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1. Introduction

A cornerstone of fractal fluids is the non-integer dimen-
sion [1–3]. The mass of fractal fluid satisfies a power law
relation M � RD, where M is the mass of the ball region
with radius R, and D is the mass dimension [4]. Fractal fluid
can be described by four different approaches: (1) Using
the methods of ‘‘Analysis on fractals’’ [5–10] it is possible
to describe fractal media; (2) An application of fractional-
differential continuum models suggested in [11,12], and
then developed in [13–18], where so-called local fractional
derivatives [19] are used; (3) Applying fractional-integral
continuum models suggested in [4,20–23] (see also [24–
32]), where integrations of non-integer orders and a notion
of density of states [4] are used; (4) Fractal media can be
described by using the theory of integration and differenti-
ation for a non-integer dimensional space [33–35].

Let us note that main difference of the continuum mod-
els with non-integer dimensional spaces form the frac-
tional continuum models suggested in [4,20–23] may be
reduced to the following. (a) Arbitrariness in the choice
of the numerical factor in the density of states is fixed by
the equation of the volume of non-integer dimensional ball
region. (b) In the fractional continuum models suggested in
[4,20,21], the differentiations are integer orders whereas
the integrations are non-integer orders. In the continuum
models with non-integer dimensional spaces the integra-
tions and differentiations are defined for the spaces with
non-integer dimensions.

In this paper, we consider approach based on the non-
integer dimensional space. The power law M � RD can be
naturally derived by using the integrations in non-integer
dimensional space [33], where the mass dimension of frac-
tal fluid is connected with the dimension of this space. A
vector calculus for non-integer dimensional space pro-
posed in this paper allows us to use continuum models
with non-integer dimensional spaces to describe for fractal
fluids. This is due to the fact that although the non-integer
dimension does not reflect completely the geometric prop-
erties of the fractal media, it nevertheless permits a num-
ber of important conclusions about the behavior of
fractal structures. Therefore continuum models with non-
integer dimensional spaces can be successfully used to
describe fractal fluids.

Integration over non-integer dimensional spaces are
actively used in the theory of critical phenomena and
phase transitions in statistical physics [36,37], and in the
dimensional regularization of ultraviolet divergences in
quantum field theory [33,38,39]. The axioms for integra-
tions in non-integer dimensional space are proposed in
[34,40] and this type of integration is considered in the
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book by Collins [33] for rotationally covariant functions. In
the paper [34] a mathematical basis of integration on
non-integer dimensional space is given. Stillinger [34] sug-
gested a generalization of the Laplace operator for non-
integer dimensional spaces also. Using a product measure
approach, the Stillinger’s methods [34] has been general-
ized by Palmer and Stavrinou [35] for multiple variables
case with different degrees of confinement in orthogonal
directions. The scalar Laplace operators suggested by Stil-
linger [34] and Palmer, Stavrinou [35] for non-integer
dimensional spaces, have successfully been used for effec-
tive descriptions in physics and mechanics. The Stillinger’s
form of Laplacian for the Schrödinger equation in non-inte-
ger dimensional space is used by He [41–43] to describe a
measure of the anisotropy and confinement by the effec-
tive non-integer dimensions. Quantum mechanical models
with non-integer (fractional) dimensional space have been
discussed in [34,35,44–52]. Recent progress in non-integer
dimensional space approach also includes description of
the fractional diffusion processes in non-integer dimen-
sional space in [53], and the electromagnetic fields in
non-integer dimensional space in [54–61].

Unfortunately, [34,35] proposed only the second order
differential operators for scalar fields in the form of the
scalar Laplacian in the non-integer dimensional space. A
generalization of the vector Laplacian [62] for the non-
integer dimensional space is not suggested in [34,35].
The first order operators such as gradient, divergence, curl
operators are not considered in [34,35] also. In the work
[61] the gradient, divergence, and curl operators are sug-
gested only as approximations of the square of the Laplace
operator. Consideration only the scalar Laplacian in the
non-integer dimensional space approach greatly restricts
us in application of continuum models with non-integer
dimensional spaces for fractal fluids and material. For
example, we cannot use the Stillinger’s form of Laplacian
for vector field vðr; tÞ in hydrodynamics of fractal fluids,
in fractal theory of elasticity and thermoelasticity, in elec-
tromagnetic theory of fractal media to describe processes
in the framework non-integer dimensional space approach.

In this paper, we propose to use a vector calculus for
non-integer dimensional space, and we define the first
and second orders differential vector operations such as
gradient, divergence, the scalar and vector Laplace opera-
tors for non-integer dimensional space. In order to derive
the vector differential operators in non-integer dimen-
sional space we use the method of analytic continuation
in dimension. For simplification we consider rotationally
covariant scalar and vector functions that are independent
of angles. It allows us to reduce differential equations in
non-integer dimensional space to ordinary differential
equations with respect to r. The proposed operators allow
us to describe fractal media to describe processes in the
framework of continuum models with non-integer dimen-
sional spaces. In this paper we describe a Poiseuille flow of
an incompressible viscous fractal fluid in the pipe. A gener-
alization of the Navier–Stokes equation for non-integer
dimensional space to describe for fractal fluid are sug-
gested. A solution of this equation for steady flow of fractal
fluid in a pipe and corresponding fractal fluid discharge are
derived.
2. Fractal fluids

