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Abstract. In this paper, we propose an ”informatic” interpretation of the Riemann-Liouville
and Caputo derivatives of non-integer orders as reconstruction from infinite sequence of standard
derivatives of integer orders. The reconstruction is considered with respect to orders of deriva-
tives.
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1. Introduction

Derivatives of non-integer orders [1, 2] have been studied for a long time and they are associated with
the names of famous mathematicians such as Riemann, Liouville, Riesz, Grünwald, Letnikov, Sonine,
Marchaud, Weyl and others. Fractional-order derivatives have wide applications in physics and me-
chanics since it allow us to describe systems, media and fields that are characterized by power-law
non-locality and memory of power-law type. The fractional-order derivatives have a set of unusual
properties such us violation of the standard Leibniz and chain rules (for example, see [3, 4, 5, 6]).
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There are different interpretations of the fractional derivatives and integrals such as probabilistic in-
terpretations [13, 14, 15], geometric interpretations [16, 17, 18, 19, 20, 21], physical interpretations
[19, 20, 21, 22, 23, 24, 25, 26].

In this paper, we propose an ”informatic” (”computer science”) interpretation of the Riemann-
Liouville and Caputo derivatives of non-integer orders. It allows us to interpret these fractional-order
derivatives as reconstructions from infinite sequence of derivatives of integer orders.

2. Kotel’nikov theorem on reconstruction

The theorem on the possibility of a complete reconstruction of the continuous function (signal) at a
discrete reference was first proposed and proved by Vladimir Kotel’nikov [7] in 1933. This theorem
is also proved by Claude Shannon [8] in 1949.

The Kotel’nikov theorem, which is also known as the sampling theorem, states that under certain
restrictive conditions, function f(t) can be restored from its sample, f [n] = f(nT ), according to the
Whittaker-Shannon interpolation formula. For a given sequence of real numbers f [n], the continuous
function f(t) is defined by the equation

f(t) =
∞∑

n=−∞
f [n] sinc

(
t

T
− n

)
, (1)

where T is a period of sampling, and the sinc function is

sinc(z) :=


sin(π z)

π z
z 6= 0

1 z = 0.
(2)

The noted restrictive conditions for the function f(t) of the interpolation formula (1) are the follow-
ing: (1) f(t) should be bounded. The Fourier integral transform of f(t) should satisfy the property:
F{f(t)} = f̂(ω) = 0 for |ω| > ω0 > 0; (2) The sampling frequency ωs = 2π/T should be at least
more than twice the range of frequencies, ωs > 2ω0.

Interpolation formula (1) reconstructs the original function f(t) of continuous variable t, only if
these two conditions are satisfied. The Whittaker-Shannon interpolation formula is a basis to construct
a continuous-time bandlimited function from a sequence of real numbers [9, 10].

Remark 1. Let f(x) be a function on R and let h > 0. The cardinal series of f(x) with respect to the
interval h is defined by the formal series

C(f, h, x) :=

∞∑
n=−∞

f(nh) sinc
(x
h
− n

)
. (3)

If this series converges, then C(f, h, x) is called the Whittaker cardinal function of f(x) [11, 12].
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3. Theorem on binomial coefficients

Let us give theorem on the binomial coefficients.

Theorem 1. Equality
∞∑
n=0

(
β

n

)
sinc(n− α) =

(
β

α

)
(β ≥ α > 0) (4)

holds for the binomial coefficients
(
β
α

)
that are defined by the equation(

β

α

)
=

Γ(β + 1)

Γ(α+ 1) Γ(β + 1− α)
. (5)

Proof:
Equation (4) will be proved by using properties of hypergeometrical functions. Substitution of (5) into
equation (4) gives

∞∑
n=0

sinc(n− α) Γ(β + 1)

Γ(n+ 1) Γ(β + 1− n)
=

Γ(β + 1)

Γ(α+ 1) Γ(β + 1− α)
. (6)

Using the equation

sinc(z) =
1

Γ(1 + z) Γ(1− z)
(z /∈ Z), sinc(z) = 1 (z ∈ Z) (7)

and multiplying equation (6) by the factor Γ(α+ 1), we obtain
∞∑
n=0

Γ(α+ 1)

