherical coordinates are:

σrr(r) = 2μεrr(r) + λe(r) = (2μ + λ)
∂ur

∂r
+ λ

D − 1

r
ur (47)

It is well known that the diagonal angular components of the stress tensor for D = 3 in spherical coordinates are:

σθθ (r) = 2μεθθ (r) + λe(r), σϕϕ(r) = 2μεϕϕ(r) + λe(r) (48)

For the fractal medium distributed in a three-dimensional space, we can define the effective value of the diagonal angular 
components of the stress tensor:

σ eff
θθ (r) = 2μεeff

θθ (r) + λe(r) (49)

σ eff
ϕϕ(r) = 2μεeff

ϕϕ(r) + λe(r) (50)

Using the form of the effective components (46), we get:

σ eff
θθ (r) = σ eff

ϕϕ(r) = λ
∂ur

∂r
+ (λ + μ)

D − 1

r
ur (51)

This equation defines the diagonal angular components of the stress tensor for spherical coordinates.

4.3. Equilibrium equation for fractal materials

For static case, Eq. (36), we have:

V �D
r u(r) + (λ + 2μ)−1f(r) = 0 (52)

where u = urer and f = f (r)er . Here λ and μ are the Lame coefficients. Using (4), we represent Eq. (52) in the form:

∂2ur(r)

∂r2
+ D − 1

r

∂ur(r)

∂r
− D − 1

r2
ur(r) + (λ + 2μ)−1 f (r) = 0 (53)

The solution to Eq. (53) is:
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ur(r) = C1r + C2r1−D + I f (D, r) (54)

where C1 and C2 are constants defined by boundary conditions, and

I f (D, r) = r

D(λ + 2μ)

(
1

rD

∫
dr rD f (r) −

∫
dr r f (r)

)
(55)

For f (r) = f0, we get

I f (D, r) = − f0r2

2(D + 1)(λ + 2μ)
(56)

and the displacement is

ur(r) = C1r + C2r1−D − f0r2

(D + 1)(λ + 2μ)
(57)

The components of the stress tensor σkl = σkl(r) for the spherical coordinates can be calculated by Eqs. (47) and (51).

4.4. Elasticity of a fractal hollow ball with inside and outside pressures

Let us determine the deformation of a hollow fractal ball with internal radius R1 and external radius R2 with the 
pressure p1 inside and the pressure p2 outside.

We can use the spherical polar coordinates with the origin at the center of the ball. The displacement vector u is 
everywhere radial, and it is a function of r = |r| alone. Then the equilibrium equation for fractal ball is:

(λ + 2μ)V �D
r u(r) = 0 (58)

where u = urer . Using (4), we represent Eq. (52) in the form

∂2ur(r)

∂r2
+ D − 1

r

∂ur(r)

∂r
− D − 1

r2
ur(r) = 0 (59)

The solution to (53) is:

ur(r) = C1r + C2r1−D (60)

The constants C1 and C2 are determined from the boundary conditions for radial stress:

σrr(R1) = −p1, σrr(R2) = −p2 (61)

Using that the radial components of the stress is:

σrr(r) = (2μ + λ)
∂ur

∂r
+ λ

D − 1

r
ur (62)

we get:

σrr(r) = (2μ + Dλ)C1 + 2(1 − D)μC2r−D (63)

Then we have:

(2μ + Dλ)C1 + 2(1 − D)μR−D
1 C2 = −p1 (64)

(2μ + Dλ)C1 + 2(1 − D)μR−D
2 C2 = −p2 (65)

As a result, the coefficients have the form:

C1 = −(p1 R−D
2 − p2 R−D

1 )

(2μ + Dλ)(R−D
2 − R−D

1 )
= −(p2 R D

2 − p1 R D
1 )

(2μ + Dλ)(R D
2 − R D

1 )
(66)

C2 = −(p2 − p1)(R1 R2)
D

2(1 − D)μ(R−D
2 − R−D

1 )
= p2 − p1

2(1 − D)μ(R D
2 − R D

1 )
(67)

Then the radial components of the stress is:

