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Using kicked differential equations of motion with derivatives of noninteger orders, we obtain
generalizations of the dissipative standard map. The main property of these generalized maps,
which are called fractional maps, is long-term memory. The memory effect in the fractional maps
means that their present state of evolution depends on all past states with special forms of weights.
Already a small deviation of the order of derivative from the integer value corresponding to the
regular dissipative standard map �small memory effects� leads to the qualitatively new behavior of
the corresponding attractors. The fractional dissipative standard maps are used to demonstrate a
new type of fractional attractors in the wide range of the fractional orders of derivatives. © 2010
American Institute of Physics. �doi:10.1063/1.3443235�

Discrete maps are widely used to study the general prop-
erties of dynamical systems. In those cases when they can
be derived from differential equations, their analysis
gives the exact properties of the corresponding systems.
In this article we derive discrete maps (fractional maps)
from the fractional differential equations, which corre-
spond to the fractional generalizations of the dissipative
standard map.1 We demonstrate how the attractors of the
fractional maps are different from the attractors of the
dissipative standard map.

I. INTRODUCTION

There is a number of distinct areas of physics where
basic problems can be reduced to the study of simple discrete
maps. Discrete maps as substitutes of differential equations
have been used to study evolution problems in Refs. 2–6.
They lead to a simpler formalism, which is particularly use-
ful in simulations. The dissipative standard map is one of the
most widely studied maps. In this paper we consider frac-
tional generalizations of the dissipative standard map which
are described by fractional differential equations.7–9

The treatment of nonlinear dynamics in terms of discrete
maps is a very important step in understanding the qualita-
tive behavior of systems described by differential equations.
The derivatives of noninteger orders are a natural generali-
zation of the ordinary differentiation of the integer order. The
fractional differentiation with respect to time is characterized
by long-term memory effects which correspond to intrinsic
dissipative processes in physical systems. The application of
memory effects to discrete maps means that their present
state of evolution depends on all past states.10–15,17

Discrete maps with memory can be derived �see Ref. 17�
from equations of motion with fractional derivatives. In Ref.
17 a fractional generalization of the standard map has been
derived from a fractional differential equation. A fractional
generalization of the dissipative standard map was also sug-

gested in Ref. 17. Unfortunately, in that generalization a dis-
sipation was introduced by the change of the variable
pn→−bpn. The map equations were not directly connected
with a fractional equation of motion. In this paper we pro-
pose two generalizations of the dissipative standard map.
The first one is derived from a differential equation with
fractional damped kicks. The second generalization of the
dissipative standard map is derived from a fractional differ-
ential equation �kicks are not fractional�. A nonlinear system
with fractional derivatives perturbed by a periodic force ex-
hibits a new type of chaotic motion which can be called the
fractional chaotic attractor.16 Fractional discrete maps17 are
used to study new types of attractors of fractional dynamics
described by kicked fractional equations. In this paper some
fractional differential equations of motion of kicked systems
with friction are considered. Corresponding discrete maps
with memory are derived from these equations. The frac-
tional generalizations of the dissipative standard map are
suggested and these maps are used in computer simulations.

II. DISCRETE MAPS WITHOUT MEMORY

In this section a brief review of discrete maps is consid-
ered to fix notations and provide convenient references. For
details, see Refs. 2–6.

A. Standard map

Let us consider the equation of motion

ẍ + K sin�x��
n=0

�

��t − n� = 0, �1�

in which perturbation is a periodic sequence of delta-
function-type pulses �kicks� following with period T=1, K is
the amplitude of the pulses. This equation can be presented
in the Hamiltonian form
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ẋ = p, ṗ + K sin�x��
n=0

�

��t − n� = 0. �2�

It is well known that these equations can be represented �see,
for example, Chap. 5 in Ref. 3� in the form of discrete map

xn+1 = xn + pn+1, �3�

pn+1 = pn − K sin�xn� . �4�

Equations �3� and �4� are called the standard map. This map
is also called the Chirikov map.4

B. Dissipative standard map

The dissipative standard map1,18,19 is

Xn+1 = Xn + �Yn+1 + � , �5�

Yn+1 = e−q�Yn + � sin�Xn�� , �6�

where �= �eq−1� /q. The dissipative standard map is also
called the Zaslavsky map. Note that a shift � does not play
an important role and it can be put to zero ��=0�. The dis-
sipative standard map with �=0 can be represented by the
equations

