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We consider a one-dimensional chain of coupled linear and nonlinear oscillators with long-range
powerwise interaction. The corresponding term in dynamical equations is proportional to
1/ �n−m��+1. It is shown that the equation of motion in the infrared limit can be transformed into the
medium equation with the Riesz fractional derivative of order �, when 0���2. We consider a
few models of coupled oscillators and show how their synchronization can appear as a result of
bifurcation, and how the corresponding solutions depend on �. The presence of a fractional deriva-
tive also leads to the occurrence of localized structures. Particular solutions for fractional time-
dependent complex Ginzburg-Landau �or nonlinear Schrödinger� equation are derived. These solu-
tions are interpreted as synchronized states and localized structures of the oscillatory medium.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2197167�
lthough the fractional calculus is known for more than
00 years and its development is an active area of math-
matics, appearance and use of it in physical literature is
airly recent and sometimes is considered as exotic. In
act, there are many different areas where fractional
quations, i.e., equations with fractional integro-
ifferentiation, describe real processes. Between the most
elated areas are chaotic dynamics,1 random walk in
ractal space-time,2 and random processes of the
evy-type.3–6 The physical reasons for the appearance of

ractional equations are intermittancy, dissipation, wave
ropagation in complex media, long memory, and others.
his article deals with long-range interaction that can
ork in some way as a long memory. A unified approach

o the origin of fractional dynamics from the long-range
nteraction of nonlinear oscillators or other objects per-

its us to consider such phenomena as synchronization,
reathers formation, space-time structures by the same
ormalism using new tools from the fractional calculus.

. INTRODUCTION

Collective oscillation and synchronization are the funda-
ental phenomena in physics, chemistry, biology, and neu-

oscience, which are actively studied recently,7–9 having both
mportant theoretical and applied significance. Beginning
ith the pioneering contributions by Winfree10 and
uramoto,11 studies of synchronization in populations of

oupled oscillators became an active field of research in bi-
logy and chemistry. An oscillatory medium is an extended
ystem, where each site �element� performs self-sustained
scillations. A good physical and chemical example is the
scillatory Belousov-Zhabotinsky reaction11–13 in a medium
here different sites can oscillate with different periods and
hases. Typically, the reaction is accompanied by a color

ariation of the medium. Complex Ginzburg-Landau
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equation51–53 is canonical model for oscillatory systems with
local coupling near the Hopf bifurcation. Recently, Tanaka
and Kuramoto14 have shown how, in the vicinity of the bi-
furcation, the description of an array of nonlocally coupled
oscillators can be reduced to the complex Ginzburg-Landau
equation. In Ref. 15, a model of population of diffusively
coupled oscillators with limit cycles is described by the com-
plex Ginzburg-Landau equation with nonlocal interaction.
Nonlocal coupling is considered in Refs. 15–17. The long-
range interaction that decreases as 1/ �x��+1 with 0���2 is
considered in Refs. 18–22 with respect to the system’s ther-
modynamics and phase transition. It is also shown in Ref. 23
that using the Fourier transform and limit for the wave num-
ber k→0, the long-range term interaction leads under special
conditions to the fractional dynamics.

In the last decade it is found that many physical pro-
cesses can be adequately described by equations that consist
of derivatives of fractional order. In a fairly short period of
time the list of such applications becomes long and the area
of applications is broad. Even in a concise form, the appli-
cations include material sciences,24–27 chaotic dynamics,1

quantum theory,28–31 physical kinetics,1,3,32,33 fluids and
plasma physics,34,35 and many other physical topics related to
wave propagation,36 long-range dissipation,37 anomalous dif-
fusion and transport theory �see reviews in Refs. 1, 2, 4, 24,
and 38�. Some historical comments on the origin of frac-
tional calculus can be found in Ref. 39.

It is known that the appearance of fractional derivatives
in equations of motion can be linked to nonlocal properties
of dynamics. Fractional Ginzburg-Landau equation has been
suggested in Refs. 40–42. In this paper, we consider the syn-
chronization for oscillators with long-range interaction that
in continuous limit leads to the fractional complex Ginzburg-

Landau equation. We confirm the result obtained in Ref. 23

© 2006 American Institute of Physics0-1
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hat the infrared limit �wave number k→0� of an infinite
hain of oscillators with the long-range interaction can be
escribed by equations with the fractional Riesz coordinate
erivative of order ��2. This result permits us to apply
ifferent tools of the fractional calculus to the considered
ystems, and to interpret different systems’ features in a uni-
ed way.

In Sec. II, we consider a systems of oscillators with lin-
ar long-range interaction. For infrared behavior of the oscil-
atory medium, we obtain the equations that have coordinate
erivatives of fractional order. In Sec. III, some particular
olutions are derived with a constant wave number for the
ractional Ginzburg-Landau equation. These solutions are in-
erpreted as synchronization in the oscillatory medium. In
ec. IV, we derive solutions of the fractional Ginzburg-
andau equation near a limit cycle. These solutions are in-

erpreted as coherent structures in the oscillatory medium
ith long-range interaction. In Sec. V, we consider the non-

inear long-range interaction of oscillators and corresponding
quations for the spin field. Finally, discussion of the results
nd conclusion are given in Sec. VI.

