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1. Introduction

The theory of integrals and derivatives of non-integer order goes back to Leib-
niz, Liouville, Riemann, Grunwald and Letnikov [1, 2]. Fractional analysis has
found many applications in recent studies in mechanics and physics. The inter-
est in fractional equations has been growing continually during the last few years
because of numerous applications. In a short period of time the list applications
becomes long. For example, it includes the chaotic dynamics [3, 4], material sciences
[5-9], mechanics of fractal and complex media [10-18], quantum mechanics [19, 23],
physical kinetics [3, 24-26], plasma physics [27, 30], electromagnetic theory [28-
30], astrophysics [33], long-range dissipation [34, 42], non-Hamiltonian mechanics
[35-41], long-range interaction [44-47].

It is known that we can define a fractional power of operator [48-54]. The integer
power of operator can be easily realized. Therefore, we can realize the fractional
power as the integer power series. In this paper, we use equations that represent the
fractional power as a series of integer powers series. This representation allows us
to define the fractional power of operator as a series of integer powers of operator.
As the result, we obtain the definition of fractional derivatives as a fractional power
of derivative operator.
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Note that the well-known Riemann-Liouville fractional derivative can be repre-

sented as a power series of derivatives of integer order [1]:

o0 dn

D7, = ZAn(z,a,a)d—;, (1.1)

n=0 z
where
(-1 lal'(n—a) (z—a)* @
Fl-o)f(n+1) I'(n+1—-aqa)
for the functions that are analytical in the interval (a,b).

In Sec. 2, we point out some well-known definitions of functions of bounded and
unbounded operators. In Sec. 3, the fractional derivatives are defined as fractional
powers of coordinates that considered as Taylor series. In Sec. 4, the fractional
derivatives are considered as fractional powers of coordinates that considered as
Fourier series for the interval. In Sec. 5, the fractional derivatives are defined as
fractional powers of coordinates by using the Fourier integrals. In Sec. 6, the frac-
tional derivatives are defined as fractional powers of coordinates by using the Weyl
quantization. In Sec. 7, using fractional derivatives, we define the stability with
respect to fractional variations.

Ap(z,0,0) =

2. Function of Bounded and Unbounded Operators

Let us point out some well-known definitions of functions of bounded and
unbounded operators [48-52].

2.1. Power series

Let us consider a bounded linear operator A that is defined on the linear space E,
and A € L(E, E), where L(E, E) is a space of linear maps of E. Suppose the func-
tion f(z) is an analytical function of the variable x such that it can be represented
as a power series

f@) =Y faz™
n=0
Then, we can define
FA) = faA™ (2.1)
n=0

The operator f(A) is a linear bounded operator A on space E. For example, the

exponential function of operator is defined by
= 1
GA = -’,ﬁAn
n=0

2.2. Cauchy’s integral formula

The definition of operator function by power series can be generalized for wider
class of functions. To realize this generalization, we use Cauchy’s integral formula
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instead of power series. Cauchy’s integral formula states that
1 f(z)dz
= — ¢ —— 2.2
f(z0) 2mi Jr z — 2 (22)
where the integral is a contour integral along the contour I' enclosing the point 2.
We can define the algebraic isomorphism between an operator algebra and some
functions [51]. The function f(z) = z corresponds to the operator A. The function
f(z—20) = (2 — 20) ™! corresponds to the resolvent operator R(z, A) = (A — 2I)~L.
If |2| > ra, where 74 is a spectral radius:

ra= lim /4,

then the resolvent operator exists. The function of linear bounded operator is
defined by

1
2mi

F(A) = — 75 F(2)R(z, A)dz, 2.3)

where
R(z,A) = (A — zI)_l, z € p(A).

Here I' = G € o(A), where ¢(A) is a spectrum of operator A4, and p(A) C G. For
example, we can define the operator

et = i ﬁA" —— e“*R(z, A)dz (2.4)
0 n! 2mi a8G ’
that is corresponded to the function exp(zt), and o(4) C G.
As the second example, the operator E, that corresponds to the Heaviside
function 6(z — 29), where (z — 29) = 0 for 2o > z, and 6(z — zg) =1 for zg < z is

defined by
1
E, = E(z A) = —— ]{ 8(2 — 20) R(z0, A)dzo, (2.5)
2m Jr
and is called the spectral operator. The operator E, can be denoted by (=1 — A).