Xn+1 = Xn + Pn+1, �7�

Pn+1 = − bPn − Z sin�Xn� . �8�

For the parameters

Z = − ��e−q, Pn = �Yn, b = − e−q, �9�

Eqs. �7� and �8� give Eqs. �5� and �6� with �=0.
For b=−1 and Z=K, we get the standard map which is

described by Eqs. �3� and �4� with T=1.
Note that for large q→� �for small b→0� Eqs. �7� and

�8� with Z=−K shrink to the one-dimensional sine map pro-
posed by Arnold,20

Xn+1 = Xn + K sin�Xn� . �10�

C. Kicked damped rotator map

The equation of motion for a kicked damped rotator is

ẍ + qẋ = KG�x��
n=0

�

��t − nT� . �11�

It is well known5 that Eq. �11� gives the two-dimensional
map

xn+1 = xn +
1 − e−qT

q
�pn + KG�xn�� , �12�

pn+1 = e−qT�pn + KG�xn�� . �13�

This map is known as the kicked damped rotator map. The
phase volume shrinks each time step by a factor exp�−q�.
The map is defined by two important parameters, dissipation
constant q and force amplitude K. These equations can be
rewritten in the form

xn+1 = xn +
eqT − 1

q
pn+1,

pn+1 = e−qT�pn + KG�xn�� .

It is easy to see that these equations give the dissipative
standard map �7� and �8� with �=0 if we use

Xn = xn, Yn = pn, � = K, T = 1, G�x� = sin�x� .

This allows us to derive dissipative standard map �5� and �6�
from the differential equation,

Ẍ + qẊ = � sin�X��
n=0

�

��t − n� . �14�

These equations give the discrete map defined by Eqs. �5�
and �6� with �=0.

III. FRACTIONAL STANDARD MAP AND DISSIPATION

A fractional generalization of the differential Eq. �1� has
been suggested in Ref. 7. The discrete map which corre-
sponds to the fractional equation of order 1���2 was de-
rived. This map can be considered as a generalization of the
standard map for the case 1���2.

We consider a fractional generalization of Eq. �1� in the
form

0Dt
� x + K sin�x��

n=0

�

��t − n� = 0 �1 � � � 2� , �15�

where 0Dt
� is the Riemann–Liouville fractional derivative,7–9

which is defined by

0Dt
� x = Dt

2
0It

2−� x

=
1

	�2 − ��
d2

dt2�
0

t x�
�d


�t − 
��−1 �1 � � � 2� . �16�

Here we use the notation Dt
2=d2 /dt2, and 0It

� is a fractional
integration.7–9

Defining the momentum as

p�t� = 0Dt
�−1 x�t� ,

and using the initial conditions

�0Dt
�−1 x��0+� = p1, �0Dt

�−2 x��0+� = b , �17�

it is possible to derive the equation for the fractional standard
map.

Proposition 1: The fractional differential equation of the
kicked system �15� is equivalent to the discrete map

xn+1 =
1

	����k=0

n

pk+1V��n − k + 1� +
b

	�� − 1�
�n + 1��−2,

�18�

pn+1 = pn − K sin�xn� �1 � � � 2� , �19�

where the function V��z� is defined by

V��z� = z�−1 − �z − 1��−1. �20�

Proof of this proposition is given in Ref. 21.
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A fractional generalization of the dissipative standard
map suggested in Refs. 1 and 18 can be defined by

xn+1 =
1

	����k=0

n

pk+1V��n − k + 1� �1 � � � 2� , �21�

pn+1 = − bpn − Z sin�xn� , �22�

where the parameters are defined by conditions �9�. For
b=−1 and Z=K Eqs. �21� and �22� give the fractional stan-
dard map with T=1. Note that this fractional dissipative stan-
dard map is not derived from a fractional differential equa-
tion. This map is derived by pn→−bpn in the fractional
standard map. Fractional dissipative standard map can be
derived from fractional differential equations. In this paper,
we derive two fractional generalizations of the dissipative
standard map which are obtained from fractional differential
equations.

IV. FRACTIONAL DERIVATIVE IN THE KICKED TERM
AND THE FIRST FRACTIONAL DISSIPATIVE
STANDARD MAP

In this section we suggest the first fractional generaliza-
tion of differential Eq. �11� for a kicked damped rotator. In
this generalization we introduce a fractional derivative in the
kicked damped term, i.e., the term of a periodic sequence of
delta-function-type pulses �kicks�, and derive the corre-
sponding discrete map.

