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Abstract: We consider some possible approaches to the fractional-order gen-
eralization of definition of variation (functional) derivative. Some problems of
formulation of a fractional-order variational derivative are discussed. To give
a consistent definition of the fractional-order variations, we use a fractional
generalization of the Gateaux differential.
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1. Introduction

The derivatives of non-integer order are well-known in mathematics, see for
example, [1]-[5]. The fractional calculus has a long history since 1695, when
the derivative of order α = 0.5 has been discussed by Leibniz [6, 7, 8, 9, 10].
Derivatives and integrals of fractional order have found many applications in
recent studies in mechanics and physics. The interest to fractional equations
has been growing continually during the last few years because of numerous
applications, [11]-[17].

In mathematics and theoretical physics, the variational (functional) deriva-
tive is a generalization of the usual derivative that arises in the calculus of
variations. In a variational (functional) derivative, instead of differentiating a
function with respect to a variable, one differentiates a functional with respect
to a function. A fractional generalization of variational (functional) derivative
is suggested in this paper.
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In this paper some problems of formulation of a fractional-order variational
derivative are discussed. To give a definition of fractional variation, we suggest
to use a fractional generalization of the Gateaux differential.

In Section 2, some properties of the Riemann-Liouville or Caputo frac-
tional derivatives are noted. In Section 3, we give definitions of variational
(functional) derivatives of integer orders. In Section 4, we discuss problems of
different possible ways to define a fractional generalization of variational (func-
tional) derivatives. In Section 5, we suggest a definition of fractional-order
variational (functional) derivatives by using the proposed fractional generaliza-
tion of Gateaux differential. In Section 6, a fractional variation of fields that is
defined by fractional exterior derivatives are considered. A conclusion is given
in Section 7.

2. Fractional Derivative

The theory of derivatives of non-integer order goes back to Leibniz, Liouville,
Riemann, Grünwald, and Letnikov, see e.g. [1]-[5]. The authors of many papers
use the fractional derivative Dα

x in the Riemann-Liouville or Caputo forms. Let
us give definitions of these derivatives and some properties.

Definition 1. ([1]) The Riemann-Liouville fractional derivative of the func-
tion f(x) belonging to the space ACn[a, b] of absolutely continuous functions is
defined on [a, b] by the equation

Dα
xf(x) =

1

Γ(m− α)

dm

dxm

∫ x

a

f(y) dy

(x− y)α−m+1
, (1)

where Γ(·) is the Gamma function, m is the first integer number greater than
or equal to α.

In equation (1), the initial point of the fractional derivative can be set to
zero. Then the derivative of powers k of x is

Dα
x (x)

k =
Γ(k + 1)

Γ(k + 1− α)
xk−α (x > a), (2)

where k ≥ 1, and α ≥ 0. Note that the derivative (1) of a constant C needs
not be zero:

Dα
xi
C =

x−α
i

Γ(1− α)
C.



FRACTIONAL-ORDER VARIATIONAL DERIVATIVE 493

Therefore we see that constants C in the equation V (x) = C cannot define a
stationary state for the equation Dα

xV (x) = 0. In order to define stationary
values, we should consider solutions of the equations Dα

xi
V (x) = 0.

The Riemann-Liouville fractional derivative has some notable disadvantages
in the physical applications such as the hyper-singular improper integral, where
the order of singularity is higher than the dimension, and nonzero of the frac-
tional derivative of constants, which would entail that dissipation does not
vanish for a system in equilibrium. The desire to formulate initial value prob-
lems for physical systems leads to the use of the so-called Caputo fractional
derivatives, see e.g. [22, 23, 24] (see also [3, 4]) rather than Riemann-Liouville
fractional derivative.

Definition 2. The Caputo fractional derivative of the function f(x) be-
longing to the space ACn[a, b] of absolutely continuous functions is defined on
[a, b] by the equation

Dα
xf(x) =

1

Γ(m− α)

∫ x

a

dy

(x− y)α−m+1

dmf(y)

dym
(x > a), (3)

where f (m)(y) = dmf(y)/dym, and m is the first integer number greater than
or equal to α.

This definition is of course more restrictive than (1), in that requires the ab-
solute integrability of the derivative of order m. The Caputo fractional deriva-
tive first computes an ordinary derivative followed by a fractional integral to
achieve the desire order of fractional derivative. The Riemann-Liouville frac-
tional derivative is computed in the reverse order. Integration by part of (3)
leads us to the relation

Dα
∗ xf(x) = Dα

xf(x)−

m−1
∑

k=0

xk−α

Γ(k − α+ 1)
f (k)(0+). (4)

It is observed that the second term in Eq. (4) regularizes the Caputo fractional
derivative to avoid the potentially divergence from singular integration at x =
0+. In addition, the Caputo fractional differentiation of a constant results in
zero. If the Caputo fractional derivative is used instead of the Riemann-Liouville
fractional derivative then the stationary values are the same as those for the
usual case (V (x)−C = 0). The Caputo formulation of fractional calculus can be
more applicable to definition of fractional variation than the Riemann-Liouville
formulation.
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3. Variational Derivatives of Integer Order

In mathematics and theoretical physics, the variational (functional) derivative
is a generalization of the usual derivative that arises in the calculus of variations.
In a variational (functional) derivative, instead of differentiating a function with
respect to a variable, one differentiates a functional with respect to a function.