2.3. Spectral representation of selfadjoint unbounded operator

It is known that spectral function E, exists for all selfadjoint operators A, and

+oc
Az :/ zdE,x, (2.6)
where
+oo
| Az|? =/ |2|2d(E,z,z) < oo. (2.7)
—oo
Then, the function f(A) of selfadjoint operator A can be defined by the equation
+o0
f(A)z = (2)dE, . (2.8)

-0
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As operator A, we can consider the selfadjoint derivative —i0/0z. For the father
information about this approach, we can use Refs. [48, 49, 52, 67, 68].

3. Fractional Derivatives by Taylor Series
3.1. Definition of Taylor series

A one-dimensional Taylor series, which is an expansion of a real function f(z) about
a point x = a, is given by

f@ =3 falz —a), (3.1)
n=0
where
fn = =) (32)

and f(™(a) is the nth derivative of f(z) evaluated at the point = = a.
Suppose the function f(z) has all derivatives in the interval |z — a| < ao, and
the condition

m L (")f“) @—a)" =0 (3.3)

n—oo n:
is satisfied, then the series

") (g

@) =3 L0 oy (3.4
n=0

converges to the function f(x) for all intervals |z — a| < @', where a’ < ap. This
representation of the functions can be used to define fractional power of operator.

3.2. Taylor series for fractional power of coordinate

The Taylor series for fractional power of coordinate f(x) = z® about a point
z=a>0is

=3 fale =, (55)
where "
fu = S () = D20, (5.5)
Blayn) = ala — 1)(a—2)---(a—n+1). 3.7)
If m — 1< a<m,then
Blam = (prm@F L= e To-allat)

(m - a)n—m B
where

R)m=2(z4+1)---(z+m—-1).
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For0<a<1,
B(a,n) = (-1)" la(l — a)p_y = (—1)"_1%:—3—;. (3.9)
Using
(x—a)" = Z(—l)"‘k (Z)xka"“k, (:) = (’l’l+]:?)']it', (3.10)

k=0
we rewrite Eq. (3.5) in the form

:izn:anaa (3.11)

n=0 k=0
where
(-1)+1g2=*k '(n — )
(n—Fk)%! Tl-a)

Equation (3.11) represents the fractional power of coordinate as a series of inte-
ger powers. This representation allows us to define the fractional power of operator
as a series of integer powers of operator.

It is known that selfadjoint operators have the real eigenvalues. Using Eq. (3.11)
with a > 0, we can define the fractional power of the selfadjoint operator A by

[¢3 - B(a’ n) n
A% = 2‘6 AT (3.13)

C(n,a,a) = (3.12)

For the operator A = —id/0x, we have
d\* <XBlayn) [ .d "
(—za) = Z —gn—a (_ZE —a) , (3.14)
n=0
or, in the equivalent form

(—z—) ZZ -)kC(n, k,a, a)d - (3.15)

n=0 k=0

As the result, we get that fractional derivative is defined as a series of integer powers
of selfadjoint derivative operator.

3.3. Ezamples of computation of fractional derivatives

Let us consider the fractional derivative (3.14) of constant c:

(—iad;)ac = ;) ’:!(ao;_"a) ( i - a)nc. (3.16)

USing
’L[ a a 3 .
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we get

(—z’%) c= a“cg(—l)"B (z; n). (3.18)

If0<a<1, then

d _ = I'(n—a)
<_2E) c=—a CZF CESTET (3.19)

Let us consider the fractional derivative of a power ™. From (3.15),

( ) ii( )*C(n, k, o, a)(z™)®. (3.20)

n=0 k=0
Using
(z™)®) =m(m —1)---(m—k+1)z™* = -(m—nz!ma;m_k (3.21)
for k < m, and (™)) = 0 for k > m, we get
(_ii)a ™ = f: Zn:(—i)kC(n, ko, @) gmk, (3.22)
dz (m —k)!