A basic characteristic of fractal fluids is the non-integer
dimensions such as mass or ‘‘particle’’ dimensions [4]. For
fractal fluids the number of particles NDðWÞ or mass
MDðWÞ in any region W � R3 of this fluid increase more
slowly than the 3-dimensional volume V3ðWÞ of this
region. For the ball region W with radius R in an isotropic
fractal fluid, this property can be described by the relation
between the number of particles NDðWÞ in the region W of
fractal fluid, and the radius R in the form

NDðWÞ ¼ N0ðR=R0ÞD; R=R0 � 1; ð1Þ

where R0 is the characteristic size of fractal fluid such as a
minimal scale of self-similarity of a considered fractal fluid.
The number D is called the ‘‘particle’’ dimension. It is a
measure of how the fluid particles fill the space. The
parameter D does not depend on the shape of the region
W. Therefore fractal fluids can be considered as fluid with
non-integer ‘‘particle’’ or mass dimension.

If the fractal fluid consists of particles with identical
masses m0, then relation (1) gives

MDðWÞ ¼ M0ðR=R0ÞD; R=R0 � 1; ð2Þ

where M0 ¼ m0 N0. In this case, the mass dimension coin-
cides with the ‘‘particle’’ dimension.

As the basic mathematical tool for continuum models of
fractal fluids, we propose to use the integration and differ-
entiation in non-integer dimensional spaces. In Section 7,
we will show that the power-law relation (2) for an isotro-
pic fractal fluid can be naturally derived by using the inte-
gration over non-integer dimensional space, where the
space dimension is equal to the mass dimension of fractal
fluid.

In order to describe fractal fluid by continuum models
with non-integer dimensional spaces, we use the concepts
of density of states c3ðD; rÞ that describes how closely
packed permitted places (states) in the space R3, where
the fractal fluid is distributed. The expression
dVDðrÞ ¼ c3ðD; rÞdV3 is equal to the number of permitted
places (states) between V3 and V3 þ dV3 in R3. The nota-
tion dDr also will be used instead of dVDðrÞ. Note that den-
sity of states and distribution function are different
concepts, and it is impossible to describe all properties of
fractal fluids by the distribution function only.

For fractal fluids, we can use the equation

dNDðWÞ ¼ nðrÞdVDðrÞ; ð3Þ

where nðrÞ is a concentration of particles that describes a
distribution of number of particles on a set of permitted
places (possible states). The density of states is chosen
such that dVDðrÞ ¼ c3ðD; rÞdV3 describes the number of
permitted states in dV3.

The form of the function c3ðD; rÞ is defined by symme-
tries of considered problem and properties of the described
fractal fluid. A general property of density of states for frac-
tal fluids is a power-law type of these functions that
reflects a scaling property (fractality) of the fractal fluid.
To simplify our consideration in this paper we will con-
sider only isotropic fractal fluids with density of states that
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is independent of angles. In this case, the form of density of
states is defined such that dVD is an elementary volume of
the non-integer dimensional space.

In the continuum models of fractal fluids, we should
work with the dimensionless variables x=R0 ! x; y=R0 !
x; z=R0 ! x, r=R0 ! r, in order to physical quantities of
fractal fluids have correct physical dimensions.

3. Vector differential operators in non-integer
dimensional space

To derive equations for vector differential operators in
non-integer dimensional space, we use equations for the
differential operators in the spherical (and cylindrical)
coordinates in Rn for arbitrary n to highlight the explicit
relations with dimension n. Then the vector differential
operators for non-integer dimension D can be defined by
continuation in dimension from integer n to non-integer
D. To simplify we will consider only scalar fields u and vec-
tor fields v that are independent of angles

uðrÞ ¼ uðrÞ; vðrÞ ¼ vðrÞ ¼ v r er;

where r ¼ jrj is the radial distance, er ¼ r=r is the local
orthogonal unit vector in the directions of increasing r,
and v r ¼ v rðrÞ is the radial component of v. We will work
with rotationally covariant functions only. This simplifica-
tion is analogous to the simplification for definition of inte-
gration over non-integer dimensional space described in
Section 4 of the book [33].

3.1. Vector differential operators for spherical and cylindrical
cases

Using the continuation from integer n to arbitrary non-
integer D, we can get explicit definitions of differential
operators for non-integer dimensional space in the follow-
ing forms. Note that the same expressions can be obtained
by using the integration in non-integer dimensional space
and the correspondent Gauss’s theorem.

Let us define the differential vector operations such as
gradient, divergence, the scalar and vector Laplacian for
non-integer dimensional space. For simplifications, we
assume that the vector field v ¼ vðrÞ be radially directed
and the scalar and vector fields uðrÞ;vðrÞ are not depen-
dent on the angles.