Γ(n+ 1) Γ(α− n+ 1) Γ(n+ 1− α)

Γ(β + 1)

Γ(β − n+ 1)
=

Γ(β + 1)

Γ(β + 1− α)
, (8)

where β ≥ α > 0. Then we rewrite (8 ) in the form

1

Γ(1− α)

∞∑
n=0

Γ(α+ 1)

Γ(α− n+ 1)
· Γ(β + 1)

Γ(β − n+ 1)
· Γ(1− α)

Γ(n+ 1− α)
· 1

n!
=

Γ(β + 1)

Γ(β + 1− α)
. (9)

Using the Pochhammer symbol which can be defined by the equation

(z)n :=
Γ(z + n)

Γ(z)
, (10)

expression (9) can be written as

1

Γ(1− α)

∞∑
n=0

(α− n+ 1)n (β − n+ 1)n
(1− α)n

1

n!
=

Γ(β + 1)

Γ(β + 1− α)
. (11)

Appling the following equality of the Pochhammer symbols

(−x)n = (−1)n · (x− n+ 1)n, (12)
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we rewrite equation (11) in the form

1

Γ(1− α)

∞∑
n=0

(−α)n (−β)n
(1− α)n

1

n!
=

Γ(β + 1)

Γ(β + 1− α)
. (13)

Using the Gauss hypergeometric function 2F1(a, b; c; z), which is defined by the equation (for exam-
ple, see equation 1.6.1 of [2]) of the form

2F1(a, b; c; z) :=

∞∑
n=0

(a)k (b)k
(c)k

zn

n!
, (14)

where |z| < 1; a, b ∈ C; c ∈ C/Z−0 , we represent (13) as

1

Γ(1− α)
2F1(−α,−β; 1− α; 1) =

Γ(β + 1)

Γ(β + 1− α)
. (15)

Using equation 1.6.9 of [2], which has the form

2F1(a, b; c; 1) =
Γ(c) Γ(c− a− b)
Γ(c− a) Γ(c− b)

(c− a− b > 0, b ≤ 0), (16)

equation (15) gives the identity

1

Γ(1− α)

Γ(1− α) Γ(1− α+ α+ β)

Γ(1− α+ α) Γ(1− α+ β)
=

Γ(β + 1)

Γ(β + 1− α)
, (17)

where β ≥ α > 0, which coincides with equation (4), was to be proved. ut

Corollary. For β = m ∈ N, equality (4) of the binomial coefficients has the form

m∑
n=0

(
m

n

)
sinc(n− α) =

(
m

α

)
. (18)

Proof:
For β = m ∈ N, we can use

(
m
n

)
= 0 for n > m. Then (4) take the form (18). ut

4. Riemann-Liouville fractional derivatives and derivatives of
Hadamard type

Let us give a definition of the Riemann-Liouville fractional derivatives and some corresponding prop-
erties.
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Definition 1. The left-sided Riemann-Liouville fractional derivatives of order α > 0 on finite interval
[a, b] is defined by

RLDαa+f(x) :=
1

Γ(n+ 1− α)

dn+1

dxn+1

∫ x

a

f(z)dx

(x− z)α−n
(n ≤ α < n+ 1), (19)

where we use n = [α] and x > a.

The main properties of the Riemann-Liouville derivatives of order α (see equations 2.1.16, 2.1.20,
2.1.21 of Property 2.1 of [2]) have the form

RLDαa+(x− a)β =
Γ(β + 1)

Γ(β − α+ 1)
(x− a)β−α, (20)

where α > 0, β > −1, and β − α+ 1 6= −k (k = 0, 1, 2, ...);

RLDαa+(x− a)α−m = 0 (m = 1, 2, ..., n+ 1), (21)

where n = [α]. For integer values of order α ∈ N (see equations 2.1.7 of Section 2.1 of [2]) the
Riemann-Liouville derivative is equal to the standard integer-order derivative

RLD0
a+f(x) = f(x), RLDna+f(x) =

dnf(x)

dxn
(n ∈ N). (22)

Let us give a definition of the fractional derivatives that are expressed by the left-sided Riemann-
Liouville fractional derivatives of order α > 0 and the factor (x− a)α/Γ(α+ 1).

