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The Liouville and first Bogoliubov hierarchy equations with derivatives of noninteger order are
derived. The fractional Liouville equation is obtained from the conservation of probability to find a
system in a fractional volume element. This equation is used to obtain Bogoliubov hierarchy and
fractional kinetic equations with fractional derivatives. Statistical mechanics of fractional generali-
zation of the Hamiltonian systems is discussed. Liouville and Bogoliubov equations with fractional
coordinate and momenta derivatives are considered as a basis to derive fractional kinetic equations.
The Fokker-Planck-Zaslavsky equation that has fractional phase-space derivatives is obtained from
the fractional Bogoliubov equation. The linear fractional kinetic equation for distribution of the
charged particles is considered. © 2006 American Institute of Physics. �DOI: 10.1063/1.2219701�
he theory of integrals and derivatives of noninteger or-
er goes back to Leibniz, Liouville, Riemann, Grunwald,
nd Letnikov. Fractional calculus has found many appli-
ations in recent studies in mechanics and physics. Frac-
ional equations, which have derivatives of noninteger or-
er, are very successful in describing anomalous kinetics,
ransport, and chaos. Fractional kinetics equations usu-
lly appear from some phenomenological models. In this
aper, we suggest fractional equations of statistical me-
hanics. To obtain these equations, the conservation of
robability to find a system in a fractional differential
olume element of the phase space is used. This element
an be considered as a small part of the phase-space set
ith noninteger dimension. The suggested fractional

quations of statistical mechanics are used to derive the
ractional kinetics equations.

. INTRODUCTION

Fractional equations1,2 contain derivatives of noninteger
rder.3,4 Integrals and derivatives of fractional order have
ound many applications in recent studies in mechanics and
hysics. In a short period of time the list of such applications
ecomes long. For example, it includes chaotic dynamics,5,6

echanics of fractal media,7–9 quantum mechanics,10,11

hysical kinetics,5,12–15 plasmas physics,16,17 long-range
issipation,18,19,25 mechanics of non-Hamiltonian
ystems,20,21 theory of long-range interaction,22–24 anomalous
iffusion, and transport theory.5,26,27

Equations, which involve derivatives or integrals of non-
nteger order are very successful in describing anomalous
inetics.5,6,12–14 Usually the fractional equations in dynamics
r kinetics appear as some phenomenological models. In
ef. 20 the attempt to derive the basic statistical mechanics
quations with derivatives of noninteger order have been re-
lized. Unfortunately, the fractional derivatives appear only
y Fourier transform of these equations as it realized for the
okker-Planck-Zaslavsky equation in Ref. 9.

�
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In this paper, we derive the Liouville equation with frac-
tional derivatives with respect to coordinates and momenta.
To obtain the fractional Liouville equation �FLE�, we con-
sider the conservation of probability in the fractional differ-
ential volume element. This element can be considered as a
small part of the phase-space set with noninteger dimensions.
Using the FLE, we get a fractional generalization of the
Bogoliubov hierarchy equations. These equations can be
used to derive fractional kinetic equations.5,6,12,13 The Vlasov
equation with derivatives of noninteger order is obtained.
The Fokker-Planck-Zaslavsky equation, which has fractional
phase-space derivatives, is derived from the FLE. The linear
fractional kinetic equation for distribution of the charged par-
ticles is suggested.

In Sec. II, we obtain the Liouville equation with frac-
tional derivatives from the conservation of probability in the
fractional volume element of phase space. In Sec. III, the
first Bogoliubov hierarchy equation with fractional deriva-
tives in phase space is derived. In Sec. IV, we consider the
Vlasov equation with fractional derivatives in phase space.
In Sec. V, the Fokker-Planck-Zaslavsky equation, which has
fractional derivatives with respect to coordinates and mo-
menta is considered. In Sec. VI, the linear fractional kinetic
equation for distribution of the charged particles is obtained.
Finally, a short conclusion is given in Sec. VII.