σrr(r) = −(p2 R D
2 − p1 R D

1 )

R D − R D
+ (p2 − p1)(R1 R2)

D

R D − R D
r−D (68)
2 1 2 1
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The stress distribution in a ball with pressure p1 = p inside and p2 = 0 outside is given by:

σrr(r) = pR D
1

R D
2 − R D

1

− p

R D
2 − R D

1

r−D = pR D
1

R D
2 − R D

1

(
1 −

(
R2

r

)D)
(69)

The stress distribution in an infinite elastic material with a spherical cavity of radius R subjected to hydrostatic com-
pression is:

σrr(r) = −p

(
1 −

(
R

r

)D)
(70)

which can be obtained by putting R1 = R , R2 → ∞, p1 = 0 and p2 = p in Eq. (68).

5. Elasticity of fractal material with radial distribution in cylinder and pipe

5.1. Elasticity of a fractal pipe and cylinder

If we use the cylindrical coordinates with the z-axis and if the vector field u(r, t) is a purely radial,

u = ur(r)er (71)

where er = r/r, then

V �D
r u =

(
∂2ur(r)

∂r2
+ D − 2

r

∂ur

∂r
− D − 2

r2
ur(r)

)
er (72)

Note that we have (D − 2) instead of (D − 1) in this equation. For D = 3, Eq. (72) gives the well-known equation for the 
elasticity of cylinder and pipe.

If u = ur(r)er is the displacement vector for non-fractal materials in the 3-dimensional case (D = 3), then the strain 
tensor εi j(r) has the following nonzero components that can be defined by

εrr = (er,grad ur) = ∂ur

∂r
(73)

εϕϕ = div u − (er,grad ur) = ur

r
(74)

and the invariant

e = εkk = div u = ∂ur

∂r
+ ur

r
(75)

These equations with divergence and gradient can be generalized for the non-integer dimensional case for u = ur(r)er .
For the non-integer dimensional model of fractal materials, we can use the definitions for the components of displace-

ment vector in non-integer dimensional space in the form:

εrr = (
er,gradD

r ur
)

(76)

εϕϕ = divD
r u − (

er,gradD
r ur

)
(77)

where we use the invariant:

e = εkk = divD
r u = ∂ur

∂r
+ D − 2

r
ur (78)

As a result, we get:

εrr = ∂ur

∂r
(79)

εϕϕ = D − 2

r
ur (80)

Let us assume that the elastic constitutive relations for fractal material in an isotropic case has the usual form

σi j = λεkkδi j + 2μεi j (81)

In this case, the non-zero components of stress tensor are
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σrr = 2μεrr + λe = (2μ + λ)
∂ur

∂r
+ λ

D − 2

r
ur (82)

σϕϕ = 2μεϕϕ + λe = λ
∂ur

∂r
+ (2μ + λ)

D − 2

r
ur (83)

σzz = 2μεzz + λe = λ
∂ur

∂r
+ λ

D − 2

r
ur (84)

where we use εzz = 0. For D = 3, we have the usual constitutive relations for the isotropic case in cylindrical coordinates.

5.2. Elasticity of cylindrical fractal pipe with inside and outside pressures

Let us consider the deformation of a fractal solid cylindrical pipe with internal radius R1 and external radius R2, with an 
inside pressure p1 and outside pressure p2. We use the cylindrical coordinates with the z-axis along the axis of the pipe. 
When the pressure is uniform along the pipe, the deformation is a purely radial displacement u = ur(r)er , where er = r/r. 
The equation for the displacement ur(r) in fractal pine is:

∂2ur(r)

∂r2
+ D − 2

r

∂ur

∂r
− D − 2

r2
ur = 0 (85)

where 0 < D ≤ 3. If D = 3, we get the usual (non-fractal) case.
The general solution to Eq. (85), where D �= 1 and D �= 2, has the form:

ur(r) = C1r + C2r2−D (86)

Eqs. (85) with D = 1 has the general solution:

ur(r) = C1r + C2r ln(r) (87)

For D = 2, Eq. (85) has the solution:

ur(r) = C1 + C2r (88)

Note that the fractal dimension of the pipe material can be D = 1 or D = 2. These cases do not correspond to the distri-
bution of matter along the line and surface. These fractal dimensions describe a distribution of matter in a 3-dimensional 
space (in the volume of pipe) such that the mass dimension is equal to D .