The divergence in non-integer dimensional space for
the vector field v ¼ vðrÞ is

DivD
r v ¼ @v r

@r
þ D� 1

r
v r: ð4Þ

The gradient in non-integer dimensional space for the
scalar field u ¼ uðrÞ is

GradD
r u ¼

@u
@r

er : ð5Þ

The scalar Laplacian in non-integer dimensional space
for the scalar field u ¼ uðrÞ is

SDD
r u ¼ DivD

r GradD
r u ¼

@2u
@r2 þ

D� 1
r

@u
@r

: ð6Þ
The vector Laplacian in non-integer dimensional space
for the vector field v ¼ vðrÞer is

VDD
r v ¼ GradD

r DivD
r v

¼ @2v r

@r2 þ
D� 1

r
@v r

@r
� D� 1

r2 v r

 !
er : ð7Þ

If D ¼ n, Eqs. (4)–(7) give the well-known formulas for
integer dimensional space Rn.

Let us consider a case of axial symmetry of the fluid,
where the fields uðrÞ and vðrÞ ¼ vrðrÞer are also axially
symmetric. We will direct the Z-axis along the axis of sym-
metry. Therefore we use a cylindrical coordinate system.

The divergence in non-integer dimensional space for
the vector field v ¼ vðrÞ is

DivD
r v ¼ @v r

@r
þ D� 2

r
v r : ð8Þ

The gradient in non-integer dimensional space for the
scalar field u ¼ uðrÞ is

GradD
r u ¼

@u
@r

er : ð9Þ

The scalar Laplacian in non-integer dimensional space
for the scalar field u ¼ uðrÞ is

SDD
r u ¼

@2u
@r2 þ

D� 2
r

@u
@r

: ð10Þ

The vector Laplacian in non-integer dimensional space
for the vector field v ¼ vðrÞer is

VDD
r v ¼ @2v r

@r2 þ
D� 2

r
@v r

@r
� D� 2

r2 v r

 !
er : ð11Þ

Eqs. (8)–(11) can be easy generalized for the case
u ¼ uðr; zÞ and vðr; zÞ ¼ v rðr; zÞer þ v rðr; zÞez. In this case
the curl operator for vðr; zÞ is different from zero, and

CurlD
r v ¼ @v r

@z
� @vz

@r

� �
eh: ð12Þ

For D ¼ 3 Eqs. (4)–(11) give the well-known expres-
sions for the gradient, divergence, curl operator, scalar
and vector Laplacian operators

The suggested operators for 0 < D < 3 allow us to
reduce D-dimensional vector differentiations (4)–(7) and
(8)–(11) to derivatives with respect to r ¼ jrj. It allows us
to reduce partial differential equations for fields in non-
integer dimensional space to ordinary differential equa-
tions with respect to r.

3.2. Stillinger’s Laplacian for non-integer dimensional space

For a function u ¼ uðr; hÞ of radial distance r and
related angle h measured relative to an axis passing
through the origin, the scalar Laplacian in a non-integer
dimensional space proposed by Stillinger [34] is

StDD ¼ 1
rD�1

@

@r
rD�1 @

@r

� �
þ 1

r2 sinD�2 h

� @

@h
sinD�2 h

@

@h

� �
; ð13Þ
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where D is the dimension of space (0 < D < 3), and the
variables r P 0; 0 6 h 6 p. Note that ðStDDÞ2 – StD2D. If
the function depends on radial distance r only (u ¼ uðrÞ),
then

StDDuðrÞ ¼ 1
rD�1

@

@r
rD�1 @uðrÞ

@r

� �

¼ @
2uðrÞ
@r2 þ D� 1

r
@uðrÞ
@r

: ð14Þ

It is easy to see that the Stillinger’s form of Laplacian StDD

for radial scalar functions uðrÞ ¼ uðrÞ coincides with the
scalar Laplacian SDD

r defined by (6), i.e.,

StDDuðrÞ ¼ SDDuðrÞ: ð15Þ

The Stillinger’s Laplacian can be applied for scalar fields
only. It cannot be used to describe vector fields
v ¼ v rðrÞer because this Laplacian for D ¼ 3 is not equal
to the usual vector Laplacian for R3,

StD3vðrÞ– DvðrÞ ¼ @2v r

@r2 þ
2
r
@v r

@r
� 2

r2 v r

 !
er : ð16Þ

The gradient, divergence, curl operator and vector Lapla-
cian are not considered by Stillinger in paper [34].

3.3. Differential operators for d – D� 1

Let us consider a ball region BD in the fractal fluids with
the boundary Sd ¼ @BD with dimensions

dimðBDÞ ¼ D; dimðSdÞ ¼ d: ð17Þ

Eqs. (4)–(11) define differential operators for spaces with
non-integer dimension D and boundary dimensions
d ¼ D� 1. In general, the dimension D of the region of a
fractal fluid and the dimension d of boundary of this region
are not related by the equation d ¼ D� 1, i.e.,

dimð@BDÞ – D� 1: ð18Þ

Using the integration in non-integer dimensional space
and the correspondent Gauss’s theorem, we can define the
divergence for the case d – D� 1 by the equation

DivD;d
r v ¼ pðdþ1�DÞ=2 CðD=2Þ

Cððdþ 1Þ=2Þ
1

rD�1�d

@v rðrÞ
@r

þ d
rD�d

v rðrÞ
� �

:

ð19Þ

For d ¼ D� 1, we get (4). We can define the parameter

ar ¼ D� d; ð20Þ

that can be interpreted as a dimension of fractal fluid along
the radial direction er . Using (20), Eq. (19) can be rewritten
in the form

DivD;d
r v ¼ pð1�arÞ=2 Cððdþ arÞ=2Þ

Cððdþ 1Þ=2Þ
1

rar�1

@v rðrÞ
@r

þ d
rar

v rðrÞ
� �

:

ð21Þ

This is divergence operator for non-integer boundary
dimension d – D� 1. For ar ¼ 1, we have d ¼ D� 1, and
then equations (19), (21) give (4).

