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We consider a chain of nonlinear oscillators with long-range interaction of the type 1 / l1+�, where l
is a distance between oscillators and 0���2. In the continuous limit, the system’s dynamics is
described by a fractional generalization of the Ginzburg-Landau equation with complex coeffi-
cients. Such a system has a new parameter � that is responsible for the complexity of the medium
and that strongly influences possible regimes of the dynamics, especially near �=2 and �=1. We
study different spatiotemporal patterns of the dynamics depending on � and show transitions from
synchronization of the motion to broad-spectrum oscillations and to chaos. © 2007 American
Institute of Physics. �DOI: 10.1063/1.2819537�

A chain of nonlinear interacting oscillators is a model of
the widespread investigation of different physical phe-
nomena such as synchronized behavior of the system, bi-
furcations to different regimes, spatiotemporal turbulent
or chaotic dynamics, different instabilities, appearance of
defects, and many others. The long-range interaction be-
tween oscillators leads to a new qualitative dynamics and
thermodynamics. Our consideration is related to the
power-law long-range interaction that makes it possible
to find new regimes and to establish a link of the corre-
sponding equations of motion to the equations with frac-
tional derivatives.

I. INTRODUCTION

The goal of the paper is to consider different dynamical
regimes, from synchronization to chaos and turbulence, in a
chain of large number of coupled nonlinear oscillators with
long-range interaction �LRI� of a power type. The potential
of interaction is nonlocal and proportional to 1 / l1+� with l as
a distance between oscillators and 0���2 ���1�. It will
be called �-interaction. Transitions between different re-
gimes of the chain behavior are considered as a function of
�. In the continuous limit the system reduces to the fractional
generalization of the Ginzburg-Landau �FGL� equation and
the chain of oscillators can be considered as a discretized
model of FGL, called DFGL. The considered model has
complex coefficients and it can also be related to a fractional
generalization of the complex nonlinear Schrödinger equa-
tion. Let us comment that the main physical feature of the

model is the LRI of a power type, and the analogy to the
equation with fractional derivative plays an auxiliary role.

The literature related to this type of problem is fairly
waste and we would refer only to some reviews and closely
related articles. The complex Ginzburg-Landau equation is
considered, typically, for pattern formation in different
media.1–3 CGL equation appears in numerous physical mod-
els �see, for example, Refs. 4–7�. Long-range interaction
with finite radius of interaction was considered for complex
media in Refs. 8 and 9 and for the �-interaction in Refs.
10–14. Different regimes of synchronization in the chain of
coupled oscillators with nearest neighbor interaction can be
found in reviews15,16 while the synchronization with
�-interaction for DFGL was obtained in Refs. 17 and 18. The
FGL equation was introduced in Ref. 19 to describe the wave
propagation in complex media, when the dispersion law has
fractional power of the wave number. The related case ap-
pears in description of weak turbulence.20 More examples
related to the chains with LRI and their solution of the soli-
ton or breather type can be found in Refs. 21 and 22.

The main part of this paper is a numerical simulation of
the chain of N=512 coupled oscillators with �-interaction
and constant external force that pump energy into the system.
This system links to the FGL equation in a continuous limit
based on the formal procedure introduced in Refs. 17 and 23.

It will be shown that the forcing oscillatory media with
LRI exhibits transition to chaos and turbulence when � de-
creases. As another interesting regime, we found a �collec-
tivized� limit cycle that has a broad spectrum in phase space
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�of any individual oscillator. Such a cycle exists within an
interval of �.

In Sec. II, we present the basic equation for coupled
oscillators and their continuous media limit. This part in-
cludes some modified version of the results of Refs. 17 and
24. In Sec. III, we consider fractional generalization of the
CGL equation and some of its stability criteria. Sections
IV–VI play an auxiliary role in identifying an interesting
domain of parameters to be studied. The main numerical
results are presented in Secs. VII–IX. It is important to note
that the main studied object is the chain of nonlinear oscil-
lators, and a part of the obtained results, can be appropriate
for the complex FGL equation at least for a finite time. The
FGL equation can also be used for some estimates of the
critical parameters to change the regimes of behavior of the
chain of oscillators.