3.1. Definition by Increment and Taylor Series

The variational derivative can be defined in the following way. Let us consider
the increment of the functional F [u] that is defined by the equation

∆F [u] = F [u+ h]− F [u], (5)

and consider an integer-order variational derivative.

Definition 3. If this increment of the functional F [u] exists, and can be
represented in the form

∆F [u] = δF (u, h) + ω(h, u), (6)

where

lim
||h||→0

||ω(h, u)||

||h||
= 0,

then δF is called the first variation or Frechet derivative [29, 30, 26] of functional
F . The function h = h(x) is called the variation, and it is denoted by δu.

Example 1. Let us define the functional

F [u] =

∫ x2

x1

f(u)dx (7)

in some Banach space E. The increment of the functional F [u] is defined by
the equation

∆F [u] = F [u+ h]− F [u] =

∫ x2

x1

f(u+ h)dx −

∫ x2

x1

f(u)dx. (8)

Here we suppose that the variation h(x) = δu(x) is equal to zero in boundary
points x1 and x2. Let us expand the integrand f(x, u+ h) in the power series
up to first order

f(u+ h) = f(u) +
∂f(u)

∂u
h+R(h, u),
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where
lim
h→0

h−1R(h, u) = 0. (9)

Then we have

δF [u] =

∫ x2

x1

∂f(u)

∂u
hdx. (10)

The variational derivative for functional (7) has the form

δF [u]

δu
=

∂f(u)

∂u
. (11)

Example 2. Let us consider the functional

F [u] =

∫ x2

x1

f(u, ux)dx. (12)

We can derive the first variation of the functional by the equation

δF [u] = F [u+ δu]− F [u] =

∫ x2

x1

f(u+ h, [u+ h]x)dx−

∫ x2

x1

f(u, ux)dx. (13)

Here we suppose that the variation h(x) = δu(x) is equal to zero in boundary
points x1 and x2. Let us expand the integrand f(u + δu, (u + δu)x) in power
series up to first order

f(u+ h, (u+ h)x) = f(u, ux) +
∂f

∂u
h+

∂f

∂ux
hx,

where hx = dh/dx. Then we get the variation of the functional

δF [u] =

∫ x2

x1

[

∂f

∂u
h+

∂f

∂ux
hx

]

dx. (14)

Integrating the second term by part, and supposing

h(x1) = h(x2) = 0,

we get the result

δF [u] =

∫ x2

x1

[

∂f

∂u
−

d

dx

(

∂f

∂ux

)]

h(x) dx. (15)

Using this relation, we get the variational derivative of the functional (12) in
the form

δF [u]

δu
=

∂f

∂u
−

d

dx

(

∂f

∂ux

)

. (16)
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Example 3. If we consider the functional

F [u] =

∫ x2

x1

f(x, u, ux, ...u
(n))dx, (17)

then the variation of the functional is defined by the equation

δF [u] =

∫ x2

x1

n
∑

m=0

∂f

∂u(m)
(δu)(m)dx, (18)

and the variational derivative has the form

δF [u]

δu
=

n
∑

m=0

(−1)m
dm

dxm

(

∂f

∂u(m)

)

, (19)

where u(m) = dmu(x)/dxm.

3.2. Definition by Composite Function of Parameter

There is another approach to definition of variation and variational derivative.
Let us consider the functional (12), where u is a function of coordinates x and
parameter a, i.e., u = u(x, a), and

F [u] =

∫ x2

x1

f(u(x, a), ux(x, a))dx. (20)

The derivative of F with respect a can be written as

dF

da
=

∫ x2

x1

dx
df

da
=

∫ x2

x1

[

∂f

∂u

∂u

∂a
+

∂f

∂ux

∂ux
∂a

]

dx. (21)

Using
∂ux
∂a

=
∂

∂a

∂u

∂x
=

∂

∂x

∂u

∂a
,

the conditions δu(x1, a) = δu(x2, a) = 0, and integrating by part, we get

dF

da
=

∫ x2

x1

∂u

∂a

[

∂f

∂u
−

∂

∂x

(

∂f

∂ux

)]

dx. (22)

As a result, we have
dF

da
=

∫ x2

x1

∂u(x)

∂a

δF [u]

δu(x)
dx. (23)
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A fractional-order generalization of this approach is difficult to realize. The
reason of this difficulty is related to the difficulty to generalize the rule of
differentiating a composite functions

df(u(a))

da
=

∂f

∂u

∂u

∂a
(24)

for the fractional order case. It is known that coordinate transformations are
connected with the derivative of a composite function D1

t f(u(x)) = (D1
uf)(u =

u(x)) (D1
xu)(x). The formula of fractional derivative of a composite function

(see Equation 2.209, Section 2.7.3, page 98, [3]) is the following:

Dα
xf(u(x)) =

(x− a)α

Γ(1− α)
f(u(x))

+

∞
∑

k=1

Cα
k

k!(x− a)k−α

Γ(k − α+ 1)

k
∑

m=1

(Dmf)(u(x))
∑

k
∏

r=1

1

ar!

((Dr
xu)(x))

r!