The gradient for the scalar field uðrÞ ¼ uðrÞ and the
radial dimension ar – 1 is defined by
GradD;d
r u ¼ Cðar=2Þ

par=2 rar�1

@uðrÞ
@r

er : ð22Þ

For ar ¼ 1, Eq. (22) gives (5).
Using the operators (22) and (19) for the fields u ¼ uðrÞ

and v ¼ vðrÞer , we can get the scalar and vector Laplace
operators for the case d – D� 1 by

SDD;d
r u ¼ DivD;d

r GradD;d
r u; VDD;d

r v ¼ GradD;d
r DivD;d

r v: ð23Þ

The scalar Laplacian for d – D� 1 for the field u ¼ uðrÞ
is

SDD;d
r u ¼ Aðd;arÞ

1
r2ar�2

@2u
@r2 þ

dþ 1� ar

r2ar�1

@u
@r

 !
; ð24Þ

where

Aðd;arÞ ¼
Cððdþ arÞ=2ÞCðar=2Þ
par�1=2 Cððdþ 1Þ=2Þ : ð25Þ

The vector Laplacian for d – D� 1 for the field
v ¼ vðrÞer is

VDD;d
r v¼Aðd;arÞ

1
r2ar�2

@2v r

@r2 þ
dþ1�ar

r2ar�1

@v r

@r
�dar

r2ar
v r

 !
er :

ð26Þ

The vector differential operators (22), (19), (24) and
(26) allow us to describe complex fractal fluids with the
boundary dimensions d – D� 1 by continuum models
with non-integer dimensional spaces.

4. Navier–Stokes equations in non-integer dimensional
space for fractal fluid

A motion of an incompressible viscous fractal fluid in
the framework of continuum model with non-integer
dimensional space is described by the equations

DivD
r v ¼ 0; ð27Þ

dv
dt
¼ f � 1

q
GradD

r pþ m VDD
r v; ð28Þ

where f is the vector field of mass forces, m is the kinematic
viscosity is the ratio of the dynamic viscosity l to the den-
sity of the fluid q, and d=dt is the material derivative

dv
dt
¼ @v
@t
þ v;GradD

r v
� �

: ð29Þ

In Eqs. (27)–(29) the gradient GradD
r , the divergence DivD

r ,
and the vector Laplacian VDD

r are defined by equations
(5), (4), (7) for spherical symmetry. For cylindrical symme-
try, these operators are defined by equations (9), (8), (11).

If the dimension D of the region of a fractal fluid and the
dimension d of boundary of this region are not related by
the relation d ¼ D� 1, i.e., ar ¼ D� d – 1, then we should
use the equations

DivD;d
r v ¼ 0; ð30Þ

dv
dt
¼ f � 1

q
GradD;d

r pþ m VDD;d
r v; ð31Þ

dv
dt
¼ @v
@t
þ v;GradD;d

r v
� �

; ð32Þ



30 V.E. Tarasov / Chaos, Solitons & Fractals 67 (2014) 26–37
where the gradient GradD;d
r , the divergence DivD;d

r , and the
vector Laplacian VDD;d

r are defined by equations (22), (21)
and (26).

Eqs. (28) and (31) can be called the Navier–Stokes equa-
tions for non-integer dimensional space.

It is convenient to work in the dimensionless space vari-
ables x=R0 ! x; y=R0 ! x; z=R0 ! x; r=R0 ! r, that yields
dimensionless integration and dimensionless differentia-
tion in non-integer dimensional space. Here R0 is the char-
acteristic size of a fractal fluid, which is always finite. For
example, R0 can be the minimal scale of self-similarity of
a considered fractal fluid. Then the density is properly
scaled such that the mass Q of fractal fluid and the fields
v; p; f have correct physical dimensions.

The Navier–Stokes equations (28) and (31) describe
dynamics of fractal fluids in the framework of continuum
models with non-integer dimensional spaces. These equa-
tions allow us to describe the isotropic fractal fluid only
when the presence of spherical or cylindrical symmetry.

Eqs. (28) and (31) can be used, when the fields p; v; v
have the form p ¼ pðrÞ and v ¼ v rðrÞer , fÞ ¼ frðrÞer does
not depend on the angles.

As an example of application of the Navier–Stokes
equations (28) and (31), we consider a steady flow of frac-
tal fluid in a pipe, and fractal fluid discharge in the next
sections. In the next sections, we derive the Poiseuille
equation for fractal fluids from the Navier–Stokes equa-
tions (28) and (31). Equations can be used for any other
problems of hydrostatics and hydrodynamics of fractal flu-
ids within the case of spherical and cylindrical symmetries.