II. LIOUVILLE EQUATION WITH FRACTIONAL
DERIVATIVES

A basic principle of statistical mechanics is the conser-
vation of probability in the phase space. The Liouville equa-
tion is an expression of the principle in a convenient form for
the analysis. In this section, we derive the Liouville equation
with fractional derivatives from the conservation of probabil-
ity in a fractional volume element.

In the phase space R2n with coordinates �x1 , . . . ,x2n�
= �q1 , . . . ,qn , p1 , . . . , pn�, we consider a fractional differen-

tial volume element

© 2006 American Institute of Physics8-1
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d�V = d�x1 ¯ d�x2n. �1�

ere, d� is a fractional differential28 that is defined by

d�f�x� = �
k=1

2n

Dxk

� f�x��dxk��, �2�

here Dxk

� is a fractional derivative3 of order � with respect
o xk.

The fractional derivative has different definitions,4,3 and
xploiting any of them depends on the initial �boundary�
onditions, and the specifics of the considered physical pro-
esses. The classical definition is the so-called Riemann-
iouville derivative.3 Due to reasons, concerning the initial
nd boundary conditions, it is more convenient to use the
aputo fractional derivatives.1,29 Its main advantage is that

he initial conditions take the same form as for integer-order
ifferential equations. The Caputo derivative is defined by

Dx
�f�x� = 0

CDx
�f�x� =

1

��n − ���0

x f �n��z�
�x − z��+1−ndz , �3�

here n−1���n, and f �n��z�=dnf�z� /dzn. Note that Dxk

� 1
0, and Dxk

xl=0, where �k� l�. Using �2�, we obtain

d�xk = Dxk

� xk�dxk��. �4�

hen

�dxk�� = �Dxk

� xk�−1d�xk. �5�

rom �3�,

Dxk

� xk
� =

��� + 1�
��� + 1 − ��

xk
�−�, �6�

here ����0. Equations �4� and �6� give

�dxk�� = ��2 − ��xk
�−1d�xk. �7�

The conservation of probability for the usual phase-
pace volume element is expressed as

− dV
���t,x�

�t
= d���t,x��u,dS�� . �8�

or the fractional volume element �1�,

− d�V
���t,x�

�t
= d����t,x��u,d�S�� . �9�

ere, �=��t ,x� is the density of probability to find the dy-
amical system in d�V, u=u�t ,x� is the velocity vector field
n R2n, d�S is a surface element, and the parentheses � � is a
calar product of vectors

= �
k=1

2n

ukek, d�S = �
k=1

2n

d�Skek, �u,d�S� = �
k=1

2n

ukd
�Sk, �10�

here ek are the basic vectors of the Cartesian coordinate

ystem, and

wnloaded 17 Jan 2007 to 128.122.80.27. Redistribution subject to AIP
d�Sk = d�x1 ¯ d�xk−1d�xk+1 ¯ d�x2n. �11�

The functions uk=uk�t ,x� define xk components of u�t ,x�. In
the usual case ��=1�, the outflow of the probability in the xk

direction is

d��uk�dSk = Dxk
��uk�dxkdSk = Dxk

��uk�dV . �12�

For ��1,

d���uk�d�Sk = Dxk

� ��uk��dx��d�Sk.

Using �11�, �1�, and �5�, we get

d���uk�d�Sk = Dxk

� ��uk��Dxk

� xk�−1d�xkd
�Sk

= �Dxk

� xk�−1Dxk

� ��uk�d�V . �13�

Substitution of �13� into �9� gives

− d�V
��

�t
= d�V�

k=1

2n

�Dxk

� xk�−1Dxk

� ��uk� . �14�

As a result, we obtain

��

�t
= − �

k=1

2n

Dxk

� ��uk� , �15�

where

Dxk

� = �Dxk

� xk�−1Dxk

� = ��2 − ��xk
�−1Dxk

� . �16�

This is the Liouville equation with the derivatives of frac-
tional order �. Equation �15� describes the probability con-
servation for the fractional volume element �1� of the phase
space.

