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In this paper fractional generalization of Liouville equation is considered. We derive fractional
analog of normalization condition for distribution function. Fractional generalization of the
Liouville equation for dissipative and Hamiltonian systems was derived from the fractional
normalization condition. This condition is considered as a normalization condition for systems in
fractional phase space. The interpretation of the fractional space is discussed. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1633491#

We call a fractional equation a differential equation that
uses fractional derivatives or integrals. Fractional deriva-
tives and integrals have found many applications in re-
cent studies of scaling phenomena. We formulate frac-
tional analog of main integro-differential equation to
describe some scaling process—Liouville equation. Usu-
ally used for scaling phenomena Fokker–Planck equa-
tion can be derived from Liouville equation. Therefore it
is interesting to consider a fractional generalization of the
Liouville equation. To derive fractional equation for a
distribution function we must consider a fractional ana-
log of the normalization condition for distribution func-
tion. Most of the fractional equations for distribution
function does not use correspondent normalization con-
dition. Therefore these equations„with fractional coordi-
nate derivatives… can be incorrect equations. In this paper
fractional Liouville equation for dissipative systems is de-
rived from the normalization condition. The coordinate
fractional integration for this normalization condition is
used.

I. INTRODUCTION

Fractional derivatives and integrals have found many ap-
plications in recent studies of scaling phenomena.1–5 The
main aim of most of these papers is to formulate fractional
integro-differential equations to describe some scaling pro-
cess. Modifications of equations governing physical pro-
cesses such as the Langevin equation,6 diffusion equations,
and Fokker–Planck equation have been suggested7–13 which
incorporate fractional derivatives with respect to time. It was
shown in Ref. 14 that the chaotic Hamiltonian dynamics of
particles can be described by using fractional generalization
of the Fokker–Planck–Kolmogorov equation. In Ref. 14, co-
ordinate fractional derivatives in the Fokker–Planck equa-
tion were used.

It is known that Fokker–Planck equation can be derived
from Liouville equation.15,16 Therefore it is interesting to
consider a fractional generalization of Liouville equation and
Bogoliubov hierarchy equations. We call a fractional equa-

tion a differential equation that uses fractional derivatives or
integrals.

To derive fractional equations for a distribution function
we must consider a fractional analog of the normalization
condition for distribution function. Fractional Liouville equa-
tion for dissipative systems is derived from the normalization
condition. In this paper, the coordinate fractional integration
for normalization condition is used. This condition is consid-
ered as a normalization condition for systems in fractional
phase space. If any fractional equation for distribution func-
tion does not use correspondent normalization condition,
then this equation~with fractional coordinate derivatives!
can be incorrect.

In Sec. II the normalization condition for distribution
function and notations are considered. In Sec. III we derive
the Liouville equation from the normalization condition. In
Sec. IV, the physical interpretation of fractional normaliza-
tion condition is considered. Finally, a short conclusion is
given in Sec. V.

II. NORMALIZATION CONDITION

Let us consider a distribution functionr(x,t) for x
PR1. Let r(x,t)PL1(R1), wheret is a parameter. Normal-
ization condition has the form

E
2`

1`

r~x,t !dx51.

This condition can be rewritten in the form

E
2`

y

r~x,t !dx1E
y

1`

r~x,t !dx51, ~1!

whereyP(2`,1`).
Let r(x,t)PLp(R1), where 1,p,1/a. Fractional inte-

grations on (2`,y) and (y,1`) are defined17 by

~ I 1
a r!~y,t !5

1

G~a!
E

2`

y r~x,t !dx

~y2x!12a , ~2!

~ I 2
a r!~y,t !5

1

G~a!
E

y

1` r~x,t !dx

~x2y!12a . ~3!

Using these notations, Eq.~1! has the forma!Electronic mail: tarasov@theory.sinp.msu.ru
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~ I 1
1 r!~y,t !1~ I 2

1 r!~y,t !51.

Using definitions~2! and~3! we can get the fractional analog
of normalization condition~1!,

~ I 1
a r!~y,t !1~ I 2

a r!~y,t !51.