To consider anisotropic fractal fluids, and problems
without spherical and cylindrical symmetries, we cannot
use the Navier–Stokes equations (28) and (31). In this case,
we should apply a product measure approach. The product
measure approach to describe fractal properties of space–
time has been considered in [63]. The product measure
approach for the fractional spaces has been suggested in
[64,65], where fractional phase space is considered with
its interpretation as a non-integer (fractional) dimensional
space. For non-integer dimensional spaces the product
measure approach is suggested in [35], where each orthog-
onal coordinates has own dimension. The product measure
approach for the fractional-integral continuum models has
been considered in [25–28].
5. Steady flow of fractal fluid in a pipe

In this section, we derive the Poiseuille equation for
fractal fluids from the Navier–Stokes equation (28). Let
us consider a simple problem of motion of an incompress-
ible viscous fractal fluid. Using the continuum models with
non-integer dimensional space, we describe a steady flow
of fractal fluid in a pipe with circular cross-section. We
take the axis of the pipe as the X-axis. The velocity for lam-
inar of fractal fluid is along the X-axis at all points, and is a
function of r only

v ¼ vðrÞ ¼ vxðrÞex: ð33Þ

The equation of continuity is satisfied identically. The
components of the Navier–Stokes equation for Y-axis and
Z-axis give that the pressure is constant over the cross-
section of the pipe.

We shall solve the equation for a pipe with circular
cross-section. Taking the origin at the center of the circle
we can use cylindrical symmetry v ¼ vðrÞ ¼ vxðrÞex. Using
the Navier–Stokes equation (28), we have

SDD
r vxðrÞ ¼

1
l

dp
dx
; ð34Þ

where l ¼ qm, and dp=dx is a constant. The pressure gradi-
ent dp=dx may be written �Dp=l, where Dp is the pressure
difference between the ends of the pipe and l is its length.

Using the scalar Laplacian for non-integer dimensional
space the Navier–Stokes equation (34) takes the form

@2vxðrÞ
@r2 þ D� 2

r
@vx

@r
� 1

l
dp
dx
¼ 0: ð35Þ

For 1 < D < 3 and 0 < D < 1, the general solution of (35) is

vxðrÞ ¼ C1 r3�D þ C2 þ
1

2 ðD� 1Þl
dp
dx

r2

ð0 < D < 3; D – 1Þ: ð36Þ

For D ¼ 3, we have

vxðrÞ ¼ C1 lnðrÞ þ C2 þ
1

4l
dp
dx

r2: ð37Þ

For D ¼ 1, we get the general solution

vxðrÞ ¼ C1 r2 þ C2 þ
1

4l
dp
dx

r2 ð2 lnðrÞ � 1Þ: ð38Þ

It should be noted that dimensions D ¼ 1 of the fractal
fluid do not correspond to the distribution of particles
along the line. The fractal media with D ¼ 1 describe a dis-
tribution of fluid particles in 3-dimensional space such that
the mass dimension of the distribution is equal to D ¼ 1.

Let us determine a flow of fractal fluid in a pipe of annu-
lar cross-section with the internal radius R1 and external
radius R2. The constants C1 and C2 in the general solution
(36) are determined from the boundary conditions

vxðR1Þ ¼ vxðR2Þ ¼ 0: ð39Þ

Using (36), these conditions have the form

C1 R3�D
1 þ C2 þ

1
2 ðD� 1Þl

dp
dx

R2
1 ¼ 0; ð40Þ

C1 R3�D
2 þ C2 þ

1
2 ðD� 1Þl

dp
dx

R2
2 ¼ 0: ð41Þ

Then the constants are

C1 ¼
1

2 ðD� 1Þl
dp
dx

R2
2 � R2

1

R3�D
1 � R3�D

2

; ð42Þ

C2 ¼
1

2 ðD� 1Þl
dp
dx

R3�D
1 R2

2 � R3�D
2 R2

1

R3�D
1 � R3�D

2

: ð43Þ

Substitution of (42) and (43) into (36) gives

vxðrÞ¼
1

2ðD�1Þl
dp
dx

R2
2�R2

1

R3�D
1 �R3�D

2

r3�DþR3�D
1 R2

2�R3�D
2 R2

1

R3�D
1 �R3�D

2

þr2

 !
;

ð44Þ

where 0 < D < 1 and 1 < D < 3.
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Using the variables

x ¼ R2

R1
; y ¼ r

R1
;

Eq. (44) can be represented in the form

vðx; yÞ ¼ R2
1

2 ðD� 1Þl
dp
dx
� 1� x2

1� x3�D
y3�D þ x2 � x3�D

1� x3�D
þ y2

� �
:

ð45Þ

To demonstrate some properties of the velocity vxðrÞ
defined by (44), we can visualize the function (45), for
x 2 ½1; 100�; y 2 ½1; 100� and different values of dimensions
D ¼ 2:9; D ¼ 2:7; D ¼ 2:0; D ¼ 1:1. The plots of function
(45) are presented by Figs. 1–4, where l ¼ 1; R1 ¼ 1 and
dp=dx ¼ �1.