For the coordinates �q1 , . . . ,qn , p1 , . . . , pn�, Eq. �15� is

��

�t
+ �

k=1

n

Dqk

� ��Vk� + �
k=1

n

Dpk

� ��Fk� = 0, �17�

where Vk=uk, and Fk=uk+n �k=1, . . . ,n�. The functions Vk

=Vk�t ,q , p� are the components of velocity field, and Fk

=Fk�t ,q , p� are the components of the force field.
In general,

Dpk

� ��Fk� � �Dpk

� Fk + FkDpk

� � . �18�

If Fk does not depend on pk, and Vk does not depend on qk,
then Eq. �17� gives

��

�t
+ �

k=1

n

�VkDqk

� � + FkDpk

� �� = 0. �19�

For the fractional generalization of Hamiltonian system,21 Vk

and Fk can be presented as

Vk = Dpk

� H�q,p�, Fk = − Dqk

� H�q,p� , �20�

where H�q , p� is a fractional generalization of Hamiltonian.
Substitution of �20� into �19� leads to

��

�t
+ �

k=1

n

�Dpk

� HDqk

� � − Dqk

� HDpk

� �� = 0. �21�
We can define
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A,B�� = �
k=1

n

�Dqk

� ADpk

� B − Dqk

� BDpk

� A�

= �
k=1

n

�Dqk

� qkDpk

� pk�−1�Dqk

� ADpk

� B − Dqk

� BDpk

� A� . �22�

or �=1, Eq. �22� gives the Poisson brackets. Note that

�A,B�� = − �B,A��, �1,A�� = 0.

sing �22�, we get �21� in the form

��

�t
+ ��,H�� = 0. �23�

s a result, we have the Liouville equation for fractional
eneralization of Hamiltonian systems.21 For �=1, Eq. �23�
s the usual Liouville equation.

II. BOGOLIUBOV EQUATION WITH FRACTIONAL
ERIVATIVES

Let us consider a classical system with fixed number N
f identical particles. Suppose that the kth particle is de-
cribed by the generalized coordinates qks and generalized
omenta pks, where s=1, . . . ,m. We use the notations qk

�qk1 , . . . ,qkm� and pk= �pk1 , . . . , pkm�. The state of this sys-
em can be described by the distribution function �N in the
mN-dimensional phase space:

�N�q, p, t� = ��q1, p1, . . . ,qN, pN, t� .

he normalization condition is

Î�1, . . . ,N��N�q, p, t� = 1,

here Î�1, . . . ,N� is the integration with respect to

1 , p1 , . . . ,qN , pN.
The fractional Liouville equation is

��N

�t
= − �

k=1

N

�Dqk

� �Vk�N� + Dpk

� �Fk�N�� , �24�

here Vk is a velocity of the kth particle, Fk is the force that
cts on the kth particle, and

Dqk

� Vk = �Dqk

� qk�−1Dqk

� Vk = �
s=1

m

�Dqks

� qks�−1Dqks

� Vks, �25�

Dpk

� Fk = �Dpk

� pk�−1Dpk

� Fk = �
s=1

m

�Dqks

� pks�−1Dpks

� Fks. �26�

he one-particle reduced distribution function �1 can be de-
ned by

1�q, p, t� = ��q1, p1, t� = Î�2, . . . ,N��N�q, p, t� , �27�

here Î�2, . . . ,N� is an integration with respect to q2 , . . . ,qN,

2 , . . . ,pN. Obviously, that the function �27� satisfies the nor-

alization condition Î�1��1�q ,p , t�=1.
The Bogoliubov hierarchy equations30–33 describe the

volution of the reduced distribution functions, and can be

erived from the Liouville equation. To obtain the first

wnloaded 17 Jan 2007 to 128.122.80.27. Redistribution subject to AIP
Bogoliubov equation with fractional derivatives from Eq.
�24� we consider the differentiation of �27� with respect to
time