)ar
, (25)

where the sum
∑

extends over all combinations of non-negative integer values
of a1, a2, . . . , ak such that

k
∑

r=1

rar = k,
k

∑

r

ar = m. (26)

4. Problems to Formulate Fractional-Order Variational Derivative

Let us consider some problems in the formulation of the fractional-order gen-
eralization of variational derivatives.

Problem 1. To define the fractional variation, we can use the fractional
Taylor series (see Section 2.6 in [1]). Expanding the integrand f(u + h) in
fractional Taylor power series

f(u+ h) =
1

Γ(α+ 1)
(h)αDα

uf(u) +
1

Γ(α+ 2)
(h)α+1Dα

uf(u) + ..., (27)

we can see that this series cannot have the term f(u). Therefore, we cannot
consider the increment

∆f(u) = f(u+ h)− f(u). (28)
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In order to use the Taylor series for the definition, we can consider the increment
in the form

∆qf = f(u+ h)− f(u+ qh), (29)

where 0 < q < 1. In this case, we have

∆f(u) =
1− qα

Γ(α+ 1)
hαDα

uf(u) +
1− qα+1

Γ(α+ 2)
hα+1Dα

uf(u) + .... (30)

This approach can be connected with the q-analysis [31], and fractional q-
derivatives [32, 33]. We will consider the fractional variational q-derivative in
the next paper.

We can consider the increment of the functional F [u] that is defined by the
equation

∆qF [u] = F [u+ h]− F [u+ qh]. (31)

If this increment of the functional F [u] exists, and can be represented in the
form

∆qF [u] = δαF (u, hα) + ω(hα, u), (32)

where

lim
||h||→0

||ω(hα, u)||

||hα||
= 0,

then δαF can be considered as a fractional variation of functional F .

Problem 2. To define the fractional generalization of variation and frac-
tional exterior variational calculus [21], we can use an analogy with the defini-
tion of fractional exterior derivative. If the partial derivatives in the definition
of the exterior derivative

d = dxi∂/∂xi

are allowed to assume fractional order, a fractional exterior derivative can be
defined [20] by the equation

dα = (dxi)
αDα

xi
, (33)

where Dα
x is the fractional derivative with respect to x. Using this analogy,

we can define the fractional variation in the following way. For the point u of
functional space, we can define the fractional variation δF [u] of the functional

F [u] =

∫ x2

x1

f(u, ux)dx,
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where ux = du/dx, by the equation

δαF [u] =

∫ x2

x2

dx
[

(δu)αDα
uf(u, ux) + (δux)

αDα
ux
f(u, ux)

]

. (34)

Unfortunately, this approach leads to difficulties with the realization of the
integration by part in the second term. It is easy to see that the variation
(δux)

α cannot be represented as some operator Â(d/dx) acts on the variation
(δu)α, i.e., we have

(δux(x))
α =

(

d

dx
δu(x)

)α

6= Â

(

d

dx

)

(δu)α. (35)

In the particular case, (δux(x))
α = (d(δu)/dx)α 6= d(δu)α/dx if α 6= 1.

Problem 3. To define the fractional variational derivative, we can use
fractional derivative with respect to function (see Section 18.2 in [1]). The
fractional Riemann-Liouville defivative of the function f(x) with respect the
function u(x) of order α (0 < α < 1) is:

Dα
0+,u(x)f(x) =

1

Γ(1− α)

(

du(x)

dx

)−1 d

dx

∫ x

0
dy

f(y)

[u(x)− u(y)]α
du(y)

dy
. (36)

Using the function u = u(x, a), we can define fractional derivative with respect
to function of parameter

Dα
0+,u(x,a)f(x, a)

=
1

Γ(1− α)

(

du(x, a)

da

)−1 d

da

∫ a

0
db

f(x, b)

[u(x, a) − u(x, b)]α
du(x, b)

db
. (37)

As a result, the fractional variation can be defined by the equation

δαF [u(x)]

=

∫ x2

x1

dxDα
u(x,a)f(u(x, a))(δu(x, q))

α ,
δαF [u]

δuα
= Dα

u(x,a)f(u(x)). (38)

This approach leads to difficulties with the realization of integration by part
in the second term in (35). In this paper, this approach to definition is not
considered.

To avoid all these difficulties and problems, we suggest to define a fractional
variational derivative by using a fractional-order generalization of the Gateaux
differential.
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5. Fractional Generalization of Gateaux Differential

In this section, we consider 3 steps to define the fractional generalization of
variation by using some generalization of the Gateaux differential. We con-
sider these steps in order to explain the final definition of fractional Gateaux
variation.

5.1. Variations of Integer Order

Suppose the functional F [u] is continuous (smooth) map (with certain boundary
conditions) from everywhere dense subset D(F ) of Banach space to space R.
Let us define the Gateaux differential [28, 29, 30] of a functional F [u] at the
point u(x) of subset D(F ) of the functional Banach space.

Definition 4. The Gateaux differential (or first variation) of a fucntional
F [u] is defined by the equation

δF [u, h] =

(

d

dǫ
F [u+ ǫh]

)

ǫ=0

= lim
ǫ→0

F [u+ ǫ h]− F [u]

ǫ
(39)

if the limit exists for all h(x) ∈ D(F ). The function h(x) is called a variation
of function u(x) and denoted by δu(x) = h(x).

A first variation of the functional F [u] at the point u = u(x) is defined as
a first derivative of functional F [u+ ǫh] with respect to parameter ǫ for ǫ = 0.