II. CHAIN OF OSCILLATORS
WITH LONG-RANGE INTERACTION

Following Ref. 24, let us introduce the system by the
equations

dZn

dt
+ g0 �

m=−�

m�n

+�

J���n − m���Zm�t� − Zn�t�� + F�Zn�t�� = 0, �1�

where F�Z�=�V�Z� /�Z, g0 as an interaction constant, and
interparticle interaction is

J���n − m�� =
1

�n − m��+1 , �� � 0� , �2�

and the usual linear oscillator term Zn�t� can be included into
V�Zn�t��.

A continuous limit of Eq. �1� can be defined by a trans-
form operation from Zn�t� to Z�x , t�.17,23 First, define Zn�t� as

Fourier coefficients of some function Ẑ�k , t�, k
� �−K0 /2,K0 /2�, i.e.,

Ẑ�t,k� = �
n=−�

+�

Zn�t�e−ikxn = F��Zn�t�� , �3�

where xn=n�x, and �x=2� /K0 is a distance between nearest
particles in the chain, and

Zn�t� =
1

K0
	

−K0/2

+K0/2

dkẐ�t,k�eikxn = F�
−1�Ẑ�t,k�� . �4�

Second, in the limit �x→0 �K0→�� replace Zn�t�
= �2� /K0�Z�xn , t�→Z�x , t�dx, and xn=n�x=2�n /K0→x. In
this limit, Eqs. �3� and �4� are transformed into the integrals

Z̃�t,k� = 	
−�

+�

dxe−ikxZ�t,x� = F�Z�t,x�� = lim
�x→0

F��Zn�t�� , �5�

Z�t,x� =
1

2�
	

−�

+�

dkeikxZ̃�t,k�

= F−1�Z̃�t,k��

= lim
�x→0

F�
−1�Ẑ�t,k�� . �6�

Applying Eq. �3� to Eq. �1� and performing the limit Eq.
�5�, we obtain

�Z�t,x�
�t

+ g�

��Z�t,x�
��x��

+ F�Z�t,x�� = 0 �1 � � � 2� , �7�

where �� /��x�� is the fractional Riesz derivative25 defined by

��Z�t,x�
��x��

= F−1��k��Z̃�t,k��

and

g� = 2g0��x����− ��cos
��

2
� �8�

is the renormalized interaction constant. Equations of type
�7� with different nonlinear terms were considered in Refs.
17 and 23. For other values of � one can obtain a similar
equation to Eq. �7� by performing the corresponding trans-
form operation.

III. COMPLEX NONSTATIONARY GINZBURG-LANDAU
EQUATION

Consider a chain of the nearest-neighbor coupled nonlin-
ear oscillators described by the equations

d

dt
Zn�t� = �1 + ia�Zn − �1 + ib��Zn�2Zn

+ �c1 + ic2��Zn+1 − 2Zn + Zn−1� , �9�

where we assume that all oscillators have the same internal
parameters. Such equations can be obtained from Eq. �1� for
�=� and the corresponding choice of g0 and V�Zn�. Transi-
tion to the continuous medium assumes that the difference
Zn+1−Zn is of the same order as �x, and the interaction con-
stants c1 and c2 are fairly large. Setting c1=g��x�−2, c2

=gc��x�−2 with new constants g and c, we get

�

�t
Z = �1 + ia�Z − �1 + ib��Z�2Z + g�1 + ic�

�2

�x2Z , �10�

which is a time-dependent complex Ginzburg-Landau �CGL�
equation.

Let us come back to the equation for nonlinear oscilla-
tors with fractional long-range coupling

d

dt
Zn = �1 + ia�Zn − �1 + ib��Zn�2Zn

+ g0 �
m�n

1

�n − m��+1 �Zn − Zm� , �11�

where Zn=Zn�t� is the position of the nth oscillator in the
complex plane, 1���2, and the corresponding choice of
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F�Zn�= �1+ i��Zn− �1+ ib��Zn
2�Zn has been done. The corre-

sponding equation in the continuous limit is

�

�t
Z = �1 + ia�Z − �1 + ib��Z�2Z + g�1 + ic�

��

��x��
Z

�1 � � � 2, � � 1� , �12�

where g�1+ ic�=g0a�,

a� = 2��− ��cos���/2� . �13�

Equation �12� is a fractional generalization of the complex
nonstationary Ginzburg-Landau �FGL� equation �10�. Equa-
tion �11� is the same as Eq. �1� with a special choice of V. It
was suggested in Ref. 19 to describe complex media with
fractional dispersion law.

