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In this paper fractional generalization of Liouville equation is considered. We derive fractional
analog of normalization condition for distribution function. Fractional generalization of the

Liouville equation for dissipative and Hamiltonian systems was derived from the fractional
normalization condition. This condition is considered as a normalization condition for systems in
fractional phase space. The interpretation of the fractional space is discuss2@D4cAmerican
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We call a fractional equation a differential equation that
uses fractional derivatives or integrals. Fractional deriva-
tives and integrals have found many applications in re-
cent studies of scaling phenomena. We formulate frac-
tional analog of main integro-differential equation to
describe some scaling process—Liouville equation. Usu-
ally used for scaling phenomena FokkerPlanck equa-
tion can be derived from Liouville equation. Therefore it
is interesting to consider a fractional generalization of the
Liouville equation. To derive fractional equation for a
distribution function we must consider a fractional ana-
log of the normalization condition for distribution func-
tion. Most of the fractional equations for distribution
function does not use correspondent normalization con-
dition. Therefore these equations(with fractional coordi-
nate derivative9 can be incorrect equations. In this paper
fractional Liouville equation for dissipative systems is de-
rived from the normalization condition. The coordinate
fractional integration for this normalization condition is
used.

I. INTRODUCTION

tion a differential equation that uses fractional derivatives or
integrals.

To derive fractional equations for a distribution function
we must consider a fractional analog of the normalization
condition for distribution function. Fractional Liouville equa-
tion for dissipative systems is derived from the normalization
condition. In this paper, the coordinate fractional integration
for normalization condition is used. This condition is consid-
ered as a normalization condition for systems in fractional
phase space. If any fractional equation for distribution func-
tion does not use correspondent normalization condition,
then this equationwith fractional coordinate derivatives
can be incorrect.

In Sec. Il the normalization condition for distribution
function and notations are considered. In Sec. lll we derive
the Liouville equation from the normalization condition. In
Sec. |V, the physical interpretation of fractional normaliza-
tion condition is considered. Finally, a short conclusion is
given in Sec. V.

Il. NORMALIZATION CONDITION

Let us consider a distribution functiop(x,t) for x

Fractional derivatives and integrals have found many ap€ R Let p(x,t) e L;(R"), wheret is a parameter. Normal-

plications in recent studies of scaling phenom&naThe

main aim of most of these papers is to formulate fractional
integro-differential equations to describe some scaling pro-

ization condition has the form

+ oo
f p(x,H)dx=1.

cess. Modifications of equations governing physical pro-

cesses such as the Langevin equaidiiffusion equations,
and Fokker—Planck equation have been suggéstedhich

incorporate fractional derivatives with respect to time. It was
shown in Ref. 14 that the chaotic Hamiltonian dynamics of

This condition can be rewritten in the form

y +oo
f p(X,t)dX+f p(x,t)dx=1, D
—o y

particles can be described by using fractional generalizatioherey e (— o, + ).

of the Fokker—Planck—Kolmogorov equation. In Ref. 14, co-

Let p(x,t) e Lp(R"), where < p<1/a. Fractional inte-

ordinate fractional derivatives in the Fokker—Planck equagrations on (- ,y) and (y, +=) are definetf by

tion were used.

It is known that Fokker—Planck equation can be derived

from Liouville equation:>!® Therefore it is interesting to

consider a fractional generalization of Liouville equation and 1 .
Bogoliubov hierarchy equations. We call a fractional equa- (1%p)(y,t)= il f
y
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y x,t)dx

(liP)(%t):F(a) C0(5(_)()la' (2)
p(x,t)dx

@ )y, eyt ©

Using these notations, E¢l) has the form
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(L) (y, 0+ (1Lp)(y,t)=1.

Using definitiong2) and(3) we can get the fractional analog
of normalization conditior(1),

(1) (y, ) +(1%p)(y, 1) =1.
Equations(2) and(3) can be rewritten in the form

e I (A L @

This leads to the normalization condition

% f:xa‘l[p(y—xyt)+p(y+X,t)]dX=l- 5
If we denote

P(X,1)=p(y=x,t)+p(y+x,t) (6)
and

Xa—l

dua(X)= (e dx (7
then condition(1) has the form

| Bocoduoo-1 ®)

Note that substituting=ct in (6), we get the sum
(X, t)=p(Cct—X;,t)+p(Cct+X;,1).

This sum can be considered as a sum of right and back wave
of the distribution functions.

I1l. LIOUVILLE EQUATION
Let us consider a domaiB, for the timet=0. In the
Hamilton picture we have

fﬁ(xtlt)dﬂa(xt):f ’ﬁ(Xan)dﬂa(XO)-
By Bo

Using the replacement of variables= x,(Xg), wherex, is a
Lagrangian variable, we get

f Pxe X! tdx(ﬁf P(X0,00%5 ~dXo.
Xo Bo

SinceBg is an arbitrary domain we have

‘b(xt !t)d/'l“a(xt) :’ﬁ(XOIO)d/'La(XO)i

or
~ a1t a1
p(Xe, t)X{ v =p(X0,0)Xg
0

Differentiating this equation in timé, we obtain

dp(Xt,t) a— 1‘9I N ]_(?X
dt Xt _+p(xt1t)dt

IX 07X0> =0,

or

dhﬁ(xt 1t)

dt +Qa(xtvt)b(xt!t)zou

9
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whered/dt is a total time derivative
d d N Jd
dt ot tox,

The function

IX
oz—l_t
Xt &xo)
describes the velocity ofphase spagevolume change.