4. Fractional Derivatives by Fourier Series

4.1. Fourier series

Fourier series of a function f(z) € Ls[—1,!] is an expansion in terms of an infinite
sum of sines and cosines. Since sines and cosines form a complete orthogonal system
over [—,!], the Fourier series is given by

oo
a T . (TnT
flx)= —29 + ,; [an cos (—l——) + b, sin (—l—)} , (4.1)
where
1 +1

ap = _l' . f(.’L‘)d.’E,

Qn % :l f(z) cos (Wlﬂ) dz,

by = -}— :l f(z)sin (#) dz, (4.2)

and n is a positive integer number.
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Let us consider the Fourier series for f(z) = |z|* € L?[—1;1] , where o is a
positive fractional power. The Fourier series of this function for z € [, +{] is
|z|* = 24 ia cos (ﬂ—kz) (4.3)
2 L )’ ‘
where

1 1
ag = %/ |y|® cos (ﬂTky) dy = %/ y® cos (ﬂTky) dy, k=0,1,2,.... (44)
—1 0

The cosine can be represented as a power series. Therefore, Eq. (4.3) allows us to
present the fractional power as a series of integer powers series. Then, we can define
fractional derivative on the interval {—[,[] as a fractional power of derivative.

4.2. Fractional derivative

The fractional power of derivative operator for the interval [—I; ], we can define by

d\*  ap | w— 7k d
(—z£> =3 + Zak cos (—’LTE;) . (4.5)

It is known that we can define exp(A) for the selfadjoint operator A = —id/dz by

) x_ool n_oo(_,i)n d n
o—id/d _n=OEA _ngo — (E) . (4.6)
Using
s 455 £
n=0 n=0
_oo 1 n "—001+(_1)n n_oo_l_ m
=2 o (" AN = 3 A" = 3 A
we have

o () = 52 L () wn

Equations (6.15) and (4.7) allows us to define the fractional power of operator as a
series of integer powers of operator. Using (4.7), we rewrite (4.5) as

or by the equivalent equation

_id a—93+is EAN (4.9)
Yiz) T2 — ™\ dz ’ '
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where

_ —H—' i (“k) ax. (4.10)

k=1
Let us compute the coefficients ax by

l

ak = y ® cos(mky)dy.

la
As the result, we obtain

—a.—1/240l.a 3
i :a++k1 (oo
+ 2-og—1/2tage(rk cos(nk) — sin(mk)] N 2-vVkaL{a +1/2,3/2,7k) sin(rk)
a+1 a+1
2=k cos(mk) — sin(wk)|L(a + 3/2,1/2, k)
VEr(a+1) ) ’

where L(u,v, z) is the Lommel function [55].

4.3. Complex Fourier series

The real-valued function f(x), which is defined on [-L/2, L/2], can be presented
by

o
z)= Y fad®mD?, (4.11)
n=—0oo
where
1 +L/2 ]
fn== / f(z)e4#m=/L) gy, (4.12)
LJ 1

The operator function f(A) is defined by

= 3 fae®m/DA, (4.13)

n=—00
where f, are defined in (4.12), and
oo k
gi@mn/L)A _ Zik (2mn/L) yui (4.14)

paard k!

Substitution of (4.14) into (4.13) gives

f(A) = Z an mn/L . (4.15)

n=—oc k=0
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Then the fractional power of selfadjoint derivative on [—L/2,+L/2] can be
presented by

where

k -L/2
f(n, k) = %—:LLLM |z|* cos(nz)dz. (4.17)

Equation (4.16) represents the fractional power as a series of integer powers. This
representation defines the fractional power of derivative as a series with integer
powers of derivatives.

5. Fourier Transform and Fourier Integral
5.1. Fractional derivative by Fourier integral

Let us consider a function f(z) with n variables . Suppose Ay, As,..., A, are
n elements of commutative operator algebra A. For example, A is an algebra of
operators in linear space. We denote by f the Fourier transform for f(z):

fy) = (x)e_mydxa TY =T1Y1 + - * + Tnln, (5'1)
where
1 e i(y1z1+-+ ) 1 ez iy A
= ——— UYL1ZTi 1+ TYnTn _ A .
£@) = e | Fwe = [ dwiwert. 62)
The operator function f(A) of elements A4, ..., A, is defined by
1 e s i(y1 A1+ +YnAn) 1 T a wA
fA)=—/ fly)etnr i Tintnidy = / dyf(y)e*”. (5.3
)= [ fw) o | wiwet 63)
Substitution of Eq. (5.1) into Eq. (5.3) get
1 +oo A 1 +o0 +00 W (A—z)
f(A) = —— F(y)e¥idy = / dy/ def(x)e?¥ "7, (54
) =y | W) o | W[ def@ 54)
In general, we must give the exact definition of these integrals and description of
possible class of symbols and algebras of elements A;,..., A,.
To define the fractional power of the operator A, we use (5.3) in the form
1 +oo +o0 iy (A—2)
A% = —— d: dy|z|*e™ AT, .
ao | e[ e )