I. LONG-RANGE INTERACTION OF OSCILLATORS

. Derivation of equation for the continuous
scillatory medium

In this section we consider a simplified version of a
hain of N oscillators �N→ � � that have a long-range inter-
ction of the power type. The corresponding equation of mo-
ion can be written as

d

dt
zn�t� = F�zn� + g0 �

m=−�,m�n

�

J��n − m��zn − zm� , �1�

here zn is the position of the nth oscillator in the complex
lane, and F is a force. As an example, for the oscillators
ith a limit cycle, F can be taken as

F�z� = �1 + ia�z − �1 + ib��z�2z . �2�

he nonlocal interaction is given by the power function

J��n� = �n�−�−1. �3�

his coupling in the limit �→� is a nearest-neighbor inter-
ction. This type of interaction was introduced by Dyson18 to
tudy phase transitions and then was considered in numerous
apers related to magnetic systems.19–22 Power type long-
ange interaction can appear as an effective interaction in
ispersive or complex systems.26,36,40 The complexity of the
ystem reveals in a noninteger � that is defined by a specific
ype of the material. Let us provide also two examples from
uid dynamics where the dispersion, and nonlinear proper-

ies of the media define the order of fractional derivatives:
racer dynamics in the presence of convective rolls,43 and the
quation for surface wave interaction.44

Let us derive the equation for continuous medium limit
f system �1� with long-range interaction �3�. For this goal it

s convenient to introduce the field

wnloaded 15 May 2006 to 128.122.81.37. Redistribution subject to AIP
Z�x,t� =
1

2�
�

−�

+�

dkeikx �
n=−�

+�

e−iknzn�t� . �4�

Multiplying Eq. �1� by exp�−ikn�, and summing over n from
−� to +�, we obtain

�y�k,t�
�t

� �
n=−�

+�

e−ikn d

dt
zn�t�

= �
n=−�

+�

e−iknF�zn� + g0 �
n=−�

+�

�
m=−�,m�n

+�

e−ikn �zn − zm�
�n − m��+1 ,

�5�

where

y�k,t� = �
n=−�

+�

e−iknzn�t� . �6�

Using the notation

J̃��k� = �
n=−�,n�0

+�

e−iknJ��n� = �
n=−�,n�0

+�

e−ikn 1

�n��+1 , �7�

the interaction term in �5� can be presented as

�
n=−�

+�

�
m=−�,m�n

+�

e−ikn 1

�n − m��+1 �zn − zm�

= �
n=−�

+�

�
m=−�,m�n

+�

e−ikn 1

�n − m��+1zn

− �
n=−�

+�

�
m=−�,m�n

+�

e−ikn 1

�n − m��+1zm. �8�

For the first term in the right-hand side of �8�:

�
n=−�

+�

�
m=−�,m�n

+�

e−ikn 1

�n − m��+1zn

= �
n=−�

+�

e−iknzn �
m�=−�,m��0

+�
1

�m���+1 = y�k,t�J̃��0� , �9�

where

J̃��0� = �
n=−�,n�0

+�
1

�n��+1 = 2�
n=1

�
1

�n��+1 = 2��� + 1� , �10�

and ��z� is the Riemann zeta function. For the second term in
the RHS of �8�:

�
n=−�

+�

�
m=−�,m�n

+�

e−ikn 1

�n − m��+1zm

= �
m=−�

+�

zm �
n=−�,n�m

+�

e−ikn 1

�n − m��+1

= �
m=−�

+�

zme−ikm �
n�=−�,n��0

+�

e−ikn� 1

�n���+1 = y�k,t�J̃��k� . �11�

As the result, Eq. �5� yields
 license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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�t
y�k,t� = F	F�zn�
 + g0�J̃��0� − J̃��k��y�k,t� , �12�

here F	F�zn�
 is an operator notation for the Fourier trans-
orm of F�zn�:

F	F�zn�
 = �
n=−�

+�

e−iknF�zn� .

he function J̃��k� introduced in �7� can be transformed as

J̃��k� = �
n=−�,n�0

+�

e−ikn 1

�n��+1

= �
n=1

+�

e−ikn 1

�n��+1 + �
n=−1

−�

e−ikn 1

�n��+1

= �
n=1

�
1

n�+1 �e−ikn + eikn� = Li�+1�eik� + Li�+1�e−ik� ,

�13�

here Li��z� is a polylogarithm function. This presentation
as also obtained in Ref. 23, and it plays an important role

n the following transition to fractional dynamics. Using the
xpansion

i��ez� = ��1 − ���− z��−1 + �
n=0

�
��� − n�

n!
zn, �z� � 2� , �14�

e obtain

��k� = 2��− ��cos���/2��k�� + 2�
n=0

�
��� + 1 − 2n�

�2n�!
�− k2�n,

�15�

��0� = 2��� + 1� .

rom �13� we can see that

J̃��k + 2�m� = J̃��k� , �16�

here m is an integer. For �=2, J̃��k� is the Clausen function

l3�k�.54 The plots of J̃��k� for �=1.1, and �=1.9 are pre-
ented in Fig. 1.