If the Gateaux differential of the functional

F [u] =

∫

dxf(x, u, ux, ...) (40)

is linear with respect to h(x), then we can write

δF [u, h] =

∫

dxE(x, u, ux, ...)h(x), (41)

and E(x, u, ux, ...) is called the variational derivative and is denoted by δF/δu.

Example. For the example, we can consider the functional

F [u] =

∫ x2

x1

[u(x)]2dx. (42)
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The functional F [u+ ǫh] has the form

F [u+ ǫh] =

∫ x2

x1

[u(x)]2dx+ 2ǫ

∫ x2

x1

u(x)h(x)dx + ǫ2
∫ x2

x1

[h(x)]2dx. (43)

The derivative of first order with respect to parameter ǫ is

d

dǫ
F [u+ ǫh] = 2

∫ x2

x1

u(x)h(x)dx + 2ǫ

∫ x2

x1

[h(x)]2dx. (44)

As a result, the variational derivative is equal

(

d

dǫ
F [u+ ǫh]

)

ǫ=0

= 2

∫ x2

x1

u(x)h(x)dx. (45)

5.2. Step 1.

It seems that we can define a fractional variation by the equation

δαF [u, h] =

([

d

dǫ

]α

F [u+ ǫh]

)

ǫ=0

. (46)

Let us consider the fractional Riemann-Liouville derivative of functional
(43) with respect to parameter ǫ:

Dα
ǫ F [u+ ǫh] = (Dα

ǫ 1)

∫ x2

x1

[u(x)]2dx+ 2(Dα
ǫ ǫ)

∫ x2

x1

u(x)h(x)dx

+ (Dα
ǫ ǫ

2)

∫ x2

x1

[h(x)]2dx. (47)

Using (2),

Dα
ǫ ǫ

k =
Γ(k + 1)

Γ(k + 1− α)
ǫk−α, (48)

we have

Dα
ǫ F [u+ ǫh] =

ǫ−α

Γ(1− α)

∫ x2

x1

[u(x)]2dx+
2ǫ1−α

Γ(2− α)

∫ x2

x1

u(x)h(x)dx+

+
2

Γ(3− α)
ǫk−α

∫ x2

x1

[h(x)]2dx. (49)

If the derivatives with respect to parameter ǫ in the definition of variational
(39) are allowed to assume fractional order, a fractional variational can be
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defined. Unfortunately, if we define the fractional variation of the functional by
the equation

δαF [u] = (Dα
ǫ F [u+ ǫh])ǫ=0 , (50)

then we have some problems about incorrectness of definition (50). These
problems are following:

1) The first term of right hand side of equation (49) leads us to infinity. If
ǫ tends to zero, then we get ǫ−α → ∞, and Dα

ǫ F [u + ǫh] → ∞. Therefore the
first term that is follows from the relation Dα

ǫ C = 0 must be removed. For this
aim we can use the Caputo fractional derivative [3, 22, 23, 24]. Using (4) for
0 < α < 1, we have

Dα
∗ ǫf(ǫ) = Dα

ǫ f(ǫ)−
ǫ−α

Γ(2− α)
f(0+). (51)

2) The second term of the right hand side of equation (49) is proportional
to ǫ1−α. This proportionality leads us to zero in the limit ǫ → 0, and we
cannot derive some nonzero relation. Therefore we must consider the functional
F [u+ (ǫh)α] in the definition.

As the result, we cannot use the definitions (46) and (50).

5.3. Step 2.

Let us consider the following definition of fractional variational functional F [u]:

δαF [u] = (Dα
ǫ F [u+ (ǫh)α])ǫ=0 , (52)

where Dα
ǫ = Dα

∗ is a Caputo fractional derivative of order α with respect to ǫ.

If we consider the functional (42), then

F [u+(ǫh)α] =

∫ x2

x1

[u(x)]2dx+2ǫα
∫ x2

x1

u(x)hα(x)dx+ǫ2α
∫ x2

x1

[h(x)]2αdx. (53)

The fractional derivative (52) of this functional is equal to

Dα
ǫ F [u+ (ǫh)α] = 2Γ(α+ 1)

∫ x2

x1

u(x)hα(x)dx

+
Γ(2α+ 1)

Γ(α+ 1)
ǫα

∫ x2

x1

[h(x)]2αdx. (54)
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Therefore, we get the following equation

(Dα
ǫ F [u+ (ǫh)α])ǫ=0 = 2Γ(α + 1)

∫ x2

x1

u(x)hα(x)dx. (55)

Note that for α = 1, we get the usual relation

δα=1F [u] = 2

∫ x2

x1

u(x)h(x)dx. (56)

Unfortunately, if we put α = 0, we get

F [u] = δα=0F [u] = 2

∫ x2

x1

u(x)(h(x))0dx = 2

∫ x2

x1

u(x)dx 6= F [u]. (57)

Therefore we cannot use the definition (52).

5.4. Step 3.

The usual definition (39) can be rewritten in the form

δF [u] =

(

d

dǫ
F

[

u

(

1 +
ǫh

u

)])

ǫ=0

. (58)

The fractional variation can be defined by the equation

δαF [u] =

(

Dα
ǫ F

[

u

(

1 +

[

ǫh

u

]α)])

ǫ=0

. (59)

This definition is more consistent in order to realize the physical dimensions.
In this definition the parameter ǫ is dimensionless.

