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We describe the fractal solid by a special continuous medium model. We propose to
describe the fractal solid by a fractional continuous medium model, where all character-
istics and fields are defined everywhere in the volume but they follow some generalized
equations which are derived by using fractional integrals of fractional order. The order
of fractional integral can be equal to the fractal mass dimension of the solid. Fractional
integrals are considered as an approximation of integrals on fractals. We suggest the
approach to compute the moments of inertia for fractal solids. The dynamics of fractal
solids are described by the usual Euler’s equations. The possible experimental test of
continuous medium model for fractal solids is considered.
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1. Introduction

Derivatives and integrals of fractional order1–3 have many applications in recent

studies in condensed matter physics. The interest to fractional analysis has grown

continually in the last years. Fractional analysis has numerous applications: kinetic

theories,4–9 statistical mechanics of fractal systems,10–12 dynamics in a complex or

porous media,13–18 electrodynamics,19–24 and many others.

In order to use fractional derivatives and fractional integrals for fractal media,

we must use some continuous medium model.14 We propose to describe the frac-

tal medium by a fractional continuous medium,14,15 where all characteristics and

fields are defined everywhere in the volume but they follow some generalized equa-

tions which are derived by using fractional integrals. In many problems the real

fractal structure of matter can be disregarded and the medium can be replaced

by some fractional continuous mathematical model. Smoothing of the microscopic

characteristics over the physically infinitesimal volume transforms the initial fractal

medium into fractional continuous model14 that uses the fractional integrals. The

order of fractional integral is equal to the fractal mass dimension of the medium.
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The fractional integrals allow us to take into account the fractality of the media. In

order to describe the fractal medium by continuous medium model we must use the

fractional integrals which are considered as an approximation of integrals on frac-

tals. In Ref. 25, authors prove that integrals on net of fractals can be approximated

by fractional integrals. In Refs. 10–12, we proved that fractional integrals can be

considered as integrals over the space with fractional dimension up to numerical

factor. To prove this we use the formulas of dimensional regularizations.26

In this paper, we use the fractional integrals to describe fractal solids. We con-

sider the fractal solid by using the fractional continuous medium model. To describe

a fractal solid, we use integrals of fractional order. We prove that equations of mo-

tion for fractal solid have the same form as the equations for usual solids. We suggest

the approach to compute the moments of inertia for fractal solids and consider the

possible experimental testing of the continuous medium model for fractal solids.

2. Mass of Fractal Solids

The fractal solid is characterized by the fractal dimensions. It is known that fractal

dimension can best be calculated by box-counting method which means drawing a

box of size R and counting the mass inside. The mass fractal dimension27,28 can

be easily measured for fractal solids. The properties of the fractal solid like mass

obeys a power law relation M ∼ RD, where M is the mass of fractal solid, R is

a box size (or a sphere radius), and D is a mass fractal dimension. The power