The FGL equation �12� can be presented as the system of
real equations

d

dt
X = 
1 − g

��

��x���X − 
a − gc
��

��x���Y

− �X2 + Y2��X − bY� ,

�14�
d

dt
Y = 
1 − g

��

��x���Y + 
a − gc
��

��x���X

− �X2 + Y2��Y + bX� ,

where X=X�t ,x� and Y =Y�t ,x� are real and imaginary parts
of Z�t ,x�.

The results of numerical simulation of the system �11�
can be applied for a finite time for the FGL equation �12�
although it is well known that typically the discrete systems
are more chaotic than their continuous counterpart. Dis-
cretized equations can be presented in a form of the map.
Return back to the continuous differential equations from the
map leads to a new term that is equivalent to a high fre-
quency perturbation. This term can generate an area of cha-
otic dynamics in phase space, even if it does not exist with-
out this additional term, or the term can increase already
existing chaos.32 The system �11� will be called discretized
FGL equation or simply DFGL.

IV. PARAMETERS OF STABILITY
OF PLANE-WAVE SOLUTION

In this section, we obtain some conditions of instability
that will be implemented in numerical simulations of the
system �11�. These conditions are easy to derive and interpret
considering the FGL equation.

To obtain a particular solution of the FGL equation �12�
with a fixed wave number K, we consider Z in the form

Z�x,t� = A�K,t�eiKx. �15�

Substitution of Eq. �15� into Eq. �12� gives

�

�t
A�K,t� = �1 + ia�A − �1 + ib��A�2A − g�1 + ic��K��A . �16�

The plane-wave solution of Eq. �16� is

A�x,t� = �1 − g�K���1/2eiKx−i	��K�t, 1 − g�K�� � 0, �17�

where

	��K� = �b − a� + �c − b�g�K��, 1 − g�K�� � 0. �18�

The solution of Eq. �17� can be presented as

X0�x,t� = �1 − g�K���1/2 cos�Kx − 	��K�t + 
0� ,

�19�
Y0�x,t� = �1 − g�K���1/2 sin�Kx − 	��K�t + 
0�,

1 − g�K�� � 0,

where X=X�x , t�=Re Z�x , t�, Y =Y�x , t�=Im Z�x , t�, and 
0 is
an arbitrary constant phase. These solutions can be inter-
preted as a synchronized state of the oscillatory medium. In
fact, it will be shown by simulation that the synchronized
solution exists also for the DFGL equation �11�.

To obtain the stability condition, consider the variation
of Eq. �16� near solution �19�,

d

dt
�X = A11�X + A12�Y,

d

dt
�Y = A21�X + A22�Y , �20�

where �X and �Y are small variations of X and Y, and

A11 = 1 − g�K�� − 2X0�X0 − bY0� − �X0
2 + Y0

2� ,

A12 = − a + gc�K�� − 2Y0�X0 − bY0� + b�X0
2 + Y0

2� ,

�21�
A21 = a − gc�K�� − 2X0�Y0 + bX0� − b�X0

2 + Y0
2� ,

A22 = 1 − g�K�� − 2Y0�Y0 + bX0� − �X0
2 + Y0

2� .

The conditions of asymptotic stability for Eq. �20� are

A11 + A22 � 0, A11A22 − A12A21 � 0. �22�

Substitution of Eqs. �19� and �21� into Eq. �22� gives

A11 + A22 = − 2�1 − g�K��� , �23�

A11A22 − A12A21 = �b�1 − g�K��� − �a − gc�K����

��3b�1 − g�K��� − �a − gc�K���� . �24�

Then the conditions �22� have the form

1 − g�K�� � 0,

�25�
1 − g�K�� � a/b − �c/b�g�K�� � 3�1 − g�K��� ,

i.e., the plane-wave solution �17� is unstable if the param-
eters a, b, c, and g do not satisfy Eq. �25�. Condition �25�
defines the region of parameters for plane waves where the
synchronization can exist.