If we consider the functional (42), then

F

[

u

(

1 +

[

ǫh

u

]α)]

= F [u+ (ǫh)αu1−α] =

∫ x2

x1

[u(x)]2dx+ 2ǫα
∫ x2

x1

u2−α(x)hα(x)dx+ ǫ2α
∫ x2

x1

u2−2α(x)[h(x)]2αdx. (60)

The fractional derivative of this functional is equal to

Dα
ǫ F [u+ (ǫh)αu1−α] = 2Γ(α + 1)

∫ x2

x1

u2−α(x)hα(x)dx

+
Γ(2α+ 1)

Γ(α+ 1)
ǫα

∫ x2

x1

u2−2α(x)[h(x)]2αdx. (61)
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As a result, we get

(

Dα
ǫ F [u+ (ǫh)αu1−α]

)

ǫ=0
= 2Γ(α+ 1)

∫ x2

x1

u2−α(x)hα(x)dx. (62)

For α = 1, we get the usual relation. For α = 0, we have

F [u] = δα=0F [u] = 2

∫ x2

x1

u2(x)dx 6= F [u]. (63)

If we consider the functional

F [u] =

∫ x2

x1

un(x)dx, (64)

then definition (59) leads to the relation

(

Dα
ǫ F [u+ (ǫh)αu1−α]

)

ǫ=0
= nΓ(α+ 1)

∫ x2

x1

un−α(x)hα(x)dx (65)

and, for α = 0

F [u] = δα=0F [u] = n

∫ x2

x1

un(x)dx 6= F [u]. (66)

Therefore we have to implement some changes in the definition (59). This
modification is suggested in the next subsection.

5.5. Definition of Variation of Fractional Order

Taking into account the remarks in the form of Step 1-3 and using Eq. (58) for
variation of integer order, we can define the fractional variation in the following
form.

Definition 5. The fractional-order variation δαF [u] of the functional F [u]
is defined by the equation

δαF [u] =

(

Dα
ǫ F

[

u

(

1 +
ǫh

u

)α])

ǫ=0

, (67)

or, in an equivalent form

δαF [u] =
(

Dα
ǫ F

[

u1−α(u+ ǫh)α
])

ǫ=0
, (68)
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where ǫ ≥ 0.

Example. If we consider the functional (42), we have

F
[

u1−α(u+ ǫh)α
]

=

∫ x2

x1

u2−2αh2α(ǫ+ u/h)2αdx. (69)

Using the relation

Dα
ǫ (ǫ+ u/h)2α =

Γ(2α + 1)

Γ(α+ 1)
(ǫ+ u/h)α, (70)

where we consider ǫ+u(x)/h(x) = ǫ− ǫ0 with ǫ0 = ǫ0(x) = −u(x)/h(x), we get
the fractional derivative of functional (69) in the form

Dα
ǫ F

[

u1−α(u+ ǫh)α
]

=
Γ(2α + 1)

Γ(α+ 1)

∫ x2

x1

u2−2αh2α(ǫ+ u/h)αdx. (71)

As the result, we get

(

Dα
ǫ F

[

u1−α(u+ ǫh)α
])

ǫ=0
=

Γ(2α+ 1)

Γ(α+ 1)

∫ x2

x1

dxu2−α(x)hα(x). (72)

For α = 1, and α = 0, we get the usual relations. Therefore definition (67)
satisfies the correspondent requirements for α = 0 and α = 1. As the result, we
get the fractional variational derivative of order 0 ≤ α ≤ 1 in the form (68).

Proposition 1. The fractional-order variation derivative (67) of the func-
tional

F [u] =

∫ x2

x1

un(u)dx (73)

has the form

δαF [u] = λ(α, n)

∫ x2

x1

dx (Dα
uu

n)(x)hα(x), (74)

where

λ(α, n) =
Γ(nα+ 1)Γ(n + 1− α)

Γ((n− 1)α + 1)Γ(n+ 1)
. (75)

Proof. Using (73), we have

F
[

u1−α(u+ ǫh)α
]

=

∫ x2

x1

un−nαhnα(ǫ+ u/h)nαdx. (76)
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From the relation

Dα
ǫ (ǫ+ u/h)nα =

Γ(nα+ 1)

Γ((n− 1)α + 1)
(ǫ+ u/h)(n−1)α, (77)

we get the fractional derivative of functional (73) in the form

δαF [u] =
(

Dα
ǫ F

[

u1−α(u+ ǫh)α
])

ǫ=0
=

Γ(nα+ 1)

Γ((n− 1)α + 1)

∫ x2

x1

dxun−α(x)hα(x).

(78)
This equation can be represented in the form

δαF =

∫ x2

x1

dx(Dα
uu

n)hα(x), (79)

up to numerical factor. For equation (79), we have

(Dα
uu

n) =
Γ(n+ 1)

Γ(n+ 1− α)
un−α. (80)

This ends the proof.

The fractional variational derivative of order α ≥ 1 can be defined by the
usual relation

δα = δ[α]δ{α} (81)

by analogy with fractional derivative

Dα
x =

d[α]

dx[α]
D{α}

x , (82)

where [α] is the integer part of α, and {α} is the fractional part of number α,
i.e., {α} = α− [α].