��1

�t
=

�

�t
Î�2, . . . ,N��N = Î�2, . . . ,N�

��N

�t
. �28�

Using �24� and �28�, we get

��1

�t
= − Î�2, . . . ,N��

k=1

N

�Dqk

� �Vk�N� + Dpk

� �Fk�N�� . �29�

Let us consider the integration Î�qk� over qk for the kth
particle term of Eq. �29�,

Î�qk�Dqk

� �Vk�N� = Î�qk��Dqk

� qk�−1Dqk

� �Vk�N�

= ��2 − ��Î�qk�qk
�−1Dqk

� �Vk�N�

= ������2 − ��Î��qk�Dqk

� �Vk�N�

= ������2 − ���Vk�N�−�
+� = 0, �30�

where Î��qk� is a fractional integration with respect to vari-
ables qk. In Eq. �30�, we use that the distribution �N in the
limit qk→ ±� is equal to zero. It follows from the normal-
ization condition. If the limit is not equal to zero, then the
integration over phase space is equal to infinity. Similarly,
we obtain

Î�pk�Dpk

� �Fk�N� 	 �Fk�N�−�
+� = 0.

Then all terms in Eq. �29� with k=2, . . . ,N are equal to zero.
Therefore, Eq. �29� is

��1

�t
= − Î�2, . . . ,N��Dq1

� �V1�N� + Dp1

� �F1�N�� . �31�

The first term in Eq. �31� can be written as

Î�2, . . . ,N�Dqk

� �V1�N� = Dq1

� V1Î�2, . . . ,N��N

= Dq1

� �V1�1� .

For the binary interactions,

F1 = F1
e + �

k=2

N

F1k, �32�

where F1
e =Fe�q1 , p1 , t� is the external force, and F1k

=F�q1 , p1 , qk , pk , t� are the internal forces. Using �32�, the
second term in �31� is

Î�2, . . . ,N�Dp1

� �F1�N�

= Î�2, . . . ,N�
Dp1

� �F1
e�N� + �

k=2

N

Dp1

� �F1k�N��
= Dp1

� �F1
e�1� + �

k=2

N

Dp1

� Î�2, . . . ,N��F1k�N� . �33�

We assume that the distribution function is invariant under
the permutations of identical particles. Then �N is a symmet-

ric function, and all �N−1� terms in Eq. �33� are identical:
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Do
�
k=2

N

Î�2, . . . ,N�Dp1s

� �F1k�N� = �N − 1�Î�2, . . . ,N�Dp1

� �F12�N� .

�34�

sing Î�2, . . . ,N�= Î�2�Î�3, . . . ,N�, we have

Î�2, . . . ,N�Dp1

� �F12�N� = Î�2�Dp1

� �F12Î�3, . . . ,N��N�

= Dp1

� Î�2�F12�2, �35�

here

�2 = ��q1, p1, q2, p2, t� = Î�3, . . . ,N��N�q, p, t� �36�

s a two-particle distribution function.
Finally, we obtain

��1

�t
+ Dq1

� �V1�1� + Dp1

� �F1
e�1� = I��2� , �37�

here

I��2� = − �N − 1�Dp1

� Î�2�F12�2 �38�

escribes a velocity of particle number change in
m-dimensional two-particle elementary phase volume. This
hange is caused by the interactions between particles. Equa-
ion �37� is the fractional generalization of the first Bogoliu-
ov equation. If �=1, then we have the first Bogoliubov
quation for non-Hamiltonian systems.39

V. VLASOV EQUATION WITH FRACTIONAL
ERIVATIVES

Let us consider the particles as statistical independent
ystems. Then

�2�q1, p1, q2, p2, t� = �1�q1, p1, t��1�q2, p2, t� . �39�

ubstitution of �39� into �38� gives

I��2� = − Dp1

� �1Î�2�F12�1�q2, p2, t� , �40�

here �1=�1�q1 , p1 , t�.
Let us define

Feff�q1, p1, t� = Î�2�F12�1�q2, p2, t� .