This equation can be considered as a definition of fractional power of operator A.
For f(z) = |z|*, where a # —1,-3,..., we have [56]:

fly) = /+oo dz|z|*e™*Y = —2sin(ma/2)(a + 1)|y| > 1.

—00
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Then Eq. (5.5) gives

2sin(ma/2)(a + 1) /+°° ol ivA
A% = — [+ iyA .
o gyl (56)
For the selfadjoint derivative operators
0 0
Ay =—i—,..., Ay = —t7g—,
! laccl’ 4 2aa:n
Eq. (5.6) is
. 9\* _ 2sin(ra/2)T(a+1) /+°° o1 0
(—@;) = ) . dyly|™*"exp {yz- |- (5.7)

As the result, we obtain the fractional derivative operator as a fractional power of
selfadjoint derivative operator.

5.2. Fractional power of selfadjoint derivative operator

Let us consider selfadjoint derivative operators

Do= i = (~igm iz ) (538)

., ——
oz F S R

It is easy to prove that f(p) = p* € S®(Ry). Here, S is the space of symbols
that are slowly growth on the infinity. This space is defined as

S%(R™) = U Nk SF(R™),
where SF(R™) is a space of functions from the class C*(R™) with the norm

1flls(rmy = sup(L+ j[?)!/2 (Z IIf(“)(w)II) : (5.9)

lal

(2) @

The fractional powers of the operator (5.8) are elements of algebra £(5*°, 5%)
of all continuous linear maps of the space S®°(R"). Then, the fractional derivative

operator
Q . a *
Dz = <_15L'_) (511)

is a fractional power of selfadjoint derivative operator. The operator (5.11) acts on
the arbitrary function u(z) € C*°(R") by

The space S®(R™) is defined by

Ir, Vs |fllrs= sgp{(l + |z|)" } < 00. (5.10)

(Fi2) wlo) = Fyer®Fypui), (5.12)
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where
Fypu(y) = (L.)n/z/hoeimu(y)dy, (5.13)
2me —oo
is the direct Fourier transform, and
- 1 \™2 ptoo
Bt = (5) [ v (5.14)

is the Fourier transform.

Proposition 5.1. The operator

D2 = (—ia%)a (5.15)

has the symbol
symb{Dz}{p) = p*. (5.16)

Proof. Using Eq. (5.12), we get

o .0 “ .0 ¢ ipx T [ ipy
DZep(z) = ~ige ep(z) = —ig-) €= F, 22%Fy_..e
F,

(
= F,_p (p*(2mi)"/25(2 — p)) = p®e'P® = p®ep(x).
As the result, we obtain
Dzep(z) = p®ep(x). (5.17)

Multiplying both sides of (5.17) on e_p(z), we get e_p(x)DZep(x) = p* that proves
(5.16). O

6. Fractional Derivative by Quantization Map
6.1. Quantization procedure for coordinate representation

Let us consider the quantum mechanics in coordinate representation. It is known
that quantization () is a linear map of coordinate ¢ and momentum p into selfadjoint
operators

Qa)=d=g Q) =p=—ihz, QM)=I. (6.1)
Using linearity of quantization map [57, 58], we get
Q(ag + bp) = ag + bp. (6.2)

Obviously, we have

Q(lag + bp]™) = [ag + bp]". (6.3)
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Using the power series

exp(z) = Z %x", (6.4)
n=0
we get
Q(expli(aq + bp)]) = exp|(i/ h)(ad + bp))- (6.5)

This allows us to define the function of operators § and p by using the Fourier
transforms [57-68].