In the numerical simulation, we use the parameters

a = − 1.2, b = − 2, c = 2, g = 1. �26�

Then Eq. �25� gives the inequalities

0 � 1 − �K�� � 0.6 + �K�� � 3�1 − �K��� . �27�

As a result, the plane-wave solution with E=0 is stable
for
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0.2 � �K�� � 0.6, �1 � � � 2� . �28�

In our numerical simulation, we use the initial conditions
with

�K� = 2�/64 � 0.09817 �29�

that is, K is in the unstable region for 1���2. In the fol-
lowing the initial conditions with perturbation E�0 will be
out of the boundaries �28�, and evolution of the initially un-
stable states will be studied.

V. MAPPING THE NUMERICAL DATA

Numerical results are obtained as solutions of the
coupled equations

d

dt
Zn = �1 + ia�Zn − �1 + ib��Zn�2Zn

+
1 + ic

a���x�� �
m�n

N
1

�n − m��+1 �Zn − Zm� + E , �30�

where n=1, . . . ,N, �x=1, and E is a constant external force.
In simulations, the number of oscillators was N=512, and the
external force was E=0.3. In the continuous limit, Eq. �30�
transforms into the FGL equation with forcing.

For all sets of parameters, we integrate the DFGL equa-
tions with the initial conditions

Zn�0� = A0eiKn, �31�

where �K�=2� /T, the space period is T=64, and A0 is an
initial amplitude. Numerical solutions were stored at each
tq=0.005q, where q�N.

To visualize the numerical solution we consider the fol-
lowing values:

�1� We plot the surface �Z�x , t��2 and the phase-space
projection of the central oscillator �n=0,xn=0� formed by
the variables,

A�t� = �Z�0,t��2, Ȧ�t� =
dA�t�

dt
. �32�

�2� In addition to Eq. �32�, we plot Y�t�=Im�Z�0, t�� ver-
sus X�t�=Re�Z�0, t�� for better resolution of the central os-
cillator behavior.

�3� We calculate the discrete Fourier transform of the
sequence Z�0, tq� defined as

Ẑn�	 j� =
1

Q
�
q=0

Q−1

Zn�tq�exp�− i	 jtq� , �33�

Zn�tq� = �
j=0

Q−1

Ẑn�	 j�exp�i	 jtn� , �34�

where 	 j =2�j /Q, �j=0, . . . ,Q−1�. The spectrum of the se-
quence Zn�tq� for q=0, . . . ,Q−1 is given by

Sj  S�	 j� = �Ẑn�	 j��2. �35�

Our main goal is to compare solutions of the DFGL equation
for different values of �� �1,2� and consider emergence of
chaotic dynamics of the chain of oscillators as a function of

�. The larger �, the weaker the long-range interaction.
In the simulations, we consider the following plots:
�a� Color plots present surfaces �Zn�t��2 versus t and n;
�b� Plane �A ,dA /dt� displays a projection of the trajec-

tory of the central oscillator �see definition in Eq. �32��;
�c� Plane �Re Z , Im Z� displays a projection of the com-

plex amplitude Z=Z�0, t� of the central oscillator as a func-
tion of time;

�d� Plots �log10 	 , log10 S� describe the spectrum of time
oscillations of Z�0, t� �see definition in Eq. �35��.

VI. SOME NUMERICAL RESULTS
FOR THE CGL EQUATION

In this section, we provide some numerical results de-
rived in Refs. 17 and 26–29 for the complex Ginzburg-
Landau �CGL� equation in order to compare them, obtained
for �=2, with our results for ��2. For many other results
and details, see Refs. 1, 3, and 15.

�a� In Ref. 27, the CGL equation has been considered for
the parameters

� = 2, a = 0 b = 1.333, c = − 1, �36�

and the phase turbulence has been observed.
�b� It was shown in Ref. 28 that for the parameters

� = 2, a = 0, b = − 1.4, c = 0.6, �37�

solution of the CGL equation has chaotic states and it is
spatiotemporal intermittent.

�c� It was found in Ref. 28 that for the parameters

� = 2, a = 0, b = 1.2, c = − 0.6, �38�

solution of the CGL equation has zig-zagging holes near the
transition to the plane waves.