Definition 2. Fractional derivatives of the Hadamard type is the operators

HTDαa+ :=
1

Γ(α+ 1)
(x− a)α · RLDαa+ (α > 0), (23)

where RLDαa+ the left-sided Riemann-Liouville fractional derivative of order α > 0.

Using (22), the Hadamard-type fractional derivatives (23) of integer orders n ∈ N has the form

HTDna+ :=
1

Γ(n+ 1)
(x− a)n · d

n

dxn
(n ∈ N). (24)

Using (20) and (21), we obtain the derivatives of power functions

HTDαa+ (x− a)β =

(
β

α

)
(x− a)β, (25)

where α > 0, β > −1, β − α+ 1 6= −k with k = 0, 1, 2, ..., and

HTDαa+ (x− a)α−m = 0 (m = 1, 2, ..., n+ 1). (26)
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Remark 2. It is known that an action of the Hadamard operators on the power functions give the same
function (see equations (2.7.21-2.7.24) of Property 2.25 in [2]). Therefore the operators (23) we call
the derivations of Hadamard type.

Let us give a definition of the Caputo fractional derivative (see Section 2.4 of [2]).

Definition 3. The Caputo fractional derivative can be defined via the Riemann-Liouville fractional
derivative by the equation

( CDαa+f)(x) =

(
RLDαa+

(
f(z)−

n∑
k=0

(z − a)k

k!

(
dkf(z)

dzk

)
(a)

))
(x), (27)

where n ≤ α < n+ 1, n = [α] and x ∈ (a, b).

If the function f(x) is an analytic function on the interval (a, b), then it can be represented as a
convergent power series on (a, b) of the form

f(x) =
∞∑
k=0

(x− a)k

k!

(
dkf(x)

dxk

)
(a). (28)

Using equation (27), we can state that the Caputo fractional derivative of order n ≤ α < n + 1 of
function (28) can be considered as the Riemann-Liouville fractional derivative of the function

fC,α(x) =
∞∑

k=[α]+1

(x− a)k

k!

(
dkf(x)

dxk

)
(a). (29)

For the Caputo fractional derivatives, we can also define the corresponding derivatives of Hadamard
type

HT
C Dαa :=

1

Γ(α+ 1)
(x− a)α · CDαa+ (α > 0), (30)

where CDαa+ the left-sided Caputo fractional derivative (27) of order α > 0.

Remark 3. It should be note that the Marchaud fractional derivatives see Section 2.7 of [2]) coincide
with the corresponding Riemann-Liouville fractional derivatives for a wide class of functions (for
example, see Section 13 of [1]).

5. Fractional derivatives as infinite series of integer derivatives

Let us give a theorem on a sinc-representation of the fractional-order derivatives of Hadamard type as
an infinite series of derivatives of integer orders.
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Theorem 2. Let f(x) be an analytic function on the interval (a, b), which can be represented as a
convergent power series on (a, b). Then the fractional derivatives of Hadamard type (23) of order
α > 0 can be represented in the form

HTDαa f(x) =

∞∑
n=0

sinc(α− n) Dnaf(x), (31)

where α > 0 and sinc(α− n) is the sinc function.

Proof:
The proof is based on an important equation that allows us to express the Riemann-Liouville derivative
of non-integer order through an infinite series of derivatives of integer orders. Let f(x) be an analytic
function on the interval (a, b), which can be represented as a convergent power series on (a, b), then
the left-sided Riemann-Liouville fractional derivative of order α > 0 can be represented in the form

RLDαa+f(x) =
∞∑
n=0

(
α

n

)
(x− a)n−α

Γ(n+ 1− α)

dnf(x)

dxn
x ∈ (a, b), (32)

where dnf(x)/dxn is the standard derivative of order n ∈ N, and d0f(x)/dx0 := f(x). The proof of
representation (32) is given in [1] (see Lemma 15.3 of [1]).