Equations~2! and ~3! can be rewritten in the form

~ I 6
a r!~y,t !5

1

G~a!
E

0

`

xa21r~y7x,t !dx. ~4!

This leads to the normalization condition

1

G~a!
E

0

`

xa21@r~y2x,t !1r~y1x,t !#dx51. ~5!

If we denote

r̃~x,t !5r~y2x,t !1r~y1x,t ! ~6!

and

dma~x!5
xa21

G~a!
dx, ~7!

then condition~1! has the form

E
0

`

r̃~x,t !dma~x!51. ~8!

Note that substitutingy5ct in ~6!, we get the sum

r̃~xt ,t !5r~ct2xt ,t !1r~ct1xt ,t !.

This sum can be considered as a sum of right and back waves
of the distribution functions.

III. LIOUVILLE EQUATION

Let us consider a domainB0 for the time t50. In the
Hamilton picture we have

E
Bt

r̃~xt ,t !dma~xt!5E
B0

r̃~x0,0!dma~x0!.

Using the replacement of variablesxt5xt(x0), wherex0 is a
Lagrangian variable, we get

E
B0

r̃~xt ,t !xt
a21 ]xt

]x0
dx05E

B0

r̃~x0,0!x0
a21dx0 .

SinceB0 is an arbitrary domain we have

r̃~xt ,t !dma~xt!5 r̃~x0,0!dma~x0!,

or

r̃~xt ,t !xt
a21 ]xt

]x0
5 r̃~x0,0!x0

a21 .

Differentiating this equation in timet, we obtain

dr̃~xt ,t !

dt
xt

a21 ]xt

]x0
1 r̃~xt ,t !

d

dt S xt
a21 ]xt

]x0
D50,

or

dr̃~xt ,t !

dt
1Va~xt ,t !r̃~xt ,t !50, ~9!

whered/dt is a total time derivative

d

dt
5

]

]t
1Ft

]

]xt
.

The function

Va~xt ,t !5
d

dt
lnS xt

a21 ]xt

]x0
D

describes the velocity of~phase space! volume change.
Equation~9! is a fractional Liouville equation in the Hamil-
ton picture. If the equation of motion has the form

dxt

dt
5Ft~x!,

then the functionV is defined by

Va~xt ,t !5
d

dt S ln xt
a211 ln

]xt

]x0
D

5~a21!
1

xt

dxt

dt
1

]

]xt

dxt

dt
.

As the result we have

Va~xt ,t !5
~a21!Ft

xt
1

]Ft

]xt
.

The normalization in the phase space is derived by anal-
ogy with a normalization in the configuration space. The
fractional normalization condition in the phase space

E
0

`E
0

`

r̃~q,p,t !dma~q,p!51, ~10!

wheredma(q,p) has the form

dma~q,p!5dma~q!∧dma~q!5
dqa∧dpa

~aG~a!!2

5
~qp!a21

G2~a!
dq∧dp. ~11!

The distribution functionr̃(q,p,t) in the phase space is de-
fined by

r̃~q,p,t !5r~q82q,p82p,t !1r~q81q,p82p,t !

1r~q82q,p81p,t !1r~q81q,p81p,t !.

Let us use the well-known transformation

dqt∧dpt5$qt ,pt%0 dq0∧dp0 , ~12!

where$qt ,pt%0 is Jacobian which is defined by the determi-
nant

$qt ,pt%05det
]~qt ,pt!

]~q0 ,p0!
5detS ]qkt /]ql0 ]qkt /]pl0

]pkt /]ql0 ]pkt /]pl0
D .

Using r̃ t dma(qt ,pt)5 r̃0 dma(q0 ,p0), we get the rela-
tion

r̃ t

~qtpt!
a21

G2~a!
dqt∧dqt5 r̃0

~q0p0!a21

G2~a!
dq0∧dq0 . ~13!

Using ~12!, we have condition~13! in the form
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r̃ t~qtpt!
a21$qt ,pt%05~q0p0!a21r̃0 . ~14!

Let us write condition~14! in more simple form

r̃ t$qt
a ,pt

a%05a2~q0p0!a21r̃0 . ~15!