�d� In Ref. 26 the CGL equation was considered for the
parameters

� = 2, a = − 1.2, b = − 2, c = 2. �39�

For E=0.35 the solution displays pitchforks without defects
while for E=0.23 the rare defects were observed.

�e� In Ref. 17, the FGL equation was considered for the
parameters

1 � � � 2, a = 1, b = 0, c = 70. �40�

It was shown that the solution had one stable fixed point for
�0���2, ��0=1.51� that corresponds to synchronization of
oscillators. Decreasing � below �0 leads to a limit cycle via
the Hopf bifurcation.

VII. TRANSITION FROM SYNCHRONIZATION
TO TURBULENCE

Regular propagation in time of the initial state of the
chain of oscillators will be called synchronization. To con-
sider �-dependence of transition from synchronization to tur-
bulence near �=2, we use the parameters

a = − 1.2, b = − 2, c = 2, A0 = 0.2, �41�

similar to Eq. �39� that were used in Ref. 26 for the CGL
equation �12�, but for the chain of oscillators with ��2. The
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simulation was performed for the chain of 512 oscillators
with parameters equivalent to Eq. �41�.

In Fig. 1, the surfaces of �Zn�t��2 versus t and x=n for
�=1.940, �=1.935, �=1.930, �=1.925, �=1.910, �=1.810
are shown. For �=1.940, we have a regular space structure
of the plane-wave-type. For �=1.935, there is a space modu-
lation, which deforms the regular space structure. For �
=1.930, we can see the appearance of defects and pitchforks.
For �=1.925, the structure in the space-time demonstrates
sharp and drastic changes. There exist many defects and
pitchforks. For �=1.910, the number of defects and pitch-
forks is increased, and some pitchforks are joined. For �
=1.810, we can see chaos and turbulence, and synchroniza-
tion is completely lost. We see that the amplitude turbulence
is characterized by persistent creation and annihilation of
pitchforks. The decreasing order of the fractional derivative
means increasing the role of the LRI. It is worthwhile to
comment that the loss of synchronization and the emergence

of amplitude turbulence is fairly sharp with a fairly small
change of �.

In Fig. 2 the plane �Re Z , Im Z� shows projection of the
complex amplitude Z=Z�0, t� of the central oscillator as a
function of time for �=1.940, �=1.930, �=1.925, �
=1.810. For �=1.94 and �=1.93, there is a stable node,
which means the existence of synchronization. The dynamics
of the chain appears to be sensitive to the changes of � even
in the second decimal digit. Conformation of that can also be
found in Fig. 3, where the plane �A ,dA /dt� shows projection
of the trajectory of the central oscillator and A�t�= �Z�0, t��2.
For �=1.94 and �=1.93, the attracting point that corre-
sponds to synchronization of the chain of oscillators is
clearly seen. Characteristics of the turbulent motion, shown
in Fig. 1. for �=1.925, �=1.91, �=1.81, are different from
the cases of larger �. This difference can be better recog-
nized from Figs. 2–4. Particularly, in Fig. 2. for �−1.925 and

FIG. 1. �Color� Alpha-dependence of transition from
synchronization to turbulence near �=2. Surfaces of
�Zn�t��2 vs t and x=n for �=1.940, �=1.935, �=1.930,
�=1.925, �=1.910, �=1.810. Simulations are realized
for FGL equation with parameters a=−1.2, b=−2, c
=2, A0=0.2.
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�=1.81 behavior of Re Z=Re Z�0, t� and Im Z=Im Z�0, t�
displays a disordered process that on the plane �A ,dA /dt� in
Fig. 3. reveals a structure similar to what is usually observed
for chaotic attractors. Nevertheless, a more specific statement
needs more detailed analysis since our system is open and
has many degrees of freedom. While the plane �A ,dA /dt�
displays a similarity to the chaotic attractor for one oscillator,
more precise formulation and definitions are necessary. From
this point the definition of a turbulent regime does not have

at the moment exact dynamical background and we use this
notion just to claim a space-time disordered motion. One
more comment is related to the comparison of the plots for
�=1.94 and �=1.93. While there is no visually significant
difference for the central oscillator in Figs. 2 and 3, the dif-
ference is essential for the collective motion as it seems from
Fig. 1. Similarly, we demonstrate the difference between �
=1.925 and �=1.81.