hen,

I��2� = − Dp1

� ��1Feff� . �41�

ubstituting of �41� into �37�, we obtain

��1

�t
+ Dq1

� �V1�1� + Dp1

� ��F1
e + �N − 1�Feff��1� = 0 �42�

hat is a closed equation for the one-particle distribution
unction with the external force F1

e and the effective force
eff. Equation �42� is the fractional generalization of the
lasov equation34,35 that has phase-space derivatives of non-

nteger order. For �=1, we get the Vlasov equation for the
39
on-Hamiltonian systems.
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V. FOKKER-PLANCK-ZASLAVSKY EQUATION
FOR PHASE SPACE

The Fokker-Planck equations with fractional coordinate
derivatives have been suggested by Zaslavsky12 to describe
chaotic dynamics. It is known that the Fokker-Planck equa-
tion can be derived from the Liouville equation.40–42 In this
section, we obtain the Fokker-Planck-Zaslavsky equation
that has fractional derivatives in phase space.

Let us consider a system of N identical particles and
the Brownian particle that is described by the distribution
function

�N+1 = �N+1�q, p, Q, P, t� ,

where

q = �q1, . . . ,qN�, qk = �qk1, . . . ,qkm� ,

p = �p1, . . . ,pN�, pk = �pk1, . . . ,pkm�

are the coordinates and momenta of the particles; Q= �Qs�
and P= �Ps� �s=1, . . . ,m� are Brownian particle coordinates
and momenta. The normalization condition is

Î�1, . . . ,N, N + 1��N+1 = 1. �43�

The distribution function for the Brownian particle is defined
by

�B�Q, P, t� = Î�1, . . . ,N��N+1�q, p, Q, P, t� . �44�

The Liouville equation for �N+1 is

��N+1

�t
− i�LN + LB��N+1 = 0, �45�

where

− iLN� = �
k,s

N,m

�Dqks

� �Gs
k�� + Dpks

� �Fs
k��� , �46�

− iLB� = �
k,s

N,m

�DQs

� �gs�� + DPs

� �fs��� . �47�

Here, LN and LB are Liouville operators with fractional
derivatives, and

DA
�B = �DA

�A�−1DA
�B .

The functions Gs
k and Fs

k are defined by the equations of
motion for particle,

dqks

dt
= Gs

k�q, p�,
dpks

dt
= Fs

k�q, p, Q, P�, k = 1, . . . ,N .

�48�

The Hamilton equations for the Brownian particle

dQs

dt
= gs�Q, P�,

dPs

dt
= fs�q, p, Q, P� �49�

define gs and fs.
Let us use the boundary condition in the form
 license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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lim
→−�

�N+1�q, p, Q, P, t� = �N�q, p, Q, T��B�Q, P, t� , �50�

here

�N�q, p, Q, T� = exp ��F − H�q, p, Q�� �51�

s the canonical Gibbs distribution for

H�q, p, Q� = HN�q, p� + �
k=1

N

UB�qk, Q� . �52�

ere, HN is a Hamiltonian of an n particle system, and UB is
n energy of interaction between particles and Brownian par-
icle. If we suppose

Gs
k = pks/m, gs = Ps/M , �53�

hen

HN�q, p� = �
k,s

N,m
p2

2m
+ �

k�l

U�qk, ql� . �54�

The boundary condition �50� can be realized36 by the
nfinitesimal source term in the Liouville equation:

��N+1

�t
− i�LN + LB��N+1 = − ���N+1 − �N�B� . �55�

ntegrating �55� by Î�1, . . . ,N�, we obtain

��B

�t
+ �

s=1

m

DQs

� �gs�B� + Î�1, . . . ,N��
s=1

m

DPs

� �fs�N+1� = 0, �56�

hich is the Liouville equation for reduced distribution func-
ion of the Brownian particle.