The time derivatives of this equation lead to the fractional
Liouville equation

dr̃~qt ,pt ,t !

dt
1Va~qt ,pt ,t !r̃~qt ,pt ,t !50, ~16!

where the functionVa is defined by

Va~qt ,pt ,t !5$qt
a ,pt

a%0
21 d

dt
$qt

a ,pt
a%05

d

dt
ln$qt

a ,pt
a%0 .

~17!

In the usual notations we have

Va~qt ,pt ,t !5
d

dt
ln det

]~qt
a ,pt

a!

]~q0 ,p0!
. ~18!

Using well-known relation ln detA5Spln A, we can write
the a-omega function in the form

Va5H dqt
a

dt
,pt

aJ
a

1H qt
a ,

dpt
a

dt J
a

,

where

$A,B%a5
]A

]qa

]B

]pa 2
]A

]pa

]B

]qa .

In the general case (aÞ1) the functionVa is not equal to
zero (VaÞ0) for Hamiltonian systems. Ifa51, we have
VaÞ0 only for non-Hamiltonian systems.

It is easy to see that any system which is defined by the
equations

dqt
a

dt
5

pt

m
,

dpt
a

dt
5 f ~qt!, ~19!

has thea-omega function equal to zeroVa50. This system
can be called a fractional nondissipative system. For ex-
ample, a fractional oscillator is defined by the equation

dqt
a

dt
5

pt
a

m
,

dpt
a

dt
52mv2qt

a . ~20!

The a-omega function can be rewritten in the form

Va~qt ,pt ,t !5~a21!S qt
21 dqt

dt
1pt

21 dpt

dt D1H dqt

dt
,ptJ

1

1H qt ,
dpt

dt J
1

, ~21!

where$.,.%1 is usual Poisson bracket. If the Hamilton equa-
tions have the form

dqt

dt
5G~qt ,pt!,

dpt

dt
5F~qt ,pt!, ~22!

then thea-omega function is defined by

Va~q,p!5~a21!~q21G~q,p!1p21F~q,p!!1$G,p%1

1$q,F%1 . ~23!

This relation allows to deriveVa for all dynamical systems
~22!. It is easy to see that the usual nondissipative system

dqt

dt
5

pt

m
,

dpt

dt
5 f ~qt!, ~24!

has thea-omega function

Va~q,p!5~a21!~mqp!21~p21mq f~q!!

and can be called a fractional dissipative system. For ex-
ample, the linear harmonic oscillator (f (q)52mv2q)

Va~q,p!5~a21!~mqp!21~p22m2v2q2!,

is a fractional dissipative system.

IV. INTERPRETATION

The fractional normalization condition can be considered
as a normalization condition for the distribution function in a
fractional phase space. In order to use this interpretation we
must define a fractional phase space.

The first interpretation of the fractional phase space is
connected with fractional dimension. This interpretation fol-
lows from the well-known formulas for dimensional
regularizations:18

E r~x!dnx5
2pn/2

G~n/2!
E

0

`

r~x!xn21 dx. ~25!

Using Eq.~25!, we get that the fractional normalization con-
dition ~8! can be considered as a normalization condition in
the fractional dimension space

G~a/2!

2pa/2G~a!
E r̃~x,t !dax51 ~26!

up to the numerical factorG(a/2)/(2pa/2G(a)).
The second interpretation is connected with the frac-

tional measure of phase volume. The parametera defines the
space with the fractional phase volume

Va5E
B
dma~q,p!.

It is easy to prove that the velocity of the fractional phase
volume change is defined by

dVa

dt
5E

B
Va~q,p,t !dma~q,p!.

Note that the volume element of fractional phase space can
be realized by fractional exterior derivatives19

da5 (
k51

n

dqk
a ]a

~]~qk2ak!!a 1 (
k51

n

dpk
a ]a

~]~pk2bk!!a ,

~27!

in the form
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dqa∧dpa5S 4

G2~22a!

1
1

G2~12a! D
21

~qp!a21 daq∧dap. ~28!

The system can be called a fractional dissipative system
if a fractional phase volume changes, i.e.,VaÞ0. The sys-
tem which is a nondissipative system in the usual phase
space, can be a dissipative system in the fractional phase
space. The fractional analog of the usual conservative Hamil-
tonian nondissipative system is defined by the equations

dqk
a

dt
5

gk~p!

m
,

dpk
a

dt
5 f k~q!. ~29!