Equation(9) is a fractional Liouville equation in the Hamil-
ton picture. If the equation of motion has the form

Qa(xt lt): aln

dxt_F
ar (%),

then the function() is defined by

d
Q,(x,t)= (Inx

As the result we have

(a—1)F,

—+
Xt

Q = JdF,
a(xt’ )_ &Xt .
The normalization in the phase space is derived by anal-
ogy with a normalization in the configuration space. The
fractlonal normalization condition in the phase space

fo fo“ﬁ(q,p,t)dna(q,p)=1, (10
wheredu,(q,p) has the form
q _d 4 B dg*0Odp*
Mo(d,p)=du,(q)0 MQ(Q)—(QF(—CM))z
a—1
= %dq[]dp. (11

The distribution functiorp(q,p,t) in the phase space is de-
fined by

p(9,p,t)=p(q"—q,p" —p,t) +p(q"+q,p" —p,t)
+p(q'—q,p"+p,t) +p(q"+0q,p" +p,t).
Let us use the well-known transformation

da:0dp={0;,pt}o ddodpy, (12

where{q,,p:}o is Jacobian which is defined by the determi-
nant

{a pufo=dets L (di,p) _ (%l 3o 3/ IPro
R0 (90, o) Ikl 30 TPk IPro)

Using by duo(dt, Pr) =Po (o, Po), We get the rela-
tion

_ (gt (doPo)*~*
Pt FZ(a) FZ(a)

Using (12), we have conditior{13) in the form

do0dg=po—z —ddoldg,. (13
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Pt(apo)*~Ha, Peyo=(doPo) ™ Po- (14 Q,(9,p)=(a=1)(q7'G(q,p)+p *F(a,p)) +{G,p}1
Let us write condition(14) in more simple form +{q,F};. (23
A, pto=a?(QoPo)* *Po. (15)  This relation allows to derivé€l,, for all dynamical systems

_ o ) ) _ (22). It is easy to see that the usual nondissipative system
The time derivatives of this equation lead to the fractional

Liouville equation dg.  pr  dp
- qim E_f(Qt)v (24)
dp(qi,pi.t) . B
T +Qa(qt ' Pt ,t)P(Qt ' Pt :t) - O, (16) has thea_omega function
where the functiorf),, is defined by Q,(9,p)=(a—1)(mgp~*(p*+maqf(q))

d d and can be called a fractional dissipative system. For ex-
Q,(qe,pe,t) =1{a¢ ,pt“}ala{qf“ ,pf“}0=aln{qf“ Pito- ample, the linear harmonic oscillatof(¢) = — mw?q)

17 Q4(a,p)=(a=1)(map ~H(p*—m’w’q?),
In the usual notations we have is a fractional dissipative system.
d a(q;’,py)
Q.(G,pot) = —Indet—t "t 18
(qt pt ) dt a(qo’po) ( )

IV. INTERPRETATION

Using well-known relation IndeA=Spln A, we can write
the a-omega function in the form The fractional normalization condition can be considered
N N as a normalization condition for the distribution function in a
O = di al 1 qe dﬁ fractional phase space. In order to use this interpretation we
«=| Tat Pt . T . must define a fractional phase space.

The first interpretation of the fractional phase space is
where connected with fractional dimension. This interpretation fol-
A 9B 9A IB lows from the well-known formulas for dimensional
(ABly=— =~ —— regularizations®

2 n/2 ©

In the general casea(# 1) the function(}, is not equal to f p(x)d"x= T W/Z p(X)x"Ldx. (25
zero ,#0) for Hamiltonian systems. k=1, we have (n/2) Jo
Q,#0 only for non-Hamiltonian systems. Using Eq.(25), we get that the fractional normalization con-

Itis easy to see that any system which is defined by th@jition (8) can be considered as a normalization condition in
equations the fractional dimension space

doi pe  dp (al2)

G- m gr =@, (19 7 (q) | POuDAx=1 (26)

has thea-omega function equal to zetd,=0. This system yp to the numerical factdF (a/2)/ (27T (a)).
can be called a fractional nondissipative system. For ex-  The second interpretation is connected with the frac-
ample, a fractional oscillator is defined by the equation  tional measure of phase volume. The parameteefines the
a  a o space with the fractional phase volume

dogi p; dp 2

dat T m oA e 20
fosdm(q,p).
The a-omega function can be rewritten in the form

It is easy to prove that the velocity of the fractional phase
_,da, 1%) (dqt ] Sk Y g
1