The formal solution of Eq. �55� has the form

N+1�t� = �B�t��N − �
−�

0

d	e�	


e−i	�LN+LB�
 �

�	
− i�LN + LB���B�t + 	��N. �57�

ubstituting �57� into �56�, we get

��B

�t
+ �

s=1

m

DQs

� �gs�B� + �
s=1

m

DPs

� �BÎ�1, . . . ,N��fs�N�

− Î��1, . . . ,N��
s=1

m

DPs

� �
−�

0

d	e�	e−i	�LN+LB�



 �

�	
− i�LN + LB���B�t + 	��N = 0. �58�

he expression Î�1, . . . ,N�fs�N can be considered as average
alue of the force fs. For the canonical Gibbs distribution
51� it is equal to zero. Using

DQs

� �N =
1

kT
fs

�p��N, �59�

�p� 20
here fs is a fractional potential force

wnloaded 17 Jan 2007 to 128.122.80.27. Redistribution subject to AIP
fs
�p� = − DQs

� UB, �60�

we have

− iLB�N+1 = 
Psfs
�p�

MkT
�B + DQs

� �gs�B� + DPs

� �fs�B���N.

It can be proven by integration that the term

��B

�t
+ DQs

� �gs�B� �61�

in Eq. �58� does not contribute. Then �58� gives

��B

�t
+ �

s=1

m

DQs

� �gs�B�

+ �
s=1

m

DPs

� Î�1, . . . ,N��
−�

0

d	e�	fse
−i	�LN+LB��N



DPs�

� �fs��B�t + 	�� +
�fs�Ps�

M
�B�t + 	�� = 0. �62�

Equation �62� is a closed integro-differential equation for the
distribution function �B. Note that fs can be presented as

fs = fs
�p� + fs

�n�,

where fs
�p� is a potential force �60�, and fs

�n� is a nonpotential
force that acts on the Brownian particle. For the equilibrium
approximation P	�MkT�1/2, iLB	M−1/2 and iLN	m−1/2. If
M �m, we can use perturbation theory.

Using the approximation �B�t+	�=�B�t� for Eq. �62�, we
obtain

��B

�t
+ �

s=1

m

DQs

� �gs�B�

+ �
s=1

m

DPs

� 
M

�
DPs�

� ��ss�
1

�B�t�� + �ss�
2 Ps��B�t�� = 0, �63�

where

�ss�
1 = �MÎ��1, . . . ,N��

−�

0

d	e�	fse
−i	LNfs��N, �64�

�ss�
2 = �MÎ��1, . . . ,N��

−�

0

d	e�	fse
−i	LNfs�

�p�
�N. �65�

If fs= fs
�p�, then �ss�

1 =�ss�
2 . As a result, we derive the Fokker-

Planck-Zaslavsky equation9,12 for the phase space.

VI. LINEAR FRACTIONAL KINETIC EQUATION

Let us consider Eq. �37� with I��2�=0, V1=p /m=v, and
Fe=eE, B=0. Then

��1

�t
+ �v,Dq

��1� + e�E,Dp
��1� = 0, �66�

where

�v,Dq
��� = �

s=1

m

�vs,Dqs

� �� . �67�
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If we take into account the magnetic field �B�0�, then
e must use the fractional generalization of Leibnitz rules