After substituting �15� into �12�, we obtain

�

�t
y�k,t� = F	F�zn�
 − g0a��k��y�k,t�

− 2g0�
n=1

�
��� + 1 − 2n�

�2n�!
�− k2�ny�k,t� , �17�

here

a� = 2��− ��cos���/2� �0 � � � 2,� � 1� . �18�

To derive the equation for field �4�, we can use defini-

ion �6�

wnloaded 15 May 2006 to 128.122.81.37. Redistribution subject to AIP
Z�x,t� =
1

2�
�

−�

+�

eikxy�k,t�dk , �19�

and the connection between Riesz fractional derivative and
its Fourier transform:45

�k�� ↔ −
��

� �x��
, k2 ↔ −

�2

� �x�2
. �20�

The properties of the Riesz derivative can be found in Refs.
45–48. Another expression is

��

� �x��
Z�x,t� = −

1

2 cos���/2�
�D+

�Z�x,t� + D−
�Z�x,t�� , �21�

where ��1, 3 , 5 , . . ., and D±
� are Riemann-Liouville left

and right fractional derivatives

D+
�Z�x,t� =

1

��n − ��
�n

�xn�
−�

x Z��,t�d�

�x − ���−n+1 ,

�22�

D−
�Z�x,t� =

�− 1�n

��n − ��
�n

�xn�
x

� Z��,t�d�

�� − x��−n+1 .

FIG. 1. The function J̃��k� for orders �=1.1, and �=1.9.
Substitution of Eqs. �22� into Eq. �21� gives
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� �x��
Z�x,t� =

− 1

2 cos���/2���n − ��

	
�n

�xn��
−�

x Z��,t�d�

�x − ���−n+1 + �
x

� �− 1�nZ��,t�d�

�� − x��−n+1 � .

�23�

Multiplying Eq. �17� on exp�ikx�, and integrating over k
rom −� to +�, we obtain

�

�t
Z = F̃�Z� + g0a�

��

� �x��
Z − 2g0�

n=1

�
��� + 1 − 2n�

�2n�!
�2n

�x2nZ ,

�24�
Z = Z�x,t� �� � 0, 1, 2, . . . � ,

here F̃�Z� is the inverse Fourier transform of F	F�zn�
:

F̃�Z� =
1

2�
�

−�

+�

dkeikxF	F�zn�
 .

or x=n �"n� one can see that

F̃�Z�x,t�� = F�Z�n,t�� = F�zn�t�� . �25�

his is a standard procedure for the replacement of a discrete
hain by the continuous one and in the following we will

rite F�Z� instead of F̃�Z�.
The first term �n=1� of the sum is ���−1��x

2Z. Let us
ompare the coefficients of terms with fractional and second
erivatives in Eq. �24�. For �→2, one can use the asymp-
otics

�� − 1� 
1

� − 2
+ O�1�, a� 

1

� − 2
+ O�1� �� � 2� .

s an example, for �=1.99,

��� − 1�  − 99.423 51, a�  − 100.929 21.

herefore ���−1� /a��1 for 2−�
1.

. Infrared approximation

In this section, we derive the main relation that permits
s to transfer the system of discrete oscillators into a frac-
ional differential equation. This transform will be called the
nfrared limit. For 0���2, ��1, and k→0, the fractional
ower of �k� is a leading asymptotic term in Eq. �17�, and

�J̃��0� − J̃��k��  a��k�� �0 � � � 2, � � 1� . �26�

quation �26� can be considered as an infrared approxima-
ion of �17�. Substitution of �26� into �12� gives

�

�t
y�k,t� = F	F�zn�
 − g0a��k��y�k,t�

�0 � � � 2, � � 1� . �27�
hen

wnloaded 15 May 2006 to 128.122.81.37. Redistribution subject to AIP
�

�t
Z = F�Z� + g0a�

��

� �x��
Z �0 � � � 2, � � 1� . �28�

Equation �28� can be considered an equation for continuous
oscillatory medium with ��2 in the infrared �k→0� ap-
proximation.

As an example, for F�z�=0, Eq. �28� gives the fractional
kinetic equation

�

�t
Z = g0a�

��

� �x��
Z �0 � � � 2, � � 1� �29�

that describes the fractional superdiffusion.3,4,32 For F�z� de-
fined by �2�, Eq. �28� is a fractional Ginzburg-Landau equa-
tion that has been suggested in Ref. 40 �see also Refs. 41 and
42�, and will be considered in Sec. III. For ��2 and k→0
the main term in �15� is proportional to k2 and in �28� and
�29�, we have a second derivative instead of the fractional
one. The existence of the critical value �=2 was obtained in
Ref. 23.