6.2. Weyl quantization

Canonical quantization defines a map of real functions into selfadjoint operators
[67-68]. A classical observable is described by some real function A(g,p) from a
function space M. Quantization of this function leads to selfadjoint operator fi(tj, D)
from some operator space M.

Let us consider main points of the usual method of canonical quantization [57,
60, 67, 68]. Let gx be canonical coordinates and py are canonical momenta, where
k =1,...,n. The basis of the space M of functions A(q, p) is defined by functions

n .
W(aa b» qap) = e(i/ﬁ)(aq+bp), aq = Z Akqk- (66)
k=1

Quantization transforms coordinates g and momenta pi to operators §x and py.
Weyl quantization of the basis functions (6.6) leads to the Weyl operators

n
QW (a,b,q,p)) = W(a,b,4,p) = /M) g5 =" g4 (6.7)
k=1

Operators (6.7) form a basis of the operator space M. Classical observable, char-
acterized by the function A(q,p), can be represented in the form

1 too
Ag.p) = G [ Al bWl b an)ad™, (69
where
. 1 too
i) = e /_ Aa,)W(a,b.q,p)ad™, (6.9)

i.e. A(a,b) is the Fourier image of the function A(g, p). Quantum observable A(g, p),
which coresponds to A(q, p), is

. . 1 oo . L

Q@) = A0.0) = G [ Al DW (@b dp)ad™d. (610

This formula can be considered as an operator expansion for /i((j, D) in the operator
basis (6.7). Substitution of (6.9) into (6.10) gives

-~ +w

o 1 oo . . .
A(q,p)=W/_oo d"a d"b - d"q d"p A(q,p)W(a, b, — qI,p — pI).
(6.11)
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The function A(q,p) is called the Weyl symbol of the operator A(g,p). Canonical
quantization defined by (6.11) is called the Weyl quantization. The Weyl operator
(6.7) in formula (6.11) leads to Weyl quantization. Another basis operator leads to
different quantization scheme [60].

6.3. Fractional derivative by Weyl quantization map

Let us consider a quantization map of real function f(p) = |p|® into selfadjoint
operator. Quantization of this function leads to some selfadjoint operator f(p) from
the operator space My, where pp = —i0/0zx and k =1,...,n. Then

DS = f(p) = p* = (~iD/0zi)".

The basis of the space M, is defined by functions
) n
W(a,p) =", ap=_ ap. (6.12)
k=1

Quantization maps p, into P = —id/dzx. Weyl quantization of the functions (6.12)
leads to

QW (a,b) = W(a,p) =P, ap=Y _ arpr. (6.13)
k=1

The operators (6.13) form a basis of the operator space Mp. Using Fourier trans-
form, the function f(p) = |p|* can be presented by

+oo
10) = ez | F@Wiapa (614)
where
N 1 +00
fla)= @) _ f(@)W(a,p)d"p (6.15)

i.e. f(a) is the Fourier image of the function f(p). Quantum observable f(®), which
corresponds to f(p), is defined by formula
. 1 oo |

QUW®) =) = Gryers | J@W(a. D). (6.16)

This formula can be considered as an operator expansion for f (p) in the operator
basis (6.7). From (6.15) and (6.16), we obtain

~

+oo +o0 . R
) = @7{7 / KL / ' f@W(a,—ph). (617)

The function f(p) is the Weyl symbol of the operator f' (D)-
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For f(p) = |p|®, where « is a positive real number, we obtain

d « 1 +00 +o0 . .
o [ g - m m a L
D¢ = ( zdz) @ /_oo d a/—w d"p |p|*W (a,p — pI). (6.18)

As the result, we have the definition of fractional derivatives on R™ as a fractional
power of selfadjoint derivative.

7. Fractional Stability

In this section, we use the fractional generalization of variations of variables. Frac-
tional integrals and derivatives are used for stability problems [69-73]. In this paper,
we consider the properties of dynamical systems with respect to fractional variations
[41]. We formulate stability with respect to motion changes at fractional changes
of variables. Some systems can be unstable “in sense of Lyapunov”, and be stable
with respect to fractional variation.

7.1. Fractional variation derivative

Let us consider dynamical system that is defined by the ordinary differential equa-
tions. Suppose that the motion of dynamical system is described by the equations

d
Y= Fu(y), k=1,...,n. (7.1)
Here ¥, ..., yn be real variables that define the state of dynamical system.