Dp
��fg� = �

s=0

�
��� + 1�

��s + 1���� − s + 1�
�Dp

�−sf�Dp
s g , �68�

here s are integer numbers. In this case, Eq. �66� has the
ddition term

e

mc
Dp

���p,B��1� =
e

mc
�
klm

Dpk

� ��klmplBm�1�

=
e

mc
�
klm

�klmBmDpk

� �pl�1�

=
e

mc
�
klm

�klmBm


�
i=0

1
��� + 1�

��i + 1���� − i + 1�
�Dpk

�−i�1�klpl
i

=
e

mc
�
klm

�klmBm��Dpk

� �1�pl + ��Dpk

�−1��kl�

=
e

mc
�
klm

�klmBmpl�Dpk

� �1�

=
e

mc
��Dpk

� �1�,�p,B�� . �69�

Let us consider the perturbation37,38 of the distribution
unction in the form

�1 = �̃1 + �1�t, q, p� , �70�

here �̃1 is a homogeneous stationary density of probability
hat satisfies Eq. �66� for E=0. Substituting Eq. �70� into
q. �66�, we get

��1

�t
+ �v,Dq

��1� + e�E,Dp
��̃1� = 0. �71�

quation �71� is linear fractional kinetic equation for the first
erturbation �1 of the distribution function. Solutions of
ractional linear kinetic Eqs. �71� are considered in Ref. 13.
or E=0, the function �1 is described by the function

�gst�−1/�L��qs�gst�−1/�� , �72�

here gs=vs�Dqs

� qs�−1, and

L��x� =
1

2�
�

−�

+�

dke−ikxe−a�k�� �73�

s the Levy stable p.d.f.43 The examples of L��x� are shown
n Fig. 1.

For �=1, the function �73� gives the Cauchy distribution

L1�x� =
1

�

1

x2 + 1
, �74�
nd �72� is

wnloaded 17 Jan 2007 to 128.122.80.27. Redistribution subject to AIP
1

�

�gst�−1

qs
2�gst�−2 + 1

. �75�

For �=2, Eq. �73� gives the Gauss distribution

L2�x� =
1

2�
e−x2/4, �76�

and the function �72� is

�gst�−1/2 1

2�
e−qs

2/�4gst�. �77�

For 1���2, the function L��x� can be presented as the
expansion

L��x� = −
1

�x
�
n=1

�

�− x�n��1 + n/��
n!

sin�n�/2� . �78�

The asymptotic �x→�, 1���2� is given by

L��x� 	 −
1

�x
�
n=1

�

�− 1�nx−n���1 + n��
n!

sin�n�/2� . �79�

As a result, the asymptotic of the solution, exhibits the pow-
erlike tails for x→�. This tails is the important property of
solutions of equations with the noninteger derivative.

VII. CONCLUSION

In this paper, we consider equations with derivatives of
noninteger order that can be used in statistical mechanics and
physical kinetics. We derive the Liouville, Bogoliubov,
Vlasov, and Fokker-Planck equations with fractional deriva-
tives with respect to coordinates and momenta. To derive the
fractional Liouville equation �FLE�, we consider the conser-
vation of probability in the fractional differential volume el-
ement. This element can be considered as a small part of the
phase-space set with noninteger dimension. Using the FLE,

FIG. 1. Gauss p.d.f. ��=2�, Levy p.d.f. ��=1.6�, and Cauchy p.d.f. ��
=1.0�. Levy for �=1.6 lies between Cauchy and Gauss p.d.f. In the
asymptotic x→� and x�3 on the plot, the upper curve is the Cauchy p.d.f.,
and the lower curve is the Gauss p.d.f.
we obtain a fractional generalization of the Bogoliubov hier-
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rchy equations. These equations describe the evolution of
he reduced density of probability in the fractional phase-
pace volume element. Fractional Bogoliubov equations can
e used to derive fractional kinetic equations.5,12,13 In this
aper, we obtain the Fokker-Planck-Zaslavsky equation,
ractional Vlasov, and linear kinetic equations.

The fractional kinetics is related to the equations that
ontains derivatives of noninteger order. These equations ap-
ear in the description of chaotic dynamics, and the fractal
edia. The fractional derivatives can be connected with

ong-range power-law interaction of the systems.22–24 For
oninteger derivatives with respect to coordinates, we have
he powerlike tails as the important property of the solutions
f the fractional equations.
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