III. FRACTIONAL GINZBURG-LANDAU EQUATION

A. Synchronized states
for the Ginzburg-Landau equation

The one-dimensional lattice of weakly coupled nonlinear
oscillators is described by

d

dt
zn�t� = �1 + ia�zn − �1 + ib��zn�2zn

+ �c1 + ic2��zn+1 − 2zn + zn−1� , �30�

where we assume that all oscillators have the same param-
eters. A transition to the continuous medium assumes8 that
the difference zn+1−zn is of the order �x, and the interaction
constants c1 and c2 are large. Setting c1=g��x�−2, and c2

=gc��x�−2, we get

�

�t
Z = �1 + ia�Z − �1 + ib��Z�2Z + g�1 + ic�

�2

�x2Z , �31�

which is a complex time-dependent Ginzburg-Landau
equation.51–53 Here Z�n�x , t� coincides with �4� if we put
�x=1. The simplest coherent structures for this equation are
plane-wave solutions,8

Z�x,t� = R�K�exp�iKx − i�K�t + �0� , �32�

where

R�K� = �1 − gK2�1/2, �K� = �b − a� + �c − b�gK2, �33�

and �0 is an arbitrary constant phase. These solutions exist
for

gK2 � 1. �34�

The solution �32� can be interpreted as a synchronized state.8

B. Particular solution for the fractional
Ginzburg-Landau equation

Let us come back to the equation for nonlinear oscilla-

tors �1� with F�z� in Eq. �2� and long-range coupling �3�,

 license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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dt
zn = �1 + ia�zn − �1 + ib��zn�2zn

+ g0 �
m�n

1

�n − m��+1 �zn − zm� , �35�

here zn=zn�t� is the position of the nth oscillator in the
omplex plane, 1���2. The corresponding equation in the
ontinuous limit and infrared approximation can be obtained
n the same way as �28�

�

�t
Z = �1 + ia�Z − �1 + ib��Z�2Z + g�1 + ic�

��

� �x��
Z , �36�

here g�1+ ic�=g0a�, and 1���2. Equation �36� is a frac-
ional generalization of the complex time-dependent
inzburg-Landau equation �31� �compare to �28��. Here, this

quation is derived in a specific approximation for the oscil-
atory medium.

We seek a particular solution of �36� in the form

Z�x,t� = A�K,t�eiKx, �37�

hich allows us to use

��

� �x��
eiKx = − �K��eiKx. �38�

quation �37� represents a particular solution of �36� with a
xed wave number K.

The substitution of �37� into �36� gives

�

�t
A�K,t� = �1 + ia�A − �1 + ib��A�2A − g�1 + ic��K��A . �39�

ewriting this equation in polar coordinates,

A�K,t� = R�K,t�ei��K,t�, �40�

e obtain

dR

dt
= �1 − g�K���R − R3,

�41�
d�

dt
= �a − cg�K��� − bR2.

he limit cycle here is a circle with the radius

R = �1 − g�K���1/2, g�K�� � 1. �42�

he solution of �41� with arbitrary initial conditions

R�K,0� = R0, ��K,0� = �0 �43�

s

R�t� = R0�1 − g�K���1/2�R0
2 + �1 − g�K�� − R0

2�

	e−2�1−g�K���t�−1/2, �44�

��t� = −
b

2
ln��1 − g�K���−1�R0

2 + �1 − g�K�� − R0
2�e−2at��

− ��K�t + �0, �45�
here

wnloaded 15 May 2006 to 128.122.81.37. Redistribution subject to AIP
��K� = �b − a� + �c − b�g�K��, 1 − g�K�� � 0. �46�

This solution can be interpreted as a coherent structure in
nonlinear oscillatory medium with long-range interaction.

If

R0
2 = 1 − g�K��, g�K�� � 1,

then Eqs. �44� and �45� give

R�t� = R0, ��t� = − ��K�t + �0. �47�

Solution �47� means that on the limit cycle �42� the angle
variable � rotates with a constant velocity ��K�. As the
result, we have the plane-wave solution

Z�x,t� = �1 − g�K���1/2eiKx−i��K�t+i�0, 1 − g�K�� � 0, �48�

which can be interpreted as a synchronized state of the os-
cillatory medium.

For initial amplitude that deviates from �42�, i.e., R0
2

�1−g �K��, an additional phase shift occurs due to the term
which is proportional to b in �45�. The oscillatory medium
can be characterized by a single generalized phase variable.
To define it, let us rewrite �41� as

d

dt
ln R = �1 − g�K��� − R2, �49�

d

dt
� = �a − cg�K��� − bR2. �50�

Substitution of R2 from �49� into �50� gives

d

dt
�� − b ln R� = �a − cg�K��� − b�1 − g�K��� . �51�

Thus, the generalized phase8 can be defined by

��R,�� = � − b ln R . �52�

From �51�, we get

d

dt
� = − ��K� . �53�

This equation means that generalized phase ��R ,�� rotates
uniformly with constant velocity. For g �K��= �b−a� / �b−c�
�1, we have the lines of the constant generalized phase. On
the �R ,�� plane these lines are logarithmic spirals �−b ln R
=const. The decrease of � corresponds to the increase of K.
For the case b=0 instead of spirals we have straight lines
�=�.

C. Group and phase velocity of plane waves

Energy propagation can be characterized by the group
velocity

v�,g =
���K�

�K
. �54�

From Eq. �46�, we obtain

v�,g = ��c − b�g�K��−1. �55�
For
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�K� � K1 = ��/2�2−�, �56�

e get

�v�,g� � �v2,g� . �57�

he phase velocity is

v�,ph = ��K�/K = �c − b�g�K��−1. �58�

or

�K� � K2 = 2�−2, �59�

e have

�v�,ph� � �v2,ph� . �60�

herefore, the long-range interaction decreases as �x�−��+1�

ith 1���2 leads to an increase in the group and phase
elocities for small wave numbers �K→0�. Note that the
atio v�,g /v�,ph between the group and phase velocities of
lane waves is equal to �.

