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Electromagnetic waves in non-integer dimensional spaces are considered in the framework of

continuous models of fractal media and fields. Using the recently suggested vector calculus for

non-integer dimensional space, we consider electromagnetic fields in isotropic case. This D-

dimensional calculus allows us to describe fractal properties by continuous models with non-

integer dimensional spaces. We prove that the wave equation for non-integer dimensional

space is similar to equation of waves in non-fractal medium with heterogeneity of power-law

type. The speed of electromagnetic waves and the effective refractive index of non-integer

dimensional spaces and fractals are discussed.
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1. Introduction

Fractals are measurable metric sets with non-integer di-

mensions [1,2]. We can describe fractal media by using meth-

ods of “analysis on fractals” [3,4]. At present an application

of the “analysis on fractals” to solve differential equations on

fractals [4] for real physical problems is limited by a weak de-

velopment of this area of mathematics. We can consider frac-

tal media as continuous media in non-integer dimensional

space. The non-integer dimension does not reflect all prop-

erties of the fractal media, but it is a main characteristic of

fractal media. For this reason, continuous models with non-

integer dimensional spaces can allow us to get some impor-

tant conclusions about the behavior of the fractal media.

Continuous models for fractal distributions of charges,

currents, media and fields have been proposed in [5–9].

These models are based on the notion of power-law den-

sity of states [10]. To take into account this density of states,
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we use the fractional-order integrals that is connected with

fractional-dimensional integration [8,10]. It should be noted

that fractional-order integrals and derivatives are used to

describe fractional nonlocal models, which are based on

fractional-order vector calculus [11] in general. The sug-

gested continuous models of fractal media and electromag-

netic fields have been developed in works [12–14] and [15–

24] to describe anisotropic fractal media and electromagnetic

waves in fractional space. Continuous models that are used

in [15–24], are based on fractional dimensional generaliza-

tions of the scalar Laplace operators, which are proposed in

papers [25,26]. It should be noted that the first-order differ-

ential vector operators (gradient, divergence, curl), and the

vector Laplacian are not considered in [25,26]. This greatly

restricts us in application of non-integer dimensional space

approach to describe fractal media and fields. For example,

the scalar Laplacian cannot be used for the electric field E(r,

t) and the magnetic fields B(r, t) in the framework of contin-

uous models with non-integer dimensional spaces.

An attempt to suggest first-order differential vector op-

erators for non-integer dimensional spaces has been pro-

posed in [18–24]. In these works, the operators are suggested
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only as approximations of the square of the Laplace opera-

tor. Recently a generalization of differential vector operators

of first orders (grad, div, curl), the scalar and vector Laplace

operators for non-integer dimension spaces have been sug-

gested in papers [28–30] without any approximation. This

allows us to extend the application area of continuous

models with non-integer dimensional spaces. Using this new

D-dimensional vector calculus, we can describe isotropic and

anisotropic fractal media by using the non-integer dimen-

sional space approach.

In this paper, we use the non-integer dimensional vector

calculus, which is proposed in paper [28], to describe electro-

magnetic waves in non-integer dimensional spaces, fractals

and isotropic fractal media. We prove that the wave equa-

tions for non-integer dimensional spaces are similar to the

equations of waves in usual (non-fractal) media with power-

law heterogeneity.

2. Vector differentiation for non-integer dimensional

space

In the continuous models of fractal media, it is convenient

to work with the physically dimensionless variables x/R0 → x,

y/R0 → x, z/R0 → x, r/R0 → r, where R0 is a characteristic size

of considered model. This yields dimensionless integration

and dimensionless differentiation in D-dimensional space. In

this case the physical quantities of fractal media have correct

physical dimensions.

Let us give some introduction to non-integer dimensional

differentiation of integer orders (for details, see [25–29]). The

vector differential operators for non-integer dimension have

been derived in [28] by analytic continuation in dimension

from integer n to non-integer D.