Let us consider the variation dyy of variables yi. The unperturbed motion is
satisfied to zero value of variation éyx = 0. The variation describes that as function
f(y) changes at changes of argument y. The first variation describes changes of
function with respect to the first power of changes of y:

§f(y) = D, f(y)dy, (7.2)
where
Dif(w) = 2.

The second variation describes changes of function with respect to the second power
of changes of y:

8 f(y) = D} f(y)(dy)>. (7.3)

The variation 0™ of integer order n is defined by the derivative of integer order

Dy f(y) = 0" f/oy™.
Let us define the variation of fractional order as a fractional exterior derivative
of the function (zero-form) by the equation

6% f = Dy f (6y)*, (7.4)

where D7 is a fractional derivative with respect to y.
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The fractional variation of order o describes the function f(y) changes with
respect to fractional power of variable y changes. The variation of fractional order
is defined by the derivative of fractional order.

7.2. Equations for fractional variations

Let us derive the equations for fractional variations §*y;,. We consider the fractional
variation of Eq. (7.1) in the form:

d
6"‘Eyk =0%Fr(y), k=1,...,n. (7.5)

Using the definition of fractional variation (7.4), we have

8°Fr(y) = Dy Fe](0w)*, k=1,...,n. (7.6)
From Eq. (7.6), and the property of variation
4 pril E‘S Yk, (7.7)
where yi, = yi (£, a), we obtain
(—j—t-éayk = [D;Fk] (by)*, k=1,...,n. (7.8)

Note that in the left-hand side of Eq. (7.8), we have fractional variation of 0%y,
and in the right-hand side — fractional power of variation (dyx)®.

Let us consider the fractional variation of the variable y. Using Eq. (7.4},
we get

8%yr = [Dy k] (Om)®, k=1,...,n. (7.9)
For the Riemann-Liouville fractional derivative,
Dy oy #0

if k # 1. Therefore for simplification of our transformations, we use the fractional
derivative as a fractional power of derivative

Dy yk = 611 Dy 1, (7.10)

where 6 is a Kronecker symbol. Substituting Eq. (7.10) into Eq. (7.9), we can
express the fractional power of variations (dyx)* through the fractional variation

8%y
(0yx)* = Dy, Y0 Y. (7.11)
Substitution of Eq. (7.11) into Eq. (7.8) get

d
E‘Sayk = [D;yl] [D;Fk] 6%y. (7.12)
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Here we mean the sum on the repeated index [ from 1 to n. Equation (7.12) is
equations for fractional variations. Let us denote zj, the fractional variations 6%y

= 0%y = [D;‘kyk] (6yx)*. (7.13)

As the result, we obtain the differential equation for fractional variations

d
Exk = agi{a)zy, (7.14)
where
ak(a) = [Dglyl] D;Fk. (7.15)
Using the matrix X* = (z1,...,2,), and A, = |lax(a)]], we can rewrite Eq. (7.14)
in the matrix form
X = A X (7.16)
7 X = AaX. .

Equation (7.16) is a linear differential equation. To define the stability with respect
to fractional variations, we consider the characteristic equation

Det[Aq — AE] =0 (7.17)

with respect to A. If the real part Re[Ag] of all eigenvalues A for the matrix A,
are negative, then the unperturbed motion is asymptotically stable with respect to
fractional variations. If the real part Re[Ax] of one of the eigenvalues ) of the matrix
A, is positive, then the unperturbed motion is unstable with respect to fractional
variations.

A system is said to be stable with respect to fractional variations if for every e,
there is a §g such that:

6%y (o)l < do => [[6%y(e,t)|| <€ Vi€ Ry. (7.18)

The dynamical system is said to be asymptotically stable with respect to fractional
variations §*y(¢, a) if as

t—o0, [8°y(t, )] - 0. (7.19)

The concept of stability with respect to fractional variations is wider than the
usual Lyapunov or asymptotic stability. Fractional stability includes concept of
“integer” stability as a special case & = 1. Some systems can be unstable with
respect to first variation of states, and be stable with respect to fractional variation.
Therefore fractional derivatives expand our possibility to research the properties of
dynamical systems.
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