The constants C1 and C2 are determined by boundary conditions. Be the inside pressure p1 and be the outside pres-
sure p2, we get the boundary condition in the form:

σrr(R1) = −p1,σrr(R2) = −p2 (89)

Using (86), we get:

∂ur

∂r
= C1 + (2 − D)C2r1−D (90)

D − 2

r
ur = (D − 2)C1 + (D − 2)C2r1−D (91)

Then

σrr = (2μ + λ)
∂ur

∂r
+ λ

D − 2

r
ur = (

2μ + λ(D − 1)
)
C1 − 2μ(D − 2)C2r1−D (92)

The boundary condition (89) has the form:(
2μ + λ(D − 1)

)
C1 − 2μ(D − 2)C2 R1−D

1 = −p1 (93)(
2μ + λ(D − 1)

)
C1 − 2μ(D − 2)C2 R1−D

2 = −p2 (94)

As a result, we have:

C1 = − p1 R1−D
2 − p2 R1−D

1

(2μ + λ(D − 1))(R1−D
2 − R1−D

1 )
(95)

C2 = p2 − p1

2μ(D − 2)(R1−D
2 − R1−D

1 )
(96)

The stress is:
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σrr = − p1 R1−D
2 − p2 R1−D

1

(R1−D
2 − R1−D

1 )
− p2 − p1

(R1−D
2 − R1−D

1 )
r1−D (97)

If 2 < D < 3 or 1 < D < 2, then we can rewrite Eq. (97) under the form:

σrr = p1 R D−1
1 − p2 R D−1

2

(R D−1
2 − R D−1

1 )
− p2 − p1

(R D−1
2 − R D−1

1 )

(
R1 R2

r

)D−1

(98)

For the boundary conditions σrr(R2) = 0 and σrr(R1) = −p, i.e. p2 = 0 and p1 = p for (98), the solution can be written 
under the form:

σrr = pR D−1
1

(R D−1
2 − R D−1

1 )

(
1 −

(
R2

r

)D−1)
(99)

This is the deformation of cylindrical pipe with a pressure p inside and no pressure outside. For D = 3, we have:

σrr = pR2
1

(R2
2 − R2

1)

(
1 −

(
R2

r

)2)
(100)

which describes the stress in a non-fractal pipe material.

5.3. Rotating cylindrical fractal pipe

Let us consider the deformation of a fractal solid that is described by an equation with external force f (r) for the 
displacement field ur(r) in a fractal pine:

∂2ur(r)

∂r2
+ D − 2

r

∂ur

∂r
− D − 2

r2
ur + 1

λ + 2μ
f (r) = 0 (101)

where D > 0. The general solution to Eq. (101) has the form:

ur(r) = C1r + C2r2−D − 1

(D − 1)(λ + 2μ)

( R2∫
R1

f (r)rdr − r2−D

R2∫
R1

f (r)rD−1 dr

)
(102)

Eq. (101) with D = 1 has the general solution:

ur(r) = C1r + C2r ln(r) + r

λ + 2μ

( R2∫
R1

f (r) ln(r)dr + ln(r)

R2∫
R1

f (r)dr

)
(103)

For D = 2, Eq. (101) has the solution

ur(r) = C1 + C2r − 1

λ + 2μ

( R2∫
R1

f (r)r dr − r

R2∫
R1

f (r)dr

)
(104)

Let us consider the deformation of a fractal solid cylindrical pipe with internal radius R1 and external radius R2 rotating 
uniformly about its axis with angular velocity ω. Then the density of the centrifugal force is

fr(r) = ρ0ω
2r (105)

We use the cylindrical coordinates with the z-axis along the axis of the cylinder. When the pressure is uniform along the 
pipe, the deformation is a purely radial displacement u = ur(r)er , where er = r/r. The equation for the displacement ur(r)
in the fractal material is:

∂2ur(r)

∂r2
+ D − 2

r

∂ur

∂r
− D − 2

r2
ur = − ρ0ω

2

λ + 2μ
r (106)

The general solution to Eq. (106) has the form:

ur(r) = C1r + C2r2−D − Ar3 (107)
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where

A = ρ0ω
2

2(D + 1)(λ + 2μ)
(108)

Using the condition that external forces do not act inside and outside the fractal pipe, we have the boundary condition:

σrr(R1) = 0, σrr(R2) = 0 (109)

Using (107), we get:

∂ur

∂r
= C1 + (2 − D)C2r1−D − 3Ar2 (110)

D − 2

r
ur = (D − 2)C1 + (D − 2)C2r1−D − A(D − 2)r2 (111)

Then

σrr = (2μ + λ)
∂ur

∂r
+ λ

D − 2

r
ur

= (
2μ + λ(D − 1)

)
C1 − 2μ(D − 2)C2r1−D − A

(
6μ + λ(D + 1)

)
r2 (112)

The boundary condition (109) has the form:(
2μ + λ(D − 1)

)
C1 − 2μ(D − 2)C2 R1−D

1 = A
(
6μ + λ(D + 1)

)
R2

1 (113)(
2μ + λ(D − 1)

)
C1 − 2μ(D − 2)C2 R1−D

2 = A
(
6μ + λ(D + 1)

)
R2

2 (114)

Then

C1 = A(6μ + λ(D + 1))(R D+1
2 − R D+1

1 )

(2μ + λ(D − 1))(R D−1
2 − R D−1

1 )
(115)

C2 = A(6μ + λ(D + 1))(R2
2 − R2

1)(R1 R2)
D−1

2μ(D − 2)(R D−1
2 − R D−1

1 )
(116)

Substituting (115) and (116) into (107), we get:

ur(r) = A(6μ + λ(D + 1))(R D+1
2 − R D+1

1 )

(2μ + λ(D − 1))(R D−1
2 − R D−1

1 )
r

+ A(6μ + λ(D + 1))(R2
2 − R2

1)(R1 R2)
D−1

2μ(D − 2)(R D−1
2 − R D−1

1 )
r2−D − Ar3 (117)

where A is defined by Eq. (108).
For the fractal cylinder (R1 = 0, R2 = R), we have:

ur(r) = ρ0ω
2

2(D + 1)(λ + 2μ)

(
6μ + λ(D + 1)

2μ + λ(D − 1)
R2r − r3

)
(118)

For D = 3, Eq. (118) gives

ur(r) = ρ0ω
2

8(λ + 2μ)

(
3μ + 2λ

μ + λ
R2r − r3

)
(119)

Eq. (119) describes the displacement field for an elastic cylinder with a non-fractal material.

6. Gradient elasticity model for fractal materials

6.1. Gradient elasticity theory of non-fractal materials

Papers [63–65] suggested to generalize the constitutive relations (33) by the gradient modification that contains the 
Laplacian in the form:

σi j = (λεkkδi j + 2μεi j) − l2s �(λεkkδi j + 2μεi j) (120)

where ls is the scale parameter [66].
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For homogenous and isotropic materials equation for (120) has the form

λ
(
1 ± l2s �

)
grad div u + 2μ

(
1 ± l2s �

)
�u + f = ρD2

t u (121)

where f is the vector field of the external force density.
Using the relation

grad div u = curl curl u + �u (122)

we can rewrite Eq. (121) as

λ
(
1 ± l2s �

)
curl curl u + (λ + 2μ)

(
1 ± l2s �

)
�u + f = ρD2

t u (123)

If we assume that the displacement vector u is everywhere radial and it is a function of r = |r| alone (uk = uk(|r|)), then

curl u = 0

As a result, Eq. (123) has the form

(λ + 2μ)
(
1 ± l2s �

)
�u + f = ρD2

t u (124)

This is the gradient elasticity equation for homogenous and isotropic materials with spherical symmetry. For the non-
gradient model (l2s = 0), Eq. (124) for the displacement gives Eq. (35).