The flow in a pipe of annular cross-section with the
radius R, i.e. R1 ¼ 0 and R2 ¼ R, we have
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Fig. 1. Plot of the velocity function z ¼ vðx; yÞ defined by (4
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Fig. 2. Plot of the velocity function z ¼ vðx; yÞ defined by (4
vxðrÞ ¼ �
1

2 ðD� 1Þl
dp
dx

R2 r
R

� �3�D

� r
R

� �2
� �

ð0 < D 6 3; D – 1Þ: ð46Þ

Eq. (46) can be called the Poiseuille equation for flow of
fractal fluid. For the case of non-fractal fluid (D ¼ 3), Eq.
(46) gives the well-known Poiseuille equation

vxðrÞ ¼ �
1

4l
dp
dx

R2 1� r
R

� �2
� �

: ð47Þ

Thus the velocity distribution across the pipe is parabolic
for the non-fractal fluids. For the fractal fluids, we have
non-integer power-law (46).

Note that suggested Poiseuille equation for fractal flu-
ids, which are derived from the proposed Navier–Stokes
equation for non-integer dimensional space can be used
only to describe flow of fractal fluid in pipes. To describe
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5) for the ranges x 2 ½1; 100�, y 2 ½1; 100�, and D ¼ 2:7.



0
20

40
60

80
100

X

0

20

40

60

80

100

Y

-4000

-2000

0

Z

Fig. 3. Plot of the velocity function z ¼ vðx; yÞ defined by (45) for the ranges x 2 ½1; 100�, y 2 ½1; 100�, and D ¼ 2:0.
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Fig. 4. Plot of the velocity function z ¼ vðx; yÞ defined by (45) for the ranges x 2 ½1; 100�, y 2 ½1; 100�, and D ¼ 1:1.
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flow of fractal fluid between parallel planes, we should
define new differential operators and the Navier–Stokes
equations (28) and (31), should be modified by using the
product measure approach [35,63–65].
6. Fractal fluid with ar 6¼ 1

Let us derive the Poiseuille equation for fractal fluids
from the Navier–Stokes equation (31). The Navier–Stokes
equations for fractal fluid with ar ¼ D� d – 1 has the form

Aðdx;arÞ
1

r2ar�2

@2vxðrÞ
@r2 þ dx þ 1� ar

r2ar�1

@vxðrÞ
@r

 !

� 1
l

dp
dx
¼ 0; ð48Þ

where Aðdx;arÞ is defined by (25), dx ¼ d� ax, and ax is
dimension along the X-axis. Using vxðrÞ as an effective
scalar field ueff ðrÞ ¼ vxðrÞ, we can apply Eqs. (22), (21)
and (24) where D! Dx ¼ D� ax and d! dx ¼ d� ax to
get (48). Eq. (48) with ar ¼ ax ¼ 1 gives (35).

For 1 < D < 3 and 0 < D < 1, the general solution of
(48) is

vxðrÞ ¼ C1 rar�dx þ C2 þ
1

2 ðdx þ arÞar Aðdx;arÞl
dp
dx

r2ar

ð0 < D < 3; D – 1Þ: ð49Þ
For ar ¼ ax ¼ 1 Eq. (49) gives (36). The constants C1 and C2

in the general solution (49) are determined by the bound-
ary conditions

vxðR1Þ ¼ vxðR2Þ ¼ 0: ð50Þ

These conditions give the equations

C1 Rar�dx
1 þ C2 þ

1
2 ðdx þ arÞar Aðdx;arÞl

dp
dx

R2ar
1 ¼ 0; ð51Þ

C1 Rar�dx
2 þ C2 þ

1
2 ðdx þ arÞar Aðdx;arÞl

dp
dx

R2ar
2 ¼ 0: ð52Þ
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Then the coefficients are

C1 ¼ �
1

2 ðdx þ arÞar Aðdx;arÞl
dp
dx

R2ar
1 � R2ar

2

Rar�dx
1 � Rar�dx

2

; ð53Þ

C3 ¼ �
1

2 ðdx þ arÞar Aðdx;arÞl
dp
dx

R2ar
2 Rar�dx

1 � R2ar
1 Rar�dx

2

Rar�dx
1 � Rar�dx

2

;

ð54Þ

Substitution of (53) and (54) into (49) gives

vxðrÞ ¼ �
1

2 ðdx þ arÞar Aðdx;arÞl
dp
dx

R2ar
1 � R2ar

2

Rar�dx
1 � Rar�dx

2

rar�dx

 

þ R2ar
2 Rar�dx

1 � R2ar
1 Rar�dx

2

Rar�dx
1 � Rar�dx

2

� r2ar

!
ð55Þ

for 0 < D < 3, where D – 1.
If R1 ¼ 0 and R2 ¼ R, then Eq. (55) has the form

vxðrÞ¼�
1

2ðdxþarÞar Aðdx;arÞl
dp
dx

R2ar r
R

� �ar�dx

� r
R

� �2ar
� �

:

ð56Þ

For ar ¼ ax ¼ 1 Eq. (56) gives (46). The cases ar < 1 and/or
ax < 1 corresponds to fractal fluid.