In Fig. 4 we show the spectrum of time oscillations of
Z�0, t� �see definition in Eq. �35�� for �=1.940, �=1.930,
�=1.925, �=1.810. For �=1.94 and �=1.93, the spectrum
has small numbers of harmonics, and it corresponds to the
regime of synchronization in the oscillator medium. For �
=1.925, the spectrum is filled by additional harmonics. For
�=1.81, the spectrum has a dense set of frequencies for the
region 0.1�	�1 that reflects the chaos behavior and turbu-
lence of the oscillator medium. For the region 1�	�100,
we can see the integer power-law for the spectrum S�	�
�	−2 that corresponds to the main frequency dependence of
Eq. �16�.

VIII. TRAVELING WAVES AND BROADENING
OF THE LIMIT CYCLE

A large number of oscillators and periodic boundary
conditions permit us to consider localized traveling waves
�see, for example, for discrete systems in Refs. 30 and 31�.
Such waves were observed in our system �30� near the values
of �2 and disappear near ��1. In the latter case, space-
temporary localized topological defects will also be demon-
strated.

The simulation was performed for the parameters

a = 1, b = 0, c = 2, A0 = 0.2. �42�

For the value b=0, the nonlinear term is real.

FIG. 2. Alpha-dependence of transition from synchronization to turbulence
near �=2. Plane �Re Z , Im Z� shows projection of the complex amplitude
Z=Z�0, t� of the central oscillator as a function of time for �=1.940, �
=1.930, �=1.925, �=1.810.

FIG. 3. Alpha-dependence of transition from synchronization to turbulence
near �=2. Plane �A ,dA /dt� shows projection of the trajectory of the central
oscillator in phase space, where A�t�= �Z�0, t��2 for �=1.940, �=1.930, �
=1.925, �=1.810.

FIG. 4. Alpha-dependence of transition from synchronization to turbulence
near �=2. Spectrum of time oscillations of Z�0, t� �see definition in Eq.
�35�� for �=1.940, �=1.930, �=1.925, �=1.810.
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The waves propagation can be characterized by the
group velocity v�,g=�	��K� /�K. From Eq. �18�, we obtain

v�,g = ��c − b�g�K��−1. �43�

The phase velocity is

v�,ph = 	��K�/K =
b − a

K
+ �c − b�g�K��−1. �44�

For the parameters used in the simulations we have �v�,g�
� �v�,g�. In our simulation K=2� /64. For our simulation K
=2� /64, and the decrease of the order � leads to the increase
of the group and phase velocities.

The corresponding simulation is shown in Figs. 5–8 for
the surfaces �Zn�t��2 �Fig. 5�, Re Z and Im Z plane �Fig. 6�,
�dA /dt ,A�-plane �Fig. 7� and spectrum S�	� in Fig. 8. Each
of the plates has the some additional information about so-
lutions. There is a strong difference between values �
=1.99, �=1.45, and �=1.07, �=1.05, �=0.91 while the
case of �=1.09 is not clear since the finite time of simulation
�t�1000�. The first case ��=1.99, �=1.45� shows traveling
waves along x with regular �periodic or quasiperiodic� pat-

terns. In Figs. 5 and 6, we observe the approach of the solu-
tion to a limit cycle with a few harmonics in the spectrum
�Fig. 8�. At the same time the smaller the �, the smaller
scales �larger values of K� enter the solution.

For � close to one ��=1.07, �=1.05, �=0.91� a fairly
irregular pattern of traveling wave declines at some time, and
synchronized oscillations take place. In the phase diagrams
in Figs. 6 and 7 a broadened limit cycle type picture corre-
sponds to collective oscillations of the chain with fairly rich
spectrum presented in Fig. 8. The closer � is to one, the
shorter the time break of traveling waves, and the synchro-
nized breather-type solution appears. Since the growth of
wave numbers K of the solution, its amplitude can reach zero
giving rise the topological defects.3 Their appearance is
clearly seen from Figs. 6 and 7 for �=1.05 �see also Fig. 5�,
when the amplitude A�t�= �Z�0, t��2 reaches zero value. It is
seen that for �=1.07 and �=0.91 the dynamics is close to
the appearance of the topological defect. Zero of the com-
plex field Z result in singularity of the phase 
=arg Z. In two
dimensions, points of singularities correspond to quantized
vortices with topological charge