5.6. Functional with Derivative of Field

Let us consider the functional F [u] of the form

F [u] =

∫ x2

x1

f(u, ux)dx, (83)

where ux = du(x)
dx

. The first variation of this functional is defined by

δF [u] =

(

d

dǫ
F [u+ ǫh]

)

ǫ=0

= lim
ǫ→0

(

d

dǫ

∫ x2

x1

f(u+ ǫh, [u+ ǫh]x)

)

dx, (84)
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where we use
[u+ ǫh]x = ux + ǫhx. (85)

In order to use the equation

Dα
ǫ (ǫ− ǫ0)

β =
Γ(β + 1)

Γ(β + 1− α)
(ǫ− ǫ0)

β−α, (86)

for the relation [ǫ + u(x)/h(x)], we consider ǫ0 = ǫ0(x) = −u(x)/h(x). The
definition of the fractional variation of functional (83) can be realized in the
following form.

Definition 6. The fractional-order variation derivative of the functional
(83) is defined by the equation

δαF [u] = lim
ǫ→0

∫ x2

x1

(

Dα
ǫ f

(

u1−α(u+ ǫh)α, [u1−α(u+ ǫh)α]x

))

. (87)

Using the definition (68), we have the fractional variation of functional (83)
in the form

δαF [u] =

∫ x2

x1

(

Dα
ǫ f

(

u1−α(u+ ǫh)α, [u1−α(u+ ǫh)α]x

))

ǫ=0
. (88)

It is easy to see that the expression [u1−α(u+ ǫh)α]x cannot be represented in
the form of similar Eq. (85). This expression has the form

[u1−α(u+ ǫh)α]x = [(1− α)u−α(u+ ǫh)α + αu1−α(u+ ǫh)α−1]ux

+ αu1−α(u+ ǫh)α−1ǫhx. (89)

For α = 0, we have
[u1−α(u+ ǫh)α]x = ux, (90)

and for α = 1, we have

[u1−α(u+ ǫh)α]x = ux + ǫhx. (91)

Let us give the proposition for a special form of the functional.

Proposition 2. The fractional-order variation derivative (87) of the func-
tional

F [u] =

∫ x2

x1

u(x)ux(x)dx. (92)
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has the form

δαF [u] =

∫ x2

x1

dx
(

A1(α)ux(x)h(x) +A2(α)u
2−α(x)αhα−1(x)hx(x)

)

, (93)

where

A1(α) =

[

(1− α)Γ(2α + 1)

Γ(α+ 1)
+

αΓ(2α)

Γ(α)

]

, A2(α) =
α2Γ(2α)

Γ(α+ 1)
. (94)

Proof. Let us use the functional

F [u1−α(u+ ǫh)α] =

∫ x2

x1

dx = u1−α(u+ ǫh)α[u1−α(u+ ǫh)α]x

=

∫ x2

x1

dx
(

(1− α)u1−2αh2α(ǫ+ u/h)2αux + αu2−2αh2α−1(ǫ+ u/h)2α−1ux

+ αu2−2αh2α−1(ǫ+ u/h)2α−1ǫhx

)

. (95)

Consider ǫ0 = ǫ0(x) = −u(x)/h(x). We can use the following relations

Dα
ǫ (ǫ− ǫ0)

β =
Γ(β + 1)

Γ(β + 1− α)
(ǫ− ǫ0)

β−α, (96)

and

Dα
ǫ (ǫ− ǫ0)

β(ǫ− 0)γ =
Γ(β + 1)

Γ(β + 1− α)

F2;1

(

−γ, β + 1;β + 1− α;−
ǫ− ǫ0
ǫ0

)

(ǫ0)
γ(ǫ− ǫ0)

β−α. (97)

Note that Eq. (96) is satisfied for β > −1, and Eq. (97) is satisfied for β > −1,
ǫ > ǫ0 > 0 . Here F2;1(a, b, c, z) is the Gauss hypergeometric function [1]:

F2;1(a, b, c, z) =
∞
∑

k=0

(a)k(bk)

(c)k

zk

k!
,

and

(z)k = z(z + 1)...(z + n− 1) =
Γ(z + n)

Γ(z)
.

For the function F2;1(a, b, c, z) there exists the Euler integral representation

F2;1(a, b, c, z) =
Γ(c)

Γ(b)Γ(c − b)

∫ 1

0
tb−1(1− t)c−b−1(1− zt)−adt, (98)
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where Re(c) > Re(b) > 0, |arg(1 − z)| < π, and the relation

F2;1[a, b; c; 1] =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
, (99)

where Re(c− a− b) > 0 . For the case α > 1, we can use

dk

dzk
F2;1[a, b; c; z] =

(a)k(bk)

(c)k
F2;1[a+ k, b+ k; c+ k; z], (100)

where k = [α] is the integer part of α. As a result, we get

δαF [u] =

∫ x2

x1

dx

[

(1− α)Γ(2α + 1)

Γ(α+ 1)
+

αΓ(2α)

Γ(α)

]

ux(x)h(x)

+

∫ x2

x1

dx
αΓ(2α)

Γ(α+ 1)
u2−ααhα−1hx. (101)

This ends the proof.

For α → 1, we have the usual relation

δF [u] =

∫ x2

x1

dx[uxh+ uhx].