6.2. Gradient elasticity of fractal materials

A formal generalization of Eq. (124) for fractal materials in the framework of continuum models with non-integer di-
mensional space, where the displacement vector, u = u(r, t), does not depend on the angles, has the form:

(λ + 2μ)
(
1 ± l2s (D)V �D

r

)V �D
r u + f = ρD2

t u (125)

This is the fractional gradient elasticity equation for homogenous and isotropic materials with spherical symmetry. Let 
us consider Eq. (125) for static case (D2

t u = 0) with a minus in front of Laplacian, i.e. the GRADELA model for fractal 
materials [66],

(λ + 2μ)
(
1 − l2s (D)V �D

r

)V �D
r u + f = 0 (126)

We can rewrite this equation as(V �D
r

)2
u − l−2

s (D)V �D
r u − (λ + 2μ)−1l−2

s (D)f = 0 (127)

Using the vector Laplacian (4), we have:

V �D
r u(r) =

(
∂2ur(r)

∂r2
+ D − 1

r

∂ur(r)

∂r
− D − 1

r2
ur(r)

)
er (128)

and

(V �D
r

)2
u(r) =

(
∂4ur(r)

∂r4
+ 2(D − 1)

r

∂3ur(r)

∂r3

+ (D − 1)(D − 5)

r2

∂2ur(r)

∂r2
− 3(D − 1)(D − 3)

r3

∂ur(r)

∂r
+ 3(D − 1)(D − 3)

r4
ur(r)

)
er (129)

Using Eqs. (128) and (129) and f(r) = f (r)er , Eq. (127) gives:

∂4ur(r)

∂r4
+ 2(D − 1)

r

∂3ur(r)

∂r3
+

(
(D − 1)(D − 5)

r2
− l−2

s (D)

)
∂2ur(r)

∂r2

−
(

3(D − 1)(D − 3)

r3
+ l−2

s (D)
D − 1

r

)
∂ur(r)

∂r

+
(

3(D − 1)(D − 3)

r4
+ l−2

s (D)
D − 1

r2

)
ur(r) − (λ + 2μ)−1l−2

s (D) f (r) = 0 (130)

The general solution for the case f (r) = 0 is

ur(r) = C1r + C2r1−D − C3 I I (D, r) − C4 I K (D, r) (131)
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where I I (D, r) and I K (D, r) are the integrals of the Bessel functions:

I I (D, r) = Dr

∫
dr r−D−1

∫
dr rD/2+1 I D/2

(
r/ls(D)

)
(132)

I K (D, r) = Dr

∫
dr r−D−1

∫
dr rD/2+1 K D/2

(
r/ls(D)

)
(133)

where Iα(x) and Kα(x) are Bessel functions of the first and second kinds.

7. Thermoelasticity of fractal materials

Let us consider a generalization of thermoelasticity [67–69] for a fractal material. In this section, we consider a non-
integer-dimensional model of the thermoelasticity of a fractal material. Note that the thermoelasticity of fractal materials 
has been considered in the framework of the fractional-integral continuum model [10,9,15] by Ostoja-Starzewski in [34,35].

7.1. Thermoelastic constitutive relation for fractal materials

If the isotropic material is non-uniformly heated, then the constitutive relation for a thermoelastic material must include 
[70] the term

σi j = λεkkδi j + 2μεi j − Kα(T − T0)δi j (134)

where λ and μ are the Lame coefficients, K is the bulk modulus or modulus of compression. The third term in Eq. (134)
gives the additional stresses caused by the change in temperature.

The bulk modulus for fractal materials is related to the Lame coefficients by:

K = λ + 2

D
μ (135)

In this formula, we use the dimension D instead of 3 because δkk = D for a non-integer dimensional space (see Property 4 
in Section 4.3 of [26]).

If external forces are absent, then the stress is equal to zero σi j = 0 and we have a free thermal expansion. Using σi j = 0, 
Eq. (134) gives:

λεkkδi j + 2μεi j − Kα(T − T0)δi j = 0 (136)

Using δkk = D and (135), we obtain:

εkk = α(T − T0) (137)

Because the function e = εkk describes the relative change of volume caused by deformation, then α is the thermal expan-
sion coefficient of the material [70].