Consider the fractional generalization of Eq. �11� in the
form

Dt
2X�t� − qDt

1X�t� = � sin�0
CDt

� X��
n=0

�

��t − n� �0 � � � 1� ,

�23�

where q�R and 0
CDt

� is the Caputo fractional derivative9 of
the order 0���1 defined by

0
CDt

� X = 0It
1−� Dt

1X =
1

	�1 − ���0

t d


�t − 
��

dX�
�
d


�0 � � � 1� . �24�

Here we use the notation Dt
1=d /dt, and 0It

� is a fractional
integration.7–9 For �=0 fractional Eq. �23� gives Eq. �11�.
Note that we use the minus on the left-hand side of Eq. �23�,
where q can be a positive or negative value. Fractional de-
rivative 0

CDt
� X is presented in the kicked damped term.

Proposition 2: The fractional differential equation of the
kicked system �23� is equivalent to the discrete map

Xn+1 = Xn +
1 − e−q

q
Yn+1, �25�

Yn+1 = eq�Yn + � sin� 1

	�1 − ���k=0

n−1

Yk+1W2−��q,k − n�	
 ,

�26�

where the functions W2−��a ,b� are defined by

W2−��a,b� = a�−1ea�b+1��	�1 − �,ab� − 	�1 − �,a�b + 1��� ,

and 	�a ,b� is the incomplete Gamma function

	�a,b� = �
b

�

ya−1e−ydy . �27�

Proof: Fractional Eq. �23� can be presented in the Hamil-
tonian form

Ẋ = Y, Ẏ − qY = � sin�0
CDt

� X��
n=0

�

��t − n� , �28�

where 0���0 and q�R.
Between any two kicks,

Ẏ − qY = 0. �29�

For t� �tn+0, tn+1−0�, the solution of Eq. �29� is

Y�tn+1 − 0� = Y�tn + 0�eq. �30�

Let us use the notations tn=nT with T=1 and

Xn = X�tn − 0� = lim
�→0

X�n − �� ,

�31�
Yn = Y�tn − 0� = lim

�→0
Y�n − �� .

For t� �tn−� , tn+1−��, the general solution of Eq. �28� is

Y�t� = Yneq�t−tn� + ��
m=0

�

sin�0
CDtm

� X��
tn−�

t

d
eq�t−
���
 − m� .

�32�

Then

Yn+1 = eq�Yn + � sin�0
CDtn

� X�� . �33�

Using Eq. �33�, the integration of the first equation of Eq.
�28� gives

Xn+1 = Xn −
1 − eq

q
�Yn + � sin�0

CDtn
� X�� . �34�

Let us consider the Caputo fractional derivative from Eqs.
�33� and �34�. It is defined by the equation

0
CDtn

� X = 0It
1−� Dt

1X

=
1

	�1 − ���0

tn d


�tn − 
��

dX�
�
d


�0 � � � 1� .

Using Y�
�=dX�
� /d
, this relation can be rewritten as

0
CDtn

� X =
1

	�1 − ���k=0

n−1 �
tk

tk+1 Y�
�d


�tn − 
�� , �35�

where tk+1= tk+1= �k+1� and tk=k, such that t0=0. For

� �tk , tk+1�, Eqs. �30� and �31� give

Y�
� = Y�tk + 0�eq�
−tk�

= Y�tk+1 − 0�e−qeq�
−tk�

= Yk+1eq�
−tk−1�

= Yk+1eq�
−tk+1�.

Then
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�
tk

tk+1 Y�
�d


�tn − 
�−� = Yk+1�
tk

tk+1

eq�
−tk+1��tn − 
�−�d


= Yk+1�
tn−tk+1

tn−tk

eq�tn−tk+1−z�z−�dz

= Yk+1eq�tn−tk+1��
tn−tk+1

tn−tk

z−�e−qzdz

= Yk+1q�−1eq�n−k−1��
q�tn−tk+1�

q�tn−tk�

y−�e−ydy .

�36�

As a result, Eq. �36� gives

�
tk

tk+1 Y�
�d


�tn − 
�−� = Yk+1q�−1eq�n−k−1��	�1 − �,q�tn − tk+1��

− 	�1 − �,q�tn − tk��� . �37�

Here 	�a ,b� is the incomplete Gamma function �27�, where
a and b are complex numbers. Using Eqs. �35� and �37�, we
obtain

0
CDtn

� X =
1

	�1 − ���k=0

n−1

Yk+1W2−��q,k − n� �0 � � � 1� ,

�38�

where

W2−��a,b� = a�−1ea�b+1��	�1 − �,ab� − 	�1 − �,a�b + 1��� .