Note that we can use
αhα−1hx = (hα)x,

and then
∫ x2

x1

dx
Γ(2α)Γ(1 − α)

Γ(−α)Γ(α + 1)
u2−ααhα−1hx = −

∫ x2

x1

dx
Γ(2α)Γ(1 − α)

Γ(−α)Γ(α+ 1)
(u2−α)xh

α.

(102)
This allows us to realize integration by part in the second term of Eq. (101).

6. Fractional Variation of Fields

In this section we consider the definition of fractional variational derivative
without using the increment

∆F [u] = F [u+ h]− F [u]

of the functional F [u], and without using the derivative with respect to param-
eter ǫ as in the Gateaux derivative. We suppose that the functional F [u] has
some densities f(u, ux, ...).
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If u = (u1, ..., um)(x, t) is a smooth vector-function defined in the region
W ⊂ Rn, then the variation of the functional

F [u] =

∫

W

f(u,ux)dx

can be defined by the relation

δF [u] =

∫

W

δf(u,ux)dx =

∫

W

[

∂f

∂uµ
δuµ +

∂f

∂uµx
δuµx

]

dx. (103)

To define the fractional generalization of variation and fractional exterior
variational calculus [21], we can use an analogy with the definition of fractional
exterior derivative. If the partial derivatives in the definition of the exterior
derivative

d = dxi∂/∂xi

are allowed to assume fractional order, a fractional exterior derivative can be
defined [20] by the equation

dα = (dxi)
αDα

xi
, (104)

where Dα
x are the fractional derivative with respect to x. Using this analogy,

we can define the fractional variation in the following way. For the point u of
functional space, we can define the fractional variation δF [u] of the functional

F [u] =

∫ x2

x1

f(u, ux)dx, (105)

where ux = du/dx, by the equation

δαF [u] =

∫ x2

x1

δf(u, ux)dx =

∫ x2

x2

dx
[

(δu)αDα
uf(u, ux) + (δux)

αDα
ux
f(u, ux)

]

.

(106)

This approach has a difficulty with the realization of integration by part in
the second term of (106). It is easy to see that the variation (δux)

α cannot be
represented as some operator acts on the variation (δu)α, i.e., we have

(δux(x))
α =

(

d

dx
δu(x)

)α

6=
d

dx
(δu)α. (107)

In order to resolve this difficulty we can use the following.
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Let us define the fractional variation of the functional

F [u] =

∫

f(u1, u2, ..., um)dx, (108)

by the equation

δαF [u] =

∫

[

m
∑

k=1

(Dα
uk
f)(δuk)

α

]

dx (109)

by analogy with

δF [u] =

∫ m
∑

k=1

(D1
uk
f)δukdx. (110)

In this case, we have

δαul =

∫

[

m
∑

k=1

(Dα
uk
ul)(δuk)

α

]

. (111)

It is known, that

δul =

∫

[

m
∑

k=1

(D1
uk
ul)δuk

]

dx =

∫

[δklδ(y − x)δuk] dx. (112)

Using the Caputo fractional derivative, we have

Dα
uk(y)

ul(x) =
u1−α

Γ(2− α)
δklδ(y − x). (113)

Here the Caputo fractional derivative leads to the δkl, i.e.,

Dα
uk(y)

ul(x) = 0 k 6= l.

As the result, we get

δαul =
u1−α

Γ(2− α)
δkl(δuk)

α. (114)

Therefore, we have
(δuk)

α = Γ(2− α)uα−1
k δαuk. (115)

For the Riemann-Liouville fractional derivatives, we can derive some analogous
relation:

(δuk)
α = Akl

(

Γ(2− α)uα−1
k ; Γ(1 − α)u−1

k uαl
)

δαuk. (116)

Substituting Eq. (115) in Eq. (109), we have the following definition.
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Definition 7. The fractional order variation δαF [u] of the functional (108)
is defined by the equation

δαF [u] = Γ(2− α)

∫

[

m
∑

k=1

(Dα
uk
f)uα−1

k δαuk

]

dx. (117)

We can define the fractional variation for derivative duk(x)/dx by the equa-
tion

δα
d

dx
uk(x) =

d

dx
δαuk(x), (118)

where we suppose that the fields uk do not connected by some constraint.
Analogously, we have

δαDβ
xuk(x) = Dβ

xδ
αuk(x). (119)

Let us consider u1 = u, and u2 = ux and the functional

F [u] =

∫

f(u1, u2)dx =

∫

f(u, ux)dx. (120)

As the result, we have

δαF [u] = Γ(2− α)

∫
[

(Dα
uk
f)uα−1

k δαu−
d

dx

(

Dα
ukx

f)uα−1
kx

)

]

δαukdx. (121)

We can use this relation only if ux and u can be considered as independent
values, i.e., for the case

Dα
ux
u = 0, Dα

uux = 0. (122)

Note that Eq. (122) cannot be satisfied in the general case. Therefore, we
have to consider the functional

F [u] =

∫
[

f(u1, u2) + λ

(

u2 −
d

dx
u1

)]

dx, (123)

instead of the functional (120).

Proposition 3. The fractional-order variation equation

δαF [u] = 0

of the functional (123) gives

(Dα
u1
f)u2α−2

1 −
d

dx

(

uα−1
1 uα−1

2 Dα
u2
f
)

= 0. (124)
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where u2 = du1/dx.