For simplification we will consider spherically symmetric

case of fractal media, where scalar field ϕ and vector fields E,

B are independent of angles

ϕ(r, t)=ϕ(r, t), E(r, t)= Er(r, t) er, B(r, t)= Br(r, t) er,

where er = r/r, r = |r|. Here Er = Er(r) and Br = Br(r) are

the radial component of E and B. In this case, we will work

with rotationally covariant functions only. This simplification

is analogous to the simplification of integration over non-

integer dimensional space suggested in [27]. One of the main

our simplification is that the electromagnetic components

are radial functions. We note that for random fractals, this

assumption is natural [38,39].

In general, the dimension D of the region VD of fractal me-

dia and the dimension d of boundary Sd = ∂VD of this region

are not related by the equation d = D − 1, i.e.,

dim (∂VD) �= dim (VD) − 1, (1)

where dim (VD) = D and dim (∂VD) = d. We will use the pa-

rameter

αr = D − d, (2)

which is a dimension of fractal medium along the radial di-

rection.

In [28], the differential operators for non-integer D have

been proposed in the following forms.

For non-integer dimensional space, the divergence oper-

ator for the vector field E = E(r) can be represented [28] in
the form

Div
D,d
r E = π(1−αr)/2 �((d + αr)/2)

�((d + 1)/2)

×
(

1

rαr−1

∂Er(r)

∂r
+ d

rαr
Er(r)

)
. (3)

This is (D, d)-dimensional divergence operator for fractal me-

dia with d �= D − 1. For αr = 1, i.e. d = D − 1, Eq. (3) gives

Div
D
r E = ∂Er(r)

∂r
+ D − 1

r
Er(r). (4)

The gradient for the scalar field ϕ(r) = ϕ(r) depends on

the radial dimension αr [28] in the form

Grad
D,d
r ϕ = �(αr/2)

παr/2 rαr−1

∂ϕ(r)

∂r
er. (5)

For αr = 1, i.e. d = D − 1, the gradient in non-integer dimen-

sional space is

Grad
D
r ϕ = ∂ϕ(r)

∂r
er. (6)

The curl operator for the vector field E = E(r) is equal to

zero, Curl
D
r E = 0.

Using the operators (3) and (5) for the fields ϕ = ϕ(r)
and E = E(r) er, in paper [28] we obtain the scalar and vector

Laplace operators for the case d �= D − 1 by the equation

S�D,d
r ϕ = Div

D,d
r Grad

D,d
r ϕ, V �D,d

r E = Grad
D,d
r Div

D,d
r E.

(7)

Then the scalar Laplacian for d �= D − 1 for the field ϕ =
ϕ(r) is

S�D,d
r ϕ = �((d + αr)/2)�(αr/2)

παr−1/2 �((d + 1)/2)

×
(

1

r2αr−2

∂2ϕ

∂r2
+ d + 1 − αr

r2αr−1

∂ϕ

∂r

)
, (8)

For αr = 1, i.e. d = D − 1, Eq. (8) gives

�D
r ϕ = Div

D
r Grad

D
r ϕ = ∂2ϕ

∂r2
+ D − 1

r

∂ϕ

∂r
S, (9)

where we use �(1/2) = √
π .

The vector Laplacian in non-integer dimensional space

with d �= D − 1 and the field E = Er(r) er is

�D,d
r E = �((d + αr)/2)�(αr/2)

παr−1/2 �((d + 1)/2)

(
1

r2αr−2

∂2Er(r)

∂r2

+d + 1 − αr

r2αr−1

∂Er(r)

∂r
− dαr

r2αr
Er(r)

)
er. (10)

For αr = 1, i.e. d = D − 1, Eq. (10) gives

�D
r E = Grad

D
r Div

D
r E

=
(
∂2Er(r)

∂r2
+ D − 1

r

∂Er(r)

∂r
− D − 1

r2
Er(r)

)
er. (11)

For D = 3 Eqs. (4)–(11) give the well-known expressions

for the gradient, divergence, scalar Laplacian and vector

Laplacian in R
3 for fields ϕ = ϕ(r) and E(r) = Er(r) er .

The vector differential operators (3), (5), (8) and (10),

which are suggested in [28], allow us to describe complex

fractal media with the boundary dimension d �= D − 1 by the

non-integer dimensional space approach.
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The suggested operators allow us to reduce D-

dimensional vector differentiations to usual derivatives

of integer orders with respect to r = |r|. As a result, we

can reduce spatial partial differential equations for fields

in non-integer dimensional space to ordinary differential

equations with respect to r.

We should note that Laplacian, which is suggested in [25],

can be applied only for scalar fields and it cannot be used to

describe vector fields E = Er(r) er and B = Br(r) er since the

Stillinger’s Laplacian for D = 3 is not equal to the usual vector

Laplacian for R
3. For the electric and magnetic vector fields

E, B of isotopic fractal case, we should use the vector Laplace

operator (11), which is proposed in [28]. Note that the gra-

dient, divergence, curl operator and vector Laplacian are not

considered in [25].

3. Wave equation for electric potential in fractal

electrodynamics

Let us consider a spherically symmetric case, where scalar

field ϕ is independent of angles ϕ(r, t) = ϕ(r, t). In the ab-

sence of charges and currents the wave equation for electric

potential ϕ(r, t). for non-integer dimensional space has the

form

S�D,d
r ϕ − 1

c2

∂2ϕ

∂t2
= 0, (12)

where c is the speed of light in vacuum (299792458 meters

per second) or in the non-fractal medium, and S�D,d
r is the

scalar Laplacian. Using (8), the wave Eq. (12) can be written

as

�((d + αr)/2)�(αr/2)

παr−1/2 �((d + 1)/2)

(
1

r2αr−2

∂2ϕ

∂r2
+ d + 1 − αr

r2αr−1

∂ϕ

∂r

)

− 1

c2

∂2ϕ

∂t2
= 0. (13)

If αr = 1 (i.e. d = D − 1), then we have the equation

∂2ϕ(r)

∂r2
+ D − 1

r

∂ϕ(r)

∂r
− 1

c2

∂2ϕ

∂t2
= 0. (14)

If D = 3 and d = 2, then αr = 1 and Eqs. (13) and (14) have

the form of the usual (non-fractal) wave equations.

Eq. (13) can be represented in the form

∂2ϕ

∂r2
+ d + 1 − αr

r

∂ϕ

∂r
− 1

c2
eff

(d, αr, r)

∂2ϕ

∂t2
= 0, (15)

where ceff the effective speed of electromagnetic wave in

non-integer dimensional space

ceff(d, αr, r) = c

√
�((d + αr)/2)�(αr/2)

παr−1/2 �((d + 1)/2)
r1−αr

= c

neff(d, αr, r)
. (16)

Here we use neff (d, αr, r) that is the refractive index of non-

integer dimensional space (or fractal), which is defined by

the equation

neff(d, αr, r) =
√

παr−1/2 �((d + 1)/2)

�((d + αr)/2)�(αr/2)
rαr−1. (17)

Let us consider a solution of the wave equation in the form

ϕ(r, t) = rβ f (r, t). (18)
Substitution of (18) into (15) gives

∂2 f

∂r2
+ 2β + d + 1 − αr

r

∂ f

∂r
+ β + d − αr

r2
f

− 1

c2
eff

(d, αr, r)

∂2 f

∂t2
= 0. (19)

The second and third terms vanish if

β = −1, d = αr + 1. (20)

Note that we have the condition on space and boundary di-

mensions in the form D − d = αr = d − 1 in addition to β =
−1. In this case, Eq. (19) has the form

∂2 f

∂r2
− 1

c2
eff

(d, αr, r)

∂2 f

∂t2
= 0. (21)

Note that we get this equation only if the dimensions d and

αr are connected by the relation d = αr + 1. Eq. (21) for non-

integer dimensional space with d = αr + 1 is similar to equa-

tion of propagation of waves in non-fractal medium with het-

erogeneity of power type.

If the condition d = αr + 1 holds, then we can represent

the effective refractive index neff (d, αr, r) in the form

neff(d, αr, r) =
√

παr−1/2 αr

2 �(αr + 1/2)
rαr−1, (22)

where we use �(α/2 + 1) = (α/2)�(α/2).

For the case αr > 1, i.e. D > d + 1, we can get a solution of

Eq. (21). Let us rewrite Eq. (21) in the form

x−2 (αr−1) ∂2 f

∂x2
− ∂2 f

∂t2
= 0, (23)

where t ∈ R and the variable x is defined by

x = r

(
παr−1/2 αr

2 �(αr + 1/2)

)1/αr

. (24)

If we assume that

f (0, t) = f0(t),

(
∂ f

∂x

)
x=0

= g0(t), (25)

then Eq. (23) has the solution (see Section 5.3.4.13 of [31]) in

the form

f (x, t) = �(2βr)

�2(βr)

∫ 1

0

f0

(
t + 1

αr
xαr (2ξ − 1)

)

× (ξ (1 − ξ))βr−1 dξ

+ �(2 − 2βr)

�2(1 − βr)

∫ 1

0

g0

(
t + 1

αr
xαr (2ξ − 1)

)

× (ξ (1 − ξ))−βr dξ , (26)

where

βr = αr − 1

2 αr
. (27)

Let us discuss the effective refractive index neff (d, αr, r),

which is defined by Eqs. (17) and (22), and the corresponding

effective speed of electromagnetic waves ceff for non-integer

dimensional spaces and fractal sets.

Using Eq. (22), it is easy to see that neff(d, αr, r) = 1 and

ceff = c if αr = 1, since �(1/2) = √
π .
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Fig. 1. Plots of the effective refractive index y = neff(d, αr, r), where x =
r/reff(d, αr) and d = αr + 1 with αr = ln (2)/ ln (3) < 1 (Cantor dust), αr = 1

(non-fractal line) and αr = ln (4)/ ln (3) > 1 (Koch curve).
For all αr > 1 and d = αr + 1, we have neff (d, αr, r) ≥ 1

and ceff ≤ c if r ≥ reff (d, αr), where

reff(d, αr) =
(

2 �(αr + 1/2)

παr−1/2 αr

)1/(2−2αr)

. (28)

For all 0 < αr < 1 and d = αr + 1, we have neff (d, αr, r) ≥ 1

and ceff ≤ c if r ≤ reff (d, αr). In Fig. 1, we presented plots of the

dependence of the effective refractive index y = neff(d, αr, r)
on the variable x = r/reff(d, αr) and dimension d = αr + 1.

For the cases: (a) αr > 1, d = αr + 1 and r ≤ reff (d, αr),

(b) 0 < αr < 1, d = αr + 1 and r ≥ reff (d, αr), we have neff (d,

αr, r) ≤ 1 and ceff ≥ c that can be considered as an effective

tachyon mode caused by non-integer dimensionality of space

or fractality.

Note that it should not be confused between the effective

tachyon mode and the tachyon . The tachyon is a hypothet-

ical particle that always moves faster than light. The effec-

tive tachyon mode is the light (electromagnetic wave), the

speed of which seems more than c for an outside observer.

The effective tachyon mode corresponds to fractal properties

of space. For example, if the light overcomes some region of

space with size R faster than t < R/c, then we can state that

this space region has fractal properties.

The question arises whether the tachyon modes are a dis-

advantage of models with non-integer dimension of space or

it is characteristic property of fractal models.

Let us note some basic properties of fractal media (for de-

tails, see [1,10]). For simplification, we can consider a uniform

mass distribution along a line L. For many cases, we can write

the asymptotic form for the relation between the mass M(L)

of the line segment L, and the radius r containing this mass

as follows:

Mα = M0

(
r

r0

)α

(29)

for r/r0 	 1. The constant M0 depends on how the sphere of

radius r0 are packed. The parameter α does not depend on

the shape of L, or on whether the packing of sphere of ra-

dius r0 is close packing, a random packing or a porous pack-

ing with a uniform distribution of holes. The number α is
called the mass dimension. The fractal mass dimension is a

measure of how the medium fills the space (line) it occupies.

The fractality of the distribution of particles means that the

mass Mα of the line segment L increase more slowly than the

one-dimensional length of this region. The equation can be

rewritten in the form

Mα = ρ0(α) Lα(r), (30)

where Lα(r) is an effective length of the fractal line,

Lα(r) = ω(α) rα, (31)

and ρ0(α) is an effective line density of mass, ω(α) is nu-

merical coefficient [10]. Note that we use the dimensionless

coordinate variables r and r0. Therefore SI units of the mass

density ρ0(α) is kg. Usually the numerical coefficient is de-

fined as a volume of α-dimensional unit ball

ω(α) = πα/2

�(α/2 + 1)
. (32)

As examples, we can consider a uniform mass distribution

along the one-dimensional lines that are used to construct

two well-known fractal sets such as the Cantor dust and the

Koch curve [1,2].

Cantor dust. The Cantor set is defined by repeatedly re-

moving the middle thirds of line segments. The fractal di-

mension of the Cantor dust is

α = ln (2)/ ln (3) = log3 (2) ≈ 0.631 < 1. (33)

Koch curve. The Koch curve is defined by repeatedly re-

moving the middle thirds of line segments and then replac-

ing this interval by equilateral triangle without this segment.

The fractal dimension of the Koch curve is

α = ln (4)/ ln (3) = log3 (4) ≈ 1.262 > 1. (34)

Using the effective length (31) and the equation for effec-

tive speed ceff Lα(r) = c L1(r), we can represent the effective

refractive index in the form

neff(d, αr, r) = c

ceff

= Lα(r)

L1(r)
= ω(α)

ω(1)

rα

r
= ω(α)

ω(1)
rα−1.

(35)

As a result, we see that the existence of the tachyon modes

is characteristic property of fractal models and models with

non-integer dimension of space if we assume that fields ex-

ist in fractal set only. Obviously the effective tachyon mode

cased by non-integer dimensionality of space does not ex-

ist if the electromagnetic waves can travel not only in fractal

set. The tachyon modes can be used to locate fractal areas of

space-time in the microcosm or cosmic space: if the light tra-

verses a path between two spatial points A and B in a time t <

|AB|/c, then this means that there is a fractal region between

these points.

4. Conclusion

The vector calculus for non-integer dimensional space has

been suggested in recent papers [28,29]. This D-dimensional

calculus includes generalizations of differential vector op-

erators of first orders (gradient, divergence, curl operators),

the scalar and vector Laplace operators. It allows us to de-

scribe fractal media and fields for isotropic and anisotropic
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cases by using continuous models with non-integer dimen-

sional spaces. In this paper, we use the vector calculus for

non-integer dimensional space, which is proposed in paper

[28], to describe electromagnetic waves in non-integer di-

mensional spaces and fractals.

It should be noted that the D-dimensional vector calcu-

lus of [28] cannot be applied for fractal media and fields in

the anisotropic case. For anisotropic fractal media the gra-

dient, divergence, and curl operators have been proposed

in papers [18–22] and book [23]. In these works the first-

order differential vector operators are defined only as ap-

proximations of the square of Laplace operator suggested in

[26]. New approach to generalize grad, div, curl operators

and the corresponding scalar and vector Laplace operators

for anisotropic fractal case have been proposed in paper [29]

without any approximations. This approach can be used for

more rigorous description of anisotropic fractal media and

fields by continuous models with non-integer dimensional

spaces.

Let us note the Lorentz invariance in the suggested non-

integer dimensional space approach to fractal electrodynam-

ics. It is well-known that non-integer dimensions are widely

used in quantum electrodynamics and theory of quantum

fields to remove the ultraviolet divergences by renormaliza-

tion. The dimensional regularization [27,32] is the best renor-

malization of quantum field theories. The main advantage of

this regularization is that it preserves the Lorentz, Poincare

and gauge invariances. This is a main motivation to apply the

dimensional regularization in quantum field theories. As a

result, we can state that the non-integer dimensional space

approach allows us to preserve the Lorentz invariance, the

Poincare invariance and the gauge invariance in the fractal

electrodynamics [33].

We assume that the suggested approach can be used in

engineering [34,35] to describe properties of fractal anten-

nas, apertures and arrays. The proposed approach, which is

based on non-integer dimensional spaces, can be applied in

cosmic electrodynamics [36,37] to describe fractal distribu-

tion of charges, currents and fields. Fractal electrodynamics

[33] can be important for astrophysics and cosmology. We

assume that the suggested concept of tachyon modes can al-

low us to locate fractal areas of space-time in the Universe

and the surrounding cosmic space.
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