�39�

Substitution of Eq. �38� into Eqs. �33� and �34� gives

Yn+1 = eq�Yn + � sin� 1

	�1 − ���k=0

n−1

Yk+1W2−��q,k − n�	
 ,

�40�

Xn+1 = Xn −
1 − eq

q

�Yn + � sin� 1

	�1 − ���k=0

n−1

Yk+1W2−��q,k − n�	
 .

�41�

Equations �40� and �41� can be presented in the form of Eqs.
�25� and �26�.

This ends the proof.
The iteration Eqs. �25� and �26� define a fractional gen-

eralization of the dissipative standard map. For �=0 this
map gives the Zaslavsky map �5� and �6� with

� = �1 − e−q�/q �42�

and �=0.

V. FRACTIONAL DERIVATIVE IN THE UNKICKED
TERMS AND THE SECOND FRACTIONAL DISSIPATIVE
STANDARD MAP

In this section we suggest a fractional generalization of
the differential equation for a kicked damped rotator with
fractional derivatives in the unkicked terms and derive the
corresponding discrete map.

We consider the fractional generalization of Eq. �11� in
the form

0Dt
� X�t� − q0Dt

�X�t� = � sin�X��
n=0

�

��t − n� , �43�

where

q � R, 1 � � � 2, � = � − 1,

and 0Dt
� is the Riemann–Liouville fractional derivative,7–9

which is defined by Eq. �16�. This equation has fractional
derivatives in the unkicked terms, i.e., on the left-hand side
of Eq. �43�. We use the minus in the left-hand side of Eq.
�43�, where q can have a positive or negative value.

Proposition 3: The fractional differential equation of the
kicked system �43� is equivalent to the discrete map

Xn+1 =
1

	�� − 1��k=0

n

Yk+1W��q,k − n − 1� , �44�

Yn+1 = eq�Yn + � sin�Xn�� , �45�

where the functions W��a ,b� are defined by

W��a,b� = a1−�ea�b+1��	�� − 1,ab� − 	�� − 1,a�b + 1��� ,

�46�

and 	�a ,b� is the incomplete Gamma function �27�.
Proof: Let us define an auxiliary variable ��t� such that

0
CDt

2−� � = X�t� , �47�

where 0
CDt

2−� is the Caputo fractional derivative �24�. Using

0It
2−�

0
CDt

2−� � = ��t� − ��0� �0 � 2 − � � 1� , �48�

we obtain

0Dt
� X = Dt

2
0It

2−� X

= Dt
2

0It
2−�

0
CDt

2−� �

= Dt
2���t� − ��0��

= Dt
2� �49�

and

0Dt
� X = Dt

1
0It

1−� X

= Dt
1

0It
2−� X

= Dt
1

0It
2−�

0
CDt

2−� �

= Dt
1���t� − ��0�� = Dt

1� . �50�

Substitution of Eqs. �49�, �50�, and �47� into Eq. �43� gives
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Dt
2� − qDt

1� = � sin�0
CDt

2−� ���
n=0

�

��t − n� �1 � � � 2� .

�51�

The fractional Eq. �51� can be presented in the Hamiltonian
form

�̇ = Y ,

Ẏ − qY = � sin�0
CDt

2−����
n=0

�

��t − n� �1 � � � 2,q � R� .

�52�

Using Eq. �26� of Proposition 2, we obtain

Yn+1 = eq�Yn + � sin� 1

	�� − 1��k=0

n−1

Yk+1W��q,k − n�	
 .

For �Xn ,Yn�, we use Eq. �38� in the form

Xn = 0
CDtn

2−� � =
1

	�� − 1��k=0

n−1

Yk+1W��q,k − n� .

As a result, we have

Xn+1 =
1

	�� − 1��k=0

n

Yk+1W��q,k − n − 1� , �53�

Yn+1 = eq�Yn + � sin�Xn�� , �54�

where W��a ,b� is defined in Eq. �46�. This ends the proof.
If we use the variables

Pn = �Yn, b = − eq, Z = − ��eq,

then Eqs. �44� and �45� give

Xn+1 =
�−1

	�� − 1��k=0

n

Pk+1W��q,k − n − 1� , �55�

Pn+1 = − bPn − Z sin�Xn� . �56�

These equations can be considered as a fractional generali-
zation of the dissipative standard map Eqs. �7� and �8� with
�=0. For �=2, this fractional dissipative standard map
gives the dissipative standard map that is described by Eqs.
�7� and �8�.