. Stability of the plane wave solution

The solution of �48� can be presented as

X = R�K,t�cos���K,t� + Kx� ,

�61�
Y = R�K,t�sin���K,t� + Kx� ,

here X=X�K , t�=Re Z�x , t� and Y =Y�K , t�=Im Z�x , t�, and
�K , t� and ��K , t� are defined by �44� and �45�. For the plane
aves

X0�x,t� = �1 − g�K���1/2 cos�Kx − ��K�t + �0� ,

Y0�x,t� = �1 − g�K���1/2 sin�Kx − ��K�t + �0�,

1 − g�K�� � 0. �62�

ot all of the plane waves are stable. To obtain the stabil-
ty condition, consider the variation of �39� near the solu-
ion �62�

d

dt
�X�K,t� = A11�X + A12�Y,

d

dt
�Y�K,t� = A21�X + A22�Y ,

�63�

here �X and �Y are small variations of X and Y, and

A11 = 1 − g�K�� − 2X0�X0 − bY0� − �X0
2 + Y0

2� ,

A12 = − a + gc�K�� − 2Y0�X0 − bY0� + b�X0
2 + Y0

2� ,

�64�
A21 = a − gc�K�� − 2X0�Y0 + bX0� − b�X0

2 + Y0
2� ,

A22 = 1 − g�K�� − 2Y0�Y0 + bX0� − �X0
2 + Y0

2� .

he conditions of asymptotic stability for �63� are

A11 + A22 � 0, A11A22 − A12A21 � 0. �65�
rom Eqs. �62� and �64�, we get
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A11 + A22 = − 2�1 − g�K���, 1 − g�K�� � 0, �66�

and the first condition of �65� is valid. Substitution of Eqs.
�62� and �64� into �65� gives

A11A22 − A12A21 = �b�1 − g�K��� − �a − gc�K����

	�3b�1 − g�K��� − �a − gc�K���� . �67�

Then the second condition of �65� has the form

�V − 1��V − 3� � 0, �68�

where

V =
a − gc�K��

b�1 − g�K���
. �69�

As the result, we obtain

0 � 1 − g�K�� � a/b − �c/b�g�K�� � 3�1 − g�K��� , �70�

i.e., the plane wave solution �48� is stable if parameters a, b,
c and g satisfy �70�. Condition �70� defines the region of
parameters for plane waves where the synchronization exists.

E. Forced fractional Ginzburg-Landau equation
for the isochronous case

In this section, we consider the fractional Ginzburg-
Landau �FGL� equation �39� forced by a constant E �the
so-called forced isochronous case �b=0� �Ref. 8��

�

�t
A = �1 + ia�A − �A�2A − g�1 + ic��K��A − iE �Im E = 0� ,

�71�

where A=A�K , t�, and we put for simplicity b=0, and K is a
fixed wave number. Our main goal will be transition to syn-
chronized states and its dependence on the order � of the
long-range interaction. The system of real equations is

d

dt
X = �1 − g�K���X − �a − gc�K���Y − �X2 + Y2�X ,

�72�
d

dt
Y = �1 − g�K���Y + �a − gc�K���X − �X2 + Y2�Y − E ,

where X=X�K , t� is real and Y =Y�K , t� are imaginary parts
of A�K , t�.

In the simulation of Eq. �72�, we will take the parameters
close to the selected ones in Ref. 8, where the parameters
a , g , c , e , K were selected to demonstrate the existence of
the Hopf-type bifurcation and the appearance of synchroni-
zation. Some differences in our case are due to the fractional
value of the interaction exponent ��2, while in Ref. 8 it
was �=2.

A numerical solution of Eq. �72� was performed with
parameters a=1, g=1, c=70, E=0.9, K=0.1, for � within
the interval �� �1;2�. The results are presented in Fig. 2,
and Fig. 3. For �0���2, where �01.51, . . ., the only
stable solution is a stable fixed point. This region is of per-
fect synchronization �phase locking�, where the synchronous
oscillations have a constant amplitude and a constant phase

shift with respect to the external force. For ���0 the global
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IG. 2. Approaching the bifurcation point �=�0=1.51. . . of the solution of
he forced FGL equation for the isochronous case with fixed wave number
=0.1 is represented by real X�K , t� and imaginary Y�K , t� parts of A�K , t�.
he plots for orders �=2.00, �=1.70, �=1.60, �=1.56.
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FIG. 3. Transformation to the limit cycle of the solution of the forced FGL
equation for the isochronous case with fixed wave number K=0.1 is repre-
sented by real X�K , t� and imaginary Y�K , t� parts of A�K , t�. The plots for
orders �=1.54, �=1.52, �=1.50, �=1.40.
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ttractor for �72� is a limit cycle. Here, the motion of the
orced system is quasiperiodic. For �=2 there is a stable
ode. When � decreases, the stable mode transfers into a
table focus. At the transition point it loses stability, and a
table limit cycle appears. As the result, we have the decrease
f order � from 2 to 1 leads to the loss of synchronization
see Figs. 2 and 3�.