FIG. 5. �Color� Broadening of limit cycle. Wave front
deinclination. Surfaces of �Zn�t��2 vs t and x=n for �
=1.99, �=1.45, �=1.09, �=1.07, �=1.05, �=0.91.
Simulations are realized for the FGL equation with pa-
rameters a=1, b=0, c=2, A0=0.2.
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n =
1

2�
�

L

� 
dl , �45�

where L is a contour encircling a zero of Z.
For 1���2, we have the limit cycles around the point

A=1, dA /dt=0. It is easy to see the broadening of these limit
cycles, when � decreases.

Finally for this section, let us comment on the spectrum
of time oscillations of Z�0, t� for different �, presented in
Fig. 8. The broadening of limit cycle leads to widening of the
spectrum. The spectrum is filled out by different harmonics
that are localized in the region 0.1�	�1. For 	�1, we
have the dependence S�	��	−2 that follows directly from
Eq. �12�.

IX. AMPLITUDE DEPENDENCE OF THE TRANSITION
TO TURBULENCE

In this section, we would like to show that the turbulent
regime developing depends on the initial amplitude. For
simulation, we use some parameters as in Eqs. �39� and �26�
except for �=1.45.

It is seen from Fig. 9, that the decrease of the initial
amplitude A0 from 1.3 to 0.005 does not change, at least
visually, the space-time structure of turbulence, but the
change increases the time of developing an instability and

FIG. 6. Broadening of limit cycle. Plane �Re Z , Im Z� shows projection of
the complex amplitude Z=Z�0, t� of the central oscillator as a function of
time for �=1.99, �=1.45, �=1.09, �=1.07, �=1.05, �=0.91.

FIG. 7. Broadening of limit cycle. Appearance of topological defect. Plane
�A ,dA /dt� shows projection of the trajectory of the central oscillator in
phase space, where A�t�= �Z�0, t��2 for �=1.99, �=1.45, �=1.09, �=1.07,
�=1.05, �=0.91.

FIG. 8. Broadening of limit cycle. Spectrum of time oscillations of Z�0, t�
�see definition in Eq. �35�� for �=1.99, �=1.45, �=1.09, �=1.07, �
=1.05, �=0.91.
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beginning of turbulence. The turbulence possesses a robust-
ness with respect to change of the amplitude of initial exci-
tation and initial conditions.

In Fig. 10 the plane �A ,dA /dt� shows projection of a
trajectory of the central oscillator. There are random rota-
tions on the plane and a broadening of the spectrum in a
finite region of frequencies. Figure 10 shows many loops of
the trajectory for which dA /dt=0 and A is close to zero. That
means that the turbulent regime includes many different
points that are close to the topological defects.

X. CONCLUSION

The main goal of this paper was to study the influence of
long-range interaction �LRI� on the developing of chaotic or
turbulent motion in a one-dimensional chain of a large num-
ber of nonlinear oscillators. The LRI is characterized by the
power of interaction �. In the continuous limit the corre-
sponding equation is the nonstationary generalized
Ginzburg-Landau �FGL� equation with complex coefficients
and fractional derivatives of order � along the coordinate
variables. Our preliminary research show different interest-
ing regimes of behavior of the chain depending on the value
of �. We have observed a synchronized motion of the chain
with different complexes, such as defects, chaos, space-time
turbulence, traveling waves. The possibility of using a con-
tinuous analog of the chain equations such as the FGL equa-
tion, simplifies some estimates although it is well-known that
discrete model is �more chaotic� than the continuous one.32

As it was mentioned before, LRI introduced in Refs. 8–10

was aimed to describe some complex media such as mixture
of active chemical, biochemical, or magnetic components.
Some indirect indication of the presence of LRI follows from
the data observation �see, for example, Ref. 33, and refer-
ences therein�. Nevertheless, direct measurement of the LRI
in different extended nonlinear systems is still waiting for its
revealing.
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