Substitution of the equation (
α

n

)
=

Γ(α+ 1)

Γ(n+ 1) Γ(α+ 1− n)
(33)

into (32), we obtain

RLDαa+f(x) =
∞∑
n=0

Γ(α+ 1)

Γ(n+ 1) Γ(α+ 1− n) Γ(n+ 1− α)
(x− a)n−α

dnf(x)

dxn
x ∈ (a, b). (34)

Let us rewrite equation (34) as

1

Γ(α+ 1)
(x− a)α RLDαa+f(x) =

∞∑
n=0

1

Γ(α+ 1− n) Γ(n+ 1− α)

(x− a)n

Γ(n+ 1)

dnf(x)

dxn
, (35)

where x ∈ (a, b). Using equations (23), (24) and equation 1.5.8 of [2],

Γ(1 + z) Γ(1− z) =
π z

sin(π z)
(z /∈ Z0), Γ(1 + z) Γ(1− z) = 1 (z = 0), (36)

we can write equation (35) in the form

HTDαa+f(x) =
∞∑
n=0

sin(π (α− n))

π (α− n)

1

Γ(n+ 1)
(x− a)n HTDna+f(x) (α 6= m ∈ N), (37)

where x ∈ (a, b) and HTDna+ is the standard derivatives of order n with the factor (x − a)n/n!, that
is, the nth term of the Taylor’s series of f(x). For α = m ∈ N equation (35) is an equality, since
Γ(α + 1 − n) Γ(n + 1 − α) = 1 for α = n, and Γ(α + 1 − n) Γ(n + 1 − α) = 0 for α = m 6= n.
Using the definition of the sinc function (2), we obtain equation (31). ut
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The theorem is proved for analytic functions on the interval (a, b). Let us prove equation (31) for
the power functions

fa,β(x) := (x− a)β (β ≥ α > 0, x > a) (38)

by using Theorem 1.

Theorem 3. Let fa,β(x) be a power function of type (38). Then the fractional derivatives of Hadamard
type (23) of order α > 0 can be represented in form (31), that is,

HTDαa fa,β(x) =
∞∑
n=0

sinc(α− n) Dnafa,β(x) (β ≥ α > 0) (39)

for all x ∈ (a, b).

Proof:
Substitution of (38) into (39) gives

HTDαa (x− a)β =
∞∑
n=0

sinc(α− n) Dna (x− a)β. (40)

Using equation (25) in the form

HTDαa+ (x− a)β =

(
β

α

)
(x− a)β, HTDna (x− a)β =

(
β

n

)
(x− a)β, (41)

and substituting the r.h.s. of (41) into equation (40), we get

∞∑
n=0

(
β

n

)
sinc(n− α) =

(
β

α

)
(β ≥ α > 0), (42)

which is proved in Theorem 1 on the binomial coefficients. ut

Remark 4. For α = m ∈ N, we can use

sinc(m− n) = δm,n (n,m ∈ N), (43)

and equation (31) gives

HTDαa+f(x) =

∞∑
n=0

δm,n
(x− a)n

Γ(n+ 1)
· d

nf(x)

dxn
=

(x− a)m

Γ(m+ 1)
· d

mf(x)

dxm
. (44)

This expression means that equation (31) holds for the Hadamard-type derivatives (23) of integer or-
ders α = m ∈ N.
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Remark 5. Equation (31) of the fractional-order derivative can be represented in the form

HTDαa f(x) =
∞∑
n=0

sinc(α− n)
(x− a)n

n!

dnf(x)

dxn
, (45)

where α > 0 and x > a.

Remark 6. Representation (45) for the functions fC,α, which are defined by (29), allows us to use
equation (31) of Theorem 2 for the Caputo fractional derivatives of the Hadamard type (30). In this
case, expression (31) is represented in the form

HT
C Dαa f(x) =

∞∑
n=0

sinc(α− n) DnafC,α (α > 0), (46)

where fC,α is defined by (29).

Remark 7. Using that the Marchaud fractional derivatives coincide with the corresponding Riemann-
Liouville fractional derivatives for a wide class of functions (see Section 13 of [1]), the sinc-represetation
(31) can also be applied for the Marchaud fractional-order derivatives of these functions.