The usual nondissipative systems~24! are dissipative in the
fractional phase space.

In the general case, the fractional system is a system in
the fractional phase space. We shall say that a system is
called a fractional system if this system can be described by
the fractional powers of coordinates and momenta,

qk
a5uqkua, pk

a5upkua,

wherek51, . . . ,n.
The fractional systems allow to consider the interpreta-

tion of the fractional normalization condition which is used
to derive the fractional Liouville equation. The fractional
normalization condition for the distribution function can be
considered as a normalization condition for the systems in
the fractional phase space.

The Hamilton equations for the fractional system have
the form

dqk
a

dt
5

pk
a

m
,

dpk
a

dt
5Fk~qa,pa!. ~30!

Obviously, that the equationdpk /dt5Fk can be rewritten in
the fractional form. Multiplying both sides of this equation
by apa21, we obtain dpk

a/dt5apa21Fk . However the
equationdqk /dt5pk /m cannot be rewritten in the fractional
form dqk

a/dt5pk
a/m.

The fractional conservative Hamiltonian system is de-
scribed by the equation

dqk
a

dt
5

]H~qa,pa!

]pk
a ,

dpk
a

dt
52

]H~qa,pa!

]qk
a , ~31!

or

dqk
a

dt
5$qk

a ,H%a ,
dpk

a

dt
5$pk

a ,H%a . ~32!

HereH5H(qa,pa) is a fractional analog of the Hamiltonian
function

H~qa,pa!5 (
k51

n pk
2a

2m
1U~qa!. ~33!

The fractional system can be considered as a nonlinear sys-
tem with

H~qa,pa!5 (
k51

n
1

2
gkl~q,p!pkpl1U~q!. ~34!

Note that the Hamiltonian~34! defines a nonlinear one-
dimensional sigma-model20,21 with metric

gkl~q,p!5m21pk
2(a21)dkl .

It is easy to see that fractional systems~33! can lead to
the non-Gaussian statistics. The interest in and relevance of
fractional kinetic equations is a natural consequence of the
realization of the importance of non-Gaussian statistics of
many dynamical systems. There is already a substantial lit-
erature studying such equations in one or more space dimen-
sions.

Note that the classical~nonlinear! dissipative systems
can have canonical Gibbs distribution as a solution of sta-
tionary Liouville equations for this dissipative system.22 Us-
ing the methods,22 it is easy to prove that some of fractional
dissipative systems can have fractional canonical Gibbs dis-
tribution

r~q,p!5Z~T!exp2
H~qa,pa!

kT
,

as a solution of the fractional Liouville equations

]r

]t
1

pk
a

m

]r

]qk
a 1

]

]pk
a ~Fk~qa,pa!r!50. ~35!

Here the functionH(qa,pa) is defined by~33!.

V. CONCLUSION

Derivatives and integrals of fractional order have found
many applications in studies of scaling phenomena.1–5 In this
paper we formulate fractional analog of main integro-
differential equation to describe some scaling process—
Liouville equation. We consider the fractional analog of the
normalization condition for the distribution function. Frac-
tional Liouvile equation for dissipative systems is derived
from the normalization condition. In this paper, the coordi-
nate fractional integration for the normalization condition is
used. This fractional normalization condition can be consid-
ered as a simulating unconventional environment for systems
with fractional dimensional phase space or phase space with
fractional powers of coordinates and momentums. Note that
the adoption of fractal formalism yields properties that the
ordinary formalism would produce only in the case where
the system is made non-Hamiltonian by the presence of an
environment, whose influence can be mimicked by means of
friction, for instance.

Suggested fractional Liouville equation allows to formu-
late the fractional equation for quantum dissipative systems23

by methods suggested in Refs. 24 and 25. In general, we can
consider this dissipative quantum systems as quantum com-
puter with mixed states.26 These dissipative quantum systems
can have stationary states.27 Stationary states of dissipative
quantum systems can coincide with stationary states of
Hamiltonian systems.28
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