The value of ��1, when the bifurcation and synchroni-
ation appears in our case can be easily understood from the
esults of Ref. 63, where it was shown that the fractional
erivative in a nonlinear oscillations model leads to a dissi-
ation with a decrement of the order cos�� /�� for 1��
2. Our results show that the fractional derivative in Eq.

36� does not change the qualitative pattern of synchroniza-
ion but, instead, brings a new parameter to control the pro-
ess under consideration. Evidently, synchronization and bi-
urcation in the following simulations are at the dissipation
arameter value of order one since the dissipation, frequency,
nd nonlinearity terms in �72� are all of order one. The
hoice of the wave number K can be arbitrary but we select
t to be small in order to satisfy the infrared approximation.

In Fig. 2 ��=2.00, �=1.70, and �=1.60, �=1.56�, we
ee that in the synchronization region all trajectories are at-
racted to a stable node.

In Fig. 3 ��=1.54, �=1.52, and �=1.50, �=1.40�, a
table limit cycle appears via the Hopf bifurcation. For �
1.54, and �=1.52, near the boundary of synchronization

he fixed point is a focus. For �=1.4, the amplitude of the
imit cycle grows, and synchronization breaks down.

. Phase and amplitude for the forced FGL equation

The oscillator medium can be characterized by a single
eneralized phase variable �52�. We can rewrite �52� as

��X,Y� = arctan�Y/X� −
b

2
ln�X2 + Y2� , �73�

here X and Y are defined by �61�. For E=0, the phase
otates uniformly

d

dt
� = − ��K� = a − gc�K��, �74�

here ��K� is given by �46� with b=0, and can be consid-
red as a frequency of natural oscillations. For E�0, Eqs.
72� and �73� give

d

dt
� = − ��K� − E cos � . �75�

his equation has an integral of motion. The integral is

I1 = 2�2 − E2�−1/2 arctan�� − E�

	�2 − E2�−1/2 tan���t�/2�� + t, 2 � E2, �76�

I2 = 2�E2 − 2�−1/2 arctanh��E − �

	�E2 − 2�−1/2 tan���t�/2�� + t, 2 � E2. �77�

hese expressions help to obtain the solution in the form
40� for the forced case �71� keeping the same notations as in

40�. For polar coordinates we get
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dR

dt
= �1 − g�K���R − R3 − E sin � ,

�78�
d�

dt
= �a − cg�K��� −

E cos �

R
.

The numerical solution of �78� was performed with the same
parameters as for Eq. �72�, i.e., a=1, g=1, c=70, E=0.9,
K=0.1, and � within the interval �� �1,2�. The results are
presented in Figs. 4 and 5.

The time evolution of phase ��K , t� is given in Fig. 4 for
�=2.00, �=1.50, �=1.47, �=1.44, �=1.40, �=1.30, �
=1.20, �=1.10. The decrease of � from 2 to 1 leads to the
oscillations of the phase ��K , t� after the Hopf bifurcation at
�0=1.51, . . ., then the amplitude of phase oscillation de-
creases and the velocity of phase rotations increases.

The amplitude R�K , t� is shown in Fig. 5 for �=1.6, �
=1.55, �=1.55, �=1.51, �=1.50, �=1.45, �=1.2. The ap-
pearance of oscillations in the plots means the loss of syn-
chronization.

IV. SPACE-STRUCTURES FROM THE FGL EQUATION

In previous sections, we considered mainly time evolu-
tion and “time structures” as solutions for the FGL equation.
Particularly, the synchronization process was an example of
the solution that converged to a time-coherent structure.
Here, we focus on the space structures for the solution of the
FGL equation �36� with b=c=0 and the constants a1 and a2

ahead of the linear term,

�

�t
Z = �a1 + ia2�Z − �Z�2Z + g

��

� �x��
Z . �79�

Let us seek a particular solution of �79� in the form

Z�x,t� = R�x,t�ei��t�, R*�x,t� = R�x,t�, �*�t� = ��t� .

�80�

Substitution of �80� into �79� gives

FIG. 4. Phase ��K , t� for K=0.1 and �=2.00, �=1.50, �=1.47, �=1.44,
�=1.40, �=1.30, �=1.20, �=1.10. The decrease of order � corresponds to
the clockwise rotation of curves. For the upper curve �=2. For the most
vertical curve �=1.1.
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�

�t
R = a1R − R3 − g

��

� �x��
R,

�

�t
��t� = a2. �81�

sing ��t�=a2t+��0�, we arrive at the existence of a limit
ycle with R0=a1

1/2.
A particular solution of �81� in the vicinity of the limit

ycle can be found as an expansion

R�x,t� = R0 + �R1 + �2R2 + . . . �� 
 1� . �82�

ero approximation R0=a1
1/2 satisfies �81� since �� /��x��1

0, and for R1=R1�x , t�, we have

�

�t
R1 = − 2a1R1 + g

��

� �x��
R1. �83�

Consider the Cauchy problem for �83� with an initial
ondition

R1�x,0� = ��x� , �84�

IG. 5. Amplitude R�K , t�. The upper curve corresponds to �=2 for all pl
=1.2. The appearance of oscillations on the plots means the loss of synch
nd the Green function G�x , t� such that

wnloaded 15 May 2006 to 128.122.81.37. Redistribution subject to AIP
R1�x,t� = �
−�

+�

G�x�,t���x − x��dx�. �85�

Let us apply the Laplace transform for t and the Fourier
transform for x,

G̃�k,s� = �
0

�

dt�
−�

+�

dxe−st+ikxG�x,t� . �86�

By the definition of the Riesz derivative,

��

� �x��
G�x,t� ↔ − �k��G̃�k,s� , �87�

and for the Laplace transform with respect to time

�

�t
G�x,t� ↔ sG̃�k,s� − 1. �88�

Applying �86�–�88� to �83�, we obtain

he lower curves correspond to �=1.6, �=1.55, �=1.51, �=1.50, �=1.45,
ation.
ots. T
roniz
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sG̃�k,s� − 1 = − 2a1G̃�k,s� − g�k��G̃�k,s� �89�

r

G̃�k,s� =
1

s + 2a1 + g�k��
. �90�

et us first invert the Laplace transform in �90�. Then, the
ourier transform of the Green function

Ĝ�k,t� = �
−�

+�

dxeikxG�x,t� = e−�2a1+g�k���t = e−2a1te−g�k��t.

�91�

s the result, we get

G�x,t� = �gt�−1/�e−2a1tL��x�gt�−1/�� , �92�

here

L��x� =
1

2�
�

−�

+�

dke−ikxe−a�k�� �93�

s the Levy stable PDF �Ref. 55�. The PDF L��x� for �
2.0, �=1.6, and �=1.0 are shown in Fig. 6.

As an example, for �=1 we have the Cauchy distribu-
ion with respect to the coordinate

e−�k� ↔ L1�x� =
1

�

1

x2 + 1
�94�

nd

G�x,t� =
1

�

�gt�−1e−2a1t

x2�gt�−2 + 1
. �95�

or �=2, we get the Gauss distribution

e−k2 ↔ L2�x� =
1

2��
e−x2/4 �96�

IG. 6. Gauss PDF ��=2�, Levy PDF ��=1.6�, and Cauchy PDF ��=1.0�.
evy for �=1.6 lies between the Cauchy and Gauss PDF. In the asymptotic
→� and x�3 on the plot, the upper curve is the Cauchy PDF, and the

ower curve is the Gauss PDF.
nd
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G�x,t� = �gt�−1/2e−2a1t 1

2��
e−x2/�4gt�. �97�

For 1���2 the function L��x� can be presented as the
convergent expansion

L��x� = −
1

�x
�
n=1

�

�− x�n��1 + n/��
n!

sin�n�/2� . �98�

The asymptotic �x→�, 1���2� is given by

L��x� � −
1

�x
�
n=1

�

�− 1�nx−n���1 + n��
n!

sin�n�/2�,

x → � , �99�

with the leading term

L��x� � �−1��1 + ��x−�−1, x → � . �100�

As the result, the solution of �79� is

Z�x,t� = ei�a2t+��0���a1
1/2 + ��gt�−1/�e−2a1t

	�
−�

+�

L��x��gt�−1/����x − x��dx� + O��2�� .

�101�

This solution can be considered as a space-time synchroni-
zation in the oscillatory medium with long-range interaction
decreasing as �x�−��+1�.

For ��x�=��x−x0�, solution �101� has the form

Z�x,t� = ei�a2t+��0���a1
1/2 + ��gt�−1/�e−2a1t

	L���x − x0��gt�−1/�� + O��2�� , �102�

and the asymptotic is

Z�x,t� = ei�a2t+��0���a1
1/2 + �gte−2a1t�−1��1 + ��

	�x − x0�−�−1 + O��2��, x → � . �103�

This solution shows that the long-wave modes approach the
limit cycle exponentially with time. For t=1/ �2a1�, we have
the maximum of �Z�x , t�� with respect to time,

max
t�0

�Z�x,t�� = a1
1/2 + �g

��1 + ��
2�e

�x − x0�−�−1 + O��2� .

�104�

As the result, we have the power law decay with respect to
the coordinate for the space structures near the limit cycle
�Z � =a1

1/2.

V. NONLINEAR LONG-RANGE INTERACTION
AND FRACTIONAL PHASE EQUATION

Here, we would like to show one more application of the
replacement of dynamical equation by the fractional ones for
a chain with long-range interaction. The model was first con-
sidered in Refs. 10, 11, and 49 with application in biology
and chemistry. This model has additional interest since it can

be reduced to a chain of interacting spins.
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. Nonlinear nonlocal phase coupling

Let us consider the phase equation

d

dt
�n�t� = n + g �

m=−�,m�n

+�

J��n − m�sin��n − �m� , �105�

here �n denotes the phase of the nth oscillator, n its natu-
al frequency, and

J��n� = �n�−�−1. �106�

or �=−1, Eq. �105� defines the Kuramoto model11,49–51

ith sinusoidal nonlocal coupling �infinite radius of interac-
ion�. We can rewrite Eq. �105� for classical spin-like vari-
bles

sn�t� = ei�n�t�, sin��n − �m� =
1

2i
�snsm

* + sn
*sm� . �107�

hen Eq. �105� is

n
* d

dt
sn = in +

g

2 �
m=−�,m�n

+�
1

�n − m��+1 �snsm
* + sn

*sm� . �108�

his equation describes the long-range interaction of spin
ariables. We also will call Eq. �108� as the phase coupling
quation since �sn�2=const. Thermodynamics of the model of
lassical spins with long-range interactions have been stud-
ed for more than 30 years. An infinite one-dimensional Ising
odel with long-range interactions was considered by
yson.18 The d-dimensional classical Heisenberg model with

ong-range interaction is described in Refs. 19 and 20, and its
uantum generalization with long-range interaction de-
reases as �n�−� can be found in Ref. 21.