VI. NUMERICAL SIMULATIONS

Numerical simulations were performed for the second
fractional dissipative standard map �Eqs. �55� and �56��. First
we used our code to reproduce the results presented in Fig. 1
from Ref. 19 for the structures of the chaotic attractors of the
dissipative standard map at the window of the ballistic mo-
tion near K�4� �q=−5, K=� exp�q�, and used in Ref. 19 	
is equal to −q� for the fractional standard map with �=2 and
obtained a perfect agreement �an example is given in Fig.
1�f��. As � decreases slightly from �=2 to �=1.9975, the
window of the ballistic motion shrinks and moves to the
higher values of K. Already for �=1.9975 in Figs. 1�a�–1�e�

the ballistic motion appears for K�12.86 and disappears at
K=12.97. The window is completely closed at ��1.9969.
The structures of two symmetric attractors with disjoint ba-
sins which appear within the window �Figs. 1�b� and 1�c��
are also very different from the structures of the dying attrac-
tors of the dissipative standard map.1,19 The attractor in Fig.
1�d� evolves from period 8 trajectory to period 4, period 2,
and, finally, period 1 trajectory slowly moving in the direc-
tion of the upper left corner with the step of the order of
10−7.

When � decreases further, the structures of the fractional
chaotic attractors evolve in the manner presented in Fig. 2,
where one can find one-scroll, two-scroll, and four-scroll
fractional chaotic attractors, strongly deviating from the cha-
otic attractor of the dissipative standard map, Fig. 1�f� �see
also Ref. 19�. The problem of existence of multiscroll frac-
tional chaotic attractors was considered in Ref. 22 but for the
fractional differential equations with the Caputo derivatives.
For values of � near 1 fractional chaotic attractor turns into
period 2 and for smaller values period 1 attracting trajecto-
ries, Fig. 3.

VII. CONCLUSION

The suggested discrete maps with memory are generali-
zations of the dissipative standard map. These maps are po-

a b

c d

e f

FIG. 1. Structures of the chaotic attractors for different values of K obtained
after 105 iterations �	=5, �=0�; �=1.9975 in �a�–�e�. �a� K=12.83;
�b� K=12.87; �c� K=12.93; �d� zoom of �c�; �e� K=12.97; �f� �=2,
K=12.93.
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tentially useful for description of fractional dynamics of
complex physical systems. We consider viscoelastic and di-
electric materials as examples of complex media �physical
systems� whose dynamics could be described by the frac-
tional dissipative standard maps and corresponding fractional
differential equations. This assumption is based on the fol-
lowing.

�1� It is well known that viscoelastic materials can be de-
scribed by fractional differential equations �see, for ex-
ample, Ref. 23�. The fractional dissipative standard map
could be employed to model the one-dimensional sim-
plification of the equations of viscoelastic materials in

which a perturbation is a periodic sequence of delta-
function-type pulses �kicks� following with some period.

�2� For a wide class of dielectric materials the dielectric
susceptibility follows a fractional power-law frequency
dependence, which is called the “universal”
response24,25 over extended frequency ranges. The elec-
tromagnetic fields in such dielectric media are described
by differential equations with fractional time
derivatives.26,27 These fractional equations for electro-
magnetic waves in dielectric media are common to a
wide class of materials, regardless of the type of physi-
cal structure, or of the nature of the polarizing species.
We assume that the fractional maps could be applied to
dielectric media in which a perturbation is a periodic
sequence of kicks.

The suggested fractional dissipative standard maps dem-
onstrate a chaotic behavior with a new type of attractors. The
interesting property of these fractional maps is long-term
memory. As a result, a present state of evolution depends on
all past states with the weight functions. The fractional dis-
sipative standard maps are equivalent to the correspondent
fractional kicked differential equations. Note that to derive
discrete maps an approximation for fractional derivatives of
these equations is not used.

Computer simulations of the suggested discrete maps
with memory prove that the nonlinear dynamical systems,
which are described by the equations with fractional deriva-
tives, exhibit a new type of chaotic motion. This type of
motion demonstrates a fractional generalization of attractors.

It has been shown in Ref. 28 that in the case q=0 �frac-
tional standard map� the fractional discrete map demon-
strates a new type of attractors such as slow converging and
slow diverging trajectories, ballistic trajectories, fractal-like
structures, and chaotic trajectories. At least one type of
fractal-like sticky attractors in the chaotic sea can be
observed28 for the fractional standard map. The properties of
stability and existence of the fractional attractors in the
asymptotic sense for q=0 have also been described in Ref.
28. The attractors presented in Figs. 1–3 are quite different
from the corresponding regular chaotic attractors and q=0
attractors. The detail classification of these attractors and cor-
responding chaotic motion will be considered in the nearest
future and published in the next paper.
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