We can assume that ax > 1 can be used to describe
fractal turbulent flow in pipe. This assumption is based
on the fact that trajectories of the fluid particles are fractal
curve, then ax > 1 (for example, the Koch curve with
ax ¼ lnð4Þ= lnð3Þ � 1:262).

7. Fractal fluid discharge

In general, fractal fluids cannot be considered as a fluid
on fractal. Real fractal fluids have a characteristic smallest
length scale such as the radius, R0, of a particle (for exam-
ple, an atom or molecule). In real fluids the fractal struc-
ture cannot be observed on all scales but only those for
which R > R0, where R0 is the characteristic scale of the
particles. The concept of non-integer mass dimension of
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Fig. 5. Plot of the discharge function Q ¼ QðR;DÞ defin
fractal fluid is based on the idea of how the mass of a fluid
region scales with the region size, if we assume unchanged
density. For many cases, we can write the asymptotic form
for the relation between the mass MDðWÞ of a ball region W
of fluid, and the radius R containing this mass as follows:

MDðWÞ ¼ M0
R
R0

� �D

ð57Þ

for R=R0 � 1. The constant M0 depends on how the spheres
of radius R0 are packed. The parameter D, which is inter-
preted as a dimension, does not depend on the shape of
the region W, or on whether the packing of spheres of
radius R0 is close packing, a random packing or a porous
packing with a uniform distribution of holes. The non-inte-
ger mass dimension D of fractal fluid is a measure of how
the fluid fills the integer n-dimensional Euclidean space it
occupies. Note that the fact that a fluid is random or con-
tains cavities does not necessarily imply that the fluid is
fractal.

Using the non-integer dimensional space approach, we
can calculate the mass of fractal homogeneous fluids. Scal-
ing law (57) is obtained naturally in the framework of this
approach. We can use the integration in a non-integer
dimensional space [34] that is described by the equationZ

RD
dDruðrÞ ¼ 2pðD�1Þ=2

CððD� 1Þ=2Þ

�
Z 1

0
dr rD�1

Z p

0
dh sinD�2 huðr; hÞ; ð58Þ

where dDr represent the volume element in the non-inte-
ger dimensional space. Using (58) with uðr; hÞ ¼ 1, andZ p

0
dh sinD�2 h ¼ p1=2 CðD=2� 1Þ

CðD=2Þ ; ð59Þ

we get the volume of D-dimensional ball with radius R in
the form

VD ¼
pD=2

CðD=2þ 1Þ RD: ð60Þ
2.5
3

D

ed by (64) for the range R 2 ½0;1� and D 2 ½2;3�.
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The mass of fluid in W is described by the integral

MDðWÞ ¼
Z

W
qðrÞdDr; ð61Þ

where r is dimensionless vector variable. For a ball with
radius R and constant density qðrÞ ¼ q ¼ const, we get

MDðWÞ ¼ qVD ¼
pD=2 q

CðD=2þ 1Þ RD: ð62Þ

This equation define the mass of the fractal homogeneous
ball region of fluid with volume VD. For D ¼ 3, Eq. (62)
gives the well-known equation for mass of non-fractal ball
region M3 ¼ ð4qp=3ÞR3 because Cð3=2Þ ¼

ffiffiffiffi
p
p

=2 and
Cðzþ 1Þ ¼ zCðzÞ.

Let us determine the mass Q of fluid passing per unit
time through any cross-section of the pipe (called the dis-
charge). Not all pipe volume is occupied by fractal fluid.
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Fig. 6. Plot of the discharge function Q ¼ QðR;DÞ defin
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Fig. 7. Plot of the discharge function Q ¼ QðR;DÞ define
There are areas unoccupied by particles of fractal fluid. In
continuum model of fractal fluids, we take into account
this fact by using the integration in space with non-integer
dimension

Q ¼ q
2pd=2

Cðd=2Þ

Z R

0
vxðrÞrd�1 dr; ð63Þ

where d ¼ D� 1 is non-integer dimension of the cross-sec-
tion, q is a constant density, and vxðrÞ is defined by Eq.
(46). Substitution of (46) into (63) gives

Q ¼� qpðD�1Þ=2

2ðDþ1ÞCððD�1Þ=2Þl
dp
dx

RDþ1 ð0<D63 D – 1Þ:

ð64Þ

Note that q has physical dimension of mass (for example,
kilogram). The mass of fractal fluid is thus proportional
to ðDþ 1Þ-power of the radius of the pipe.
1.5
2

D

ed by (64) for the range R 2 ½0;1� and D 2 ½1;2�.

1
1.5

D

d by (64) for the range R 2 ½0;1� and D 2 ½0:5;1:5�.
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For D ¼ 3, Eq. (64) gives the well-known equation

Q ¼ �qp
8l

dp
dx

R4: ð65Þ

The mass of non-fractal fluid is proportional to the
fourth power of the radius of the pipe. The dependence
of Q on dp=dx and R given by formula (65) was estab-
lished empirically by G. Hagen in 1839 and J. L. M.
Poiseuille in 1840, and theoretically justified by G. G.
Stokes in 1845.