. Phase-coupled oscillatory medium with nonlinear
ong-range interaction

Let us derive an equation for the continuous medium
hat consists of oscillators of �105� or �108� type with non-
inear long-range interaction. The medium can be defined by
he field

S�x,t� =
1

2�
�

−�

+�

dkeikx �
n=−�

+�

e−iknsn�t� . �109�

e also will need the following momentum representations:

a�k,t� = �
n=−�

+�

e−iknsn�t� . �110�

or the left-hand side of �108�, we get

1

2�
�

−�

+�

dkeikx �
n=−�

+�

e−iknsn
* d

dt
sn = S*�x,t�

d

dt
S�x,t� . �111�
or the interaction term, we similarly obtain �9�–�17�:
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1

2�
�

−�

+�

dkeikx �
n=−�

+�

e−ikn �
m=−�,m�n

+�
1

�n − m��+1sn
*sm

= S*�x,t�
1

2�
�

−�

+�

dk1a�k1,t�J̃��k1�eik1x

= S*�x,t��2��� + 1�S�x,t� − a�

��

� �x��
S�x,t�

+ 2�
n=0

�
��� + 1 − 2n�

�2n�!
�2n

�x2nS�x,t�� , �112�

where we use �15� for J̃��k�, and a� is the same as in �18�.
For the term n, we use

�x� =
1

2�
�

−�

+�

dkeikx �
n=−�

+�

e−iknn. �113�

If all oscillators have the same natural frequency n=, then
�x�=.

As the result, Eq. �108� is transformed into

S*�x,t�
�

�t
S�x,t�

= i�x� − f�S*�x,t�S�x,t�

− g��S*�x,t�
��

� �x��
S�x,t� + S�x,t�

��

� �x��
S*�x,t��

+ g�
n=1

�
��� + 1 − 2n�

�2n�!

	�S*�x,t�
�2n

� �x�2nS�x,t� + S�x,t�
�2n

� �x�2nS*�x,t�� , �114�

where

f� = 2g��� + 1�, g� = �1/2�a�g = g��− ��cos���/2� . �115�

Equation �114� is a fractional equation for the oscillatory
medium with long-range interacting spins �108�. We can call
�114� the fractional phase equation.

In the infrared approximation �k→0�, we can use �15�

J̃��k�  2��− ��cos���/2��k�� + 2��� + 1�,

0 � � � 2, � � 1, �116�

and Eq. �114� is reduced to

S*�x,t�
�

�t
S�x,t� = i�x� − f� − g��S*�x,t�

��

� �x��
S�x,t�

+ S�x,t�
��

� �x��
S*�x,t�� , �117�

where 0���2, ��1.

VI. CONCLUSION

A one-dimensional chain of interacting objects, say os-
cillators, can be considered as a benchmark for numerous

applications in physics, chemistry, biology, etc. All consid-
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red models were related mainly to the oscillating objects
ith long-range powerwise interaction, i.e., with forces pro-
ortional to 1/ �n−m�s and 2�s�3. A remarkable feature of
his interaction is the possibility of replacing the set of
oupled individual oscillator equations into the continuous
edium equation with the fractional space derivative of the

rder �=s−1, where 0���2, ��1. Such a transformation
s an approximation and it appears in the infrared limit for
he wave number k→0. This limit helps us to consider dif-
erent models and related phenomena in a unified way apply-
ng different tools of fractional calculus.

A nontrivial example of the general property of the frac-
ional linear equation is its solution with a powerwise decay
long the space coordinate. From the physical point of view
hat means a new type of space structure or coherent struc-
ure. The scheme of the equations with fractional derivatives
ncludes either the effect of synchronization,8 breathers,56–58

ractional kinetics,1 and others.
Discrete breathers are periodic space-localized oscilla-

ions that arise in discrete and continuous nonlinear systems.
heir existence was proven in Ref. 59. Discrete breathers
ave been widely studied in systems with short-range inter-
ctions �for a review, see Refs. 56 and 60�. Energy and decay
roperties of discrete breathers in systems with long-range
nteractions have also been studied in the framework of the
lein-Gordon,57,61 and the discrete nonlinear Schrödinger

quations.62 Therefore, it is interesting to consider breathers
olution in systems with long-range interactions in the infra-
ed approximation.

We also assume that the suggested replacement of the
quations of interacting oscillators by the continuous me-
ium equation can be used for improvement of simulations
or equations with fractional derivatives.
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