Proof. The fractional-order variation of the functional (123) gives

δαF [u] = Γ(2− α)

∫

dx

[

(Dα
u1
f)uα−1

1 − λ

(

Dα
u1

d

dx
u1

)

uα−1
1

]

δαu1

+Γ(2− α)

∫

dx
[

(Dα
u2
f)uα−1

2 + λ(Dα
u2
u2)u

α−1
2

]

δαu2

+Γ(2− α)

∫

dx

[

u2 −
d

dx
u1

]

(Dα
λλ)λ

α−1
k δαλ. (125)

Using

λ

(

Dα
u1

d

dx
u1

)

uα−1
1 = λuα−1

1

d

dx

(

Dα
u1
u1

)

=
d

dx

(

λuα−1
1 Dα

u1
u1

)

−Dα
u1
u1

d

dx

(

λuα−1
1

)

, (126)

we get the following fractional variation of the functional

δαF [u] = Γ(2− α)

∫

dx

[

(Dα
u1
f)uα−1

1 +Dα
u1
u1

d

dx

(

λuα−1
1

)

]

δαu1

+Γ(2− α)

∫

dx
[

(Dα
u2
f)uα−1

2 + λ(Dα
u2
u2)u

α−1
2

]

δαu2

+Γ(2− α)

∫

dx

[

u2 −
d

dx
u1

]

(Dα
λλ)λ

α−1
k δαλ. (127)

As the result, we get the field equations

(Dα
u1
f)uα−1

1 +Dα
u1
u1

d

dx

(

λuα−1
1

)

= 0, (128)

(Dα
u2
f) + λ(Dα

u2
u2) = 0, (129)

u2 −
d

dx
u1 = 0. (130)

From the Eq. (129), we derive the Lagrange multiplier

λ = −
Dα

u2
f

Dα
u2
u2

. (131)

Substituting this equation in Eq. (128), we have

(Dα
u1
f)uα−1

1 −Dα
u1
u1

d

dx

(

uα−1
1

Dα
u2
u2

Dα
u2
f

)

= 0. (132)

Using Dα
uu = u1−α/Γ(2− α), we get (124).

Equation (124) is the fractional Euler-Lagrange equation.
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7. Conclusion

In the general case, the equation of motion cannot be derived from the station-
ary action principle. The class of equations that can be derived from stationary
action principle by using fractional variation is a wider class than the usual
class equations that can be derived by usual (integer, first order) variation.
The usual (integer order) equations of motion can be considered as special case
of equations that can be derived by fractional variation such that α = 1.

It can seems that the fractional variations are abstract and formal construc-
tions. For this reason, we would like to pay attention that the suggested frac-
tional variations can have wide application in study of fractional gradient type
equations and fractional generalization of Lyapunov direct (second) method in
the theory of stability.

The possible importance of fractional variations are connected with the
following ideas. The class of gradient dynamical systems is a restricted class of
all dynamical systems. However these systems have important property. The
gradient system can be described by one function - potential, and the study
of the system can be reduced to research of potential. For example, the way
of chemical reactions is defined from the analysis of potential energy surfaces
[35, 36, 37]. The fractional gradient systems has been suggested in Refs. [18, 19].
The fractional gradient systems are non-gradient dynamical systems that can be
described by one function - some potential. For example, the Lorenz equations
and Rössler equations are fractional gradient systems [18, 19]. Therefore the
study the some non-gradient system can be reduced to research of potential. For
example, the way of some chemical reactions with dissipation, dynamical chaos
and self-organizing can be considered by the analysis of some potential energy
surfaces. The suggested fractional variations allow us to define the fractional
generalization of gradient type equations that can have wide applications for
the description of dissipative structures [38, 39]. The suggested approach can
also be generalized for lattice systems by using the lattice fractional calculus
[34].

Appendix

The following rules for variational defivatives are known:

• The variation derivative of the field u(x) is defined by the equation

δu(x)

δu(y)
= δ(y − x), (133)
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where we use

δu(x) =

∫

δ(y − x)δu(y). (134)

The variational derivatives of linear functional

F [u] =

∫

g(x)u(x)dx (135)

can be calculated by the simple formula

δF [u]

δu(y)
=

∫

g(x)
δu(x)

δu(y)
dx =

∫

g(x)δ(y − x)dx = h(y).

• If the u function in the functional is affected by differential operators,
then, in order to make use of the rule (133), one should at first ”throw
them over” to the left, fulfilling integration by parts. For example,

δ

δu(y)

∫

g(x)[∇u(x)]dx = −
δ

δu(y)

∫

[∇g(x)]u(x)dx = −∇g(y).

We assumed here that on the boundary of integration domain the product
u(x)h(x) becomes zero.

• The variational derivative of nonlinear functionals is calculated accord-
ing to the rule of differentiating a complex function similarly to partial
derivatives:

δ

δu(y)

∫

f(u(x))dx =

∫

δf(u)

δu(x)

δu(x)

δu(y)
dx

=

∫

δf(u)

δu(x)
δ(y − x)dx =

δf(u(y))

δu(y)
.

For example,
δ

δu(y)

∫

[u(x)]ndx = n[u(y)]n−1.
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