6. Reconstruction of fractional derivative

Equation (31) can be considered as an analog of formula (1). This equation allows us to construct
continuous-order derivatives from a sequence of integer-order derivatives.

If we consider the sequence

fx[n] :=
(x− a)n

Γ(n+ 1)

dnf(x)

dxn
(n ∈ N), (47)

which is sequence of derivatives of integer order n ∈ N at fixed points x ∈ (a, b), then interpolation
formula (1) with T = 1 defines the continuous analog fx(α) of fx[n]. This analog can be considered
as a derivative of non-integer order α, that is defined by the equation

fx(α) =

∞∑
n=0

fx[n] sinc (α− n) . (48)

This equation can be used to define a ”continuous-order” derivative ( CODαx ) via integer-order deriva-
tives ( IODnx ) by applying the functions

fx(α) :=
(x− a)α

Γ(α+ 1)
CODαxf(x), fx[n] :=

(x− a)n

Γ(n+ 1)
IODnxf(x), (49)

where f(x) is the function for which the derivatives of equation (49) exist. As a result, we have a new
approach to definition of derivatives of non-integer orders that is based on the equation

(x− a)α

Γ(α+ 1)
CODαxf(x) :=

∞∑
n=0

sinc (α− n)
(x− a)n

Γ(n+ 1)
IODnxf(x). (50)
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We can also consider some ”continuous-order” and integer-order derivatives of Hadamard type that
are connected by the expression

HTCODαxf(x) =
∞∑
n=0

sinc (α− n) HTIODnxf(x). (51)

It should be emphasized that possibility to use definitions (50) and (51) has been proved (see the
proof of Theorem 2) in the case of an analytic function f(x) with x ∈ (a, b) and the standard def-
inition of integer-order derivatives IODnxf(x) := dnf(x)/dxn. In this case, the ”continuous-order”
derivative is the Riemann-Liouville fractional derivative ( CODαx = RLDαa+). Equations (31), (50) and
(51) can be considered as analogs of the interpolation formula (1), which constructs continuous-order
derivatives from a sequence of integer-order derivatives. Equations (50) and (51) are analogs of the
interpolation formula (1), which constructs continuous-order derivatives from a sequence of integer-
order derivatives. As a result, these equations allows us to get continuous-order derivatives from a
sequence of derivatives of integer orders.

As a continuous-order derivative, we can consider the Riemann-Liouville fractional derivative
RLDαa+, the Caputo fractional derivative CDαa+, the Marchaud fractional derivative MDαa+ . In this
cases, the integer-order derivatives are the standard integer derivatives IODnx = dn/dxn. We assume
that there are other examples of ”continuous-order” and integer-order derivatives, which are connected
by interpolation formula (50).

7. Conclusion

We propose an interpretation of the Riemann-Liouville and Caputo derivatives of non-integer orders.
Equations (31), (50) and (51) can be considered as analogs of the interpolation formula (1), which
constructs continuous-order derivatives from a sequence of integer-order derivatives. Equations (31),
(45), (46), (50) allow us to interpret the fractional-order derivatives as a reconstruction from infinite
sequences of standard derivatives of integer orders. These formulas reconstruct the fractional deriva-
tives α > 0 with respect to order α ∈ R+ from the integer derivatives of orders n ∈ Z+. Using the
suggested ”informatic” (”computer science”) interpretation, we can say that the fractional derivatives
(continuous-order derivatives) can be restored from integer-order (discrete-order) derivatives by for-
mulas (31), (45), (46), (50). It should be noted that infinity of sequences of integer derivatives plays
a fundamental role in representation of fractional derivatives that describe nonlocality and memory
in physics and mechanics. We assume that the interpolation formulas, which reconstruct the frac-
tional derivatives of order α > 0 from the integer-order derivatives, can be generalized for the lattice
fractional calculus [27, 28] and the exact fractional differences [29, 30, 31]. The main advantage of
the suggested interpretation is that it allows us to obtain geometric and physical interpretations by
reconstruct of with respect to order from interpretation of integer order derivatives.
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