Eq. (64) can be rewritten in the form

Q ¼ � qp
8leff

dp
dx

RDþ1 ð66Þ

with the effective dynamic viscosity

leff ¼
Dþ 1

4
pð3�DÞ=2 CððD� 1Þ=2Þ l: ð67Þ

The mass (discharge) of fractal fluid is proportional to the
non-integer power ðDþ 1Þ < 4 of the radius of the pipe,
and the dynamic viscosity is effectively changed.

For D ¼ 3, Eq. (67) gives leff ¼ l. For 1 < D < 3, we have
leff > l. If 0 < D < 1, then leff < 0. The effective dynamic
viscosity of fractal fluid with D 2 ð1; 3Þ increases with
increasing a deviation of the dimension D from three. We
can see an interesting effect of a negative effective
dynamic viscosity for fractal fluid with dimension
D 2 ð0; 1Þ. The strong fractality of the fluid, which is caused
by small dimension, leads to an increased fluid flow com-
pared with conventional medium. This is probably due to
an increase in freedom of particles motion for the fractal
fluid similar to 3D Cantor dust.

The discharge function Q ¼ QðR;DÞ defined by (64) for
the different values of dimensions 0 < D < 3 and the range
R 2 ½0;1� are present on Figs. 5–8, where q ¼ 1;l ¼ 1, and
dp=dx ¼ �1.
8. Conclusion

In this paper, we propose a generalization of the Navier–
Stokes equations to describe fractal fluids in the framework
of continuum models with non-integer dimensional spaces.
These equations contain generalized differential vector
operators for non-integer dimensional space. As an exam-
ple of application of the suggested Navier–Stokes equations
for fractal fluids, we consider a Poiseuille flow of an incom-
pressible viscous fractal fluid in the pipe. The solution for
steady flow of fractal fluid in a pipe and corresponding frac-
tal fluid discharge have been derived.

In this paper fractal fluid is described as a continuum in
non-integer dimensional space. We assume that suggested
continuum models with non-integer dimensional spaces
and the correspondent Navier–Stokes equations for fractal
fluids may be important for fractal theory of different type
of media.

As the main object for application of the proposed con-
tinuum models is a two-component medium, where distri-
bution of one component (gas, liquid, solid) into another
component (fluid, gas or empty space) can be character-
ized by non-integer mass or ‘‘particle’’ dimension. This
non-integer dimensional component can be considered as
a fractal fluid. One of the possible experimental methods
for determining the presence of fractal properties of the
two-component medium may be to use labels with radio-
active isotopes for particles of component that is assumed
a fractal.

A basic idealized model of fractal fluid is a liquid distrib-
uted in empty space R3 with non-integer mass dimension
D < 3. In some sense the fractal fluid is considered as a
liquid analog of fractal porous solid material. Fractal fluid
can also be viewed as a two-phase medium consisting of
a liquid and a discharged gas instead of empty space, where
the liquid is characterized by fractal mass dimension.

As an object of study, we also can consider an emulsion,
when both the dispersed and the continuous phase are liq-
uids, and the dispersed phase is fractally distributed in
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continuous phase. An emulsion that is a mixture of two
immiscible liquids, one of which (the dispersed phase) is
fractally dispersed in the other (the continuous phase). In
this case the dispersed phase can be described as a fractal
fluid by suggested continuum models with non-integer
dimensional space. The proposed models can be used for
a solution that is a homogeneous mixture composed of
only one (liquid) phase, where one phase has a fractal
dimension. We can consider a fractal distribution of a sol-
ute dissolved in a non-fractal solvent, then the solute is
considered as a fractal fluid. The solvent that is fractally
homogeneously mixed with solute can be considered as a
fractal homogeneous fluid. The homogeneity property of
the fractal fluid means that two regions W1 and W2 with
the equal volumes VnðW1Þ ¼ VnðW2Þ have equal number
of particles NDðW1Þ ¼ NDðW2Þ. In other words the fractal
fluid is called homogeneous if the power law NDðWÞ � RD

(or MDðWÞ � RD) does not depend on the translation of
the region W.

We can consider a fractal distribution of small solid par-
ticles in the suspension. In this case, we have an internal
phase (solid) that is fractally distributed through the exter-
nal phase (fluid) by mechanical agitation.

An object of investigations can be a liquid mixed with a
solid particles, where the distribution of these particles in
space can be characterized by non-integer mass dimen-
sions, which can be caused by a power law distribution
of particles by size or mass.

As a complex medium which may exhibit fractal prop-
erties can be considered the blood that is composed of pro-
teins, glucose, mineral ions, hormones, carbon dioxide,
blood cells and other particles suspended in water. We
assume that the blood as a multi-phase medium can have
attributes of a fractal distribution for some blood compo-
nents including bacteria, viruses and medicinal substances
getting into the blood.

We assume that the suggested approach to describe
fractal fluids by continuum models with non-integer
dimensional spaces may be important for fractal theory
of blood flow in cardiovascular system, dynamics of fractal
media in hydrologic modeling [66–69] and it allows to
develop the fractal dynamics of multi-phase media [70,71].
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