The constitutive relation (134) for a fractal material can be represented under the form:

σi j = λεkkδi j + 2μεi j − (Dλ + 2μ)αT (T − T0)δi j (138)

where we use the dimension D instead of 3 since K = (Dλ + 2μ)/D .

7.2. Thermoelastic equations for fractal material

For homogenous and isotropic non-fractal materials, we have the thermoelasticity equation:

λgrad div u + 2μ�u + f − (3λ + 2μ)α grad T = ρD2
t u (139)

where f is the external force density vector field. For the case u = u(r, t) and f = f(r, t), Eq. (139) gives:

(λ + 2μ)�u + f − (3λ + 2μ)α grad T = ρD2
t u (140)

The thermoelasticity equation for fractal materials in the framework of models with non-integer dimensional spaces has 
the form:

(λ + 2μ)V �D
r u(r, t) + f(r, t) − (Dλ + 2μ)α GradD

r T (r, t) = ρD2
t u(r, t) (141)

where we assume f = fr(r, t)er and u = ur(r, t)er . Using (4), Eq. (141) can be written under the form:



72 V.E. Tarasov / C. R. Mecanique 343 (2015) 57–73
∂2ur(r, t)

∂r2
+ D − 1

r

∂ur(r, t)

∂r
− D − 1

r2
ur(r, t)

+ 1

λ + 2μ
fr(r, t) − α(Dλ + 2μ)

λ + 2μ

∂T (r, t)

∂r
= ρ

λ + 2μ
D2

t ur(r, t) (142)

If the fractal material is non-uniformly heated, then the equation of equilibrium has the form:

∂2ur(r)

∂r2
+ D − 1

r

∂ur(r)

∂r
− D − 1

r2
ur(r) = (Dλ + 2μ)α

λ + 2μ

∂T (r)

∂r
(143)

This is the thermoelasticity equation in spherical coordinates for the pure radial deformation of fractal materials with fractal 
dimension D . For D = 3, we get the usual equation for the thermoelasticity of a solid ball [70].

The general solution to Eq. (143) has the form

ur(r) = C1r + c2

rD−1
+ (Dλ + 2μ)α

D(λ + 2μ)

(
rT (r) − D

rD−1

∫
rD T (r)dr

)
(144)

where C1 and C2 are defined by boundary conditions.

8. Conclusion

In this paper, continuum models with non-integer dimensional space are suggested to describe isotropic fractal materials. 
A generalization of differential vector operators for a non-integer dimensional space is proposed to describe the elasticity of 
fractal materials in the framework of continuum models. The differential operators of first and second orders for non-integer 
dimensional spaces are suggested for rotationally covariant scalar and vector functions. We consider applications for the 
elasticity theory in the case of spherical and axial symmetries of the fractal material. Elastic properties of fractal hollow ball 
and cylindrical fractal pipe with inside and outside pressures, rotating cylindrical fractal elastic pipe are described. Equations 
for thermoelasticity and gradient elasticity of fractal materials are solved.

Although the non-integer dimension does not reflect all the properties of fractal materials, the suggested models with 
non-integer dimensional space nevertheless allow us to derive a number of important conclusions about the behavior of 
fractal materials. Therefore continuum models with non-integer dimensional spaces can be successfully used to describe the 
elasticity and the thermoelasticity of fractal materials.

The proposed continuum models of fractal materials can be extended to more complex fractal materials: (1) we assume 
that continuum models with non-integer dimensional space can be generalized for anisotropic fractal materials [74]; (2) the 
non-integer dimensional models of fractal elastic materials can easily be generalized for the boundary dimensions d �= D − 1
[75]; (3) we also assume that differential and integral operators of fractional orders can also be defined for non-integer 
dimensional spaces to take into account the non-locality of fractal materials. Note that the dimensional continuation of the 
Riesz fractional integrals and derivatives [71] to generalize differentials and integrals of fractional orders for non-integer 
dimensional spaces has been considered in [72].
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