Qa(qt:pt!t):(a_l)(qt T volume change is defined by

dt P
dv,

dpt] ’ 1) dt
1

Ot 7
dt
Note that the volume element of fractional phase space can
where{., .}, is usual Poisson bracket. If the Hamilton equa-be realized by fractional exterior derivativés
tions have the form n

:f 04(0,p,0)dpo(q,p).
N B

n
o aa’
dg dp 4=, % g a0 & ¥ (Al By
—t_ Tt = k— Ak k=1 Prk—by))
dt G(Qt vpt)1 dt F(Qt ipt)! (22) (27)
then thea-omega function is defined by in the form
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4 "1
dg*0dp"=| o5y H(a",p")= 2, 5 0u(a,p)Ppi+U(a). (34)

Note that the Hamiltonian(34) defines a nonlinear one-

1 -1
[ a—1Ja a
* Fz(l—a)) (ap)* "d*q0d%. 28 i ensional sigma-mod@t?! with metric

The system can be called a fractional dissipative system gk|(q,p)=m‘lpﬁ(“‘1)5k,.
if a fractional ph volume chan Q. . Th - . .
a fractional phase volume changes, i€, #0. The sys It is easy to see that fractional syste(®8) can lead to

tem which is a nondissipative system in the usual phas . o . .
b Y P ﬁ?ge non-Gaussian statistics. The interest in and relevance of

space, can be a dissipative system in the fractional pha : o _ .
space. The fractional analog of the usual conservative Ham”_rac_tlon.al Kinetic e.quat|ons Is a natural consequence .Of the
realization of the importance of non-Gaussian statistics of
many dynamical systems. There is already a substantial lit-
dgf gu(p) dpf erature studying such equations in one or more space dimen-
at m o g k@ (29 sions.
Note that the classicalnonlineaj dissipative systems
The usual nondissipative systerf#sl) are dissipative in the can have canonical Gibbs distribution as a solution of sta-
fractional phase space. tionary Liouville equations for this dissipative systéfiiJs-

In the general case, the fractional system is a system iing the method#? it is easy to prove that some of fractional
the fractional phase space. We shall say that a system dissipative systems can have fractional canonical Gibbs dis-
called a fractional system if this system can be described byribution
the fractional powers of coordinates and momenta,

tonian nondissipative system is defined by the equations

H(q“ p“)
@ @ a @ P)=Z(T)exp— ——,
ac=lad®  p=Ipd* p(a.p)=2(T)exp- KT
wherek=1,...n. as a solution of the fractional Liouville equations
The fractional systems allow to consider the interpreta- o
tion of the fractional normalization condition which is used ‘9_”+ Pk a_p+ i(Fk(qa,pa)p)zo_ (35)
to derive the fractional Liouville equation. The fractional at - madqy  Ipy

normalization condition for the distribution function can be H
considered as a normalization condition for the systems in
the fractional phase space.

The Hamilton equations for the fractional system have

ere the functiorH(g“,p®) is defined by(33).

the form V. CONCLUSION
day pr  dpy Derivatives and integrals of fractional order have found
Gt me ar - F«atp?). (300 many applications in studies of scaling phenometian this

paper we formulate fractional analog of main integro-
Obviously, that the equatiodip, /dt=F, can be rewritten in  differential equation to describe some scaling process—
the fractional form. Multiplying both sides of this equation Liouville equation. We consider the fractional analog of the

by ap® !, we obtain dpg/dt=ap® 'F,. However the normalization condition for the distribution function. Frac-
equationdq, /dt=p,/m cannot be rewritten in the fractional tional Liouvile equation for dissipative systems is derived
form dgg/dt=pg/m. from the normalization condition. In this paper, the coordi-
The fractional conservative Hamiltonian system is de-nate fractional integration for the normalization condition is
scribed by the equation used. This fractional normalization condition can be consid-
N N ered as a simulating unconventional environment for systems
dogi _dH(Q"p*) dpic _ dH(q%p") (31  With fractional dimensional phase space or phase space with
dt apg 1 dt 7o fractional powers of coordinates and momentums. Note that

the adoption of fractal formalism yields properties that the

or ordinary formalism would produce only in the case where
dge dpg the _system is made _non-HamiItonian b)_/ the presence of an
ot ={qy ,H}., W:{pg H,. (320  environment, whose influence can be mimicked by means of

friction, for instance.

HereH=H(q®,p®) is a fractional analog of the Hamiltonian Suggested fractional Liouville equation allows to formu-

function late the fractional equation for quantum dissipative systéms
by methods suggested in Refs. 24 and 25. In general, we can
" pﬁ“ consider this dissipative quantum systems as quantum com-

H(q%p*)= kzl om T u(q®). (83 puter with mixed state® These dissipative quantum systems

can have stationary stat&sStationary states of dissipative
The fractional system can be considered as a nonlinear syguantum systems can coincide with stationary states of
tem with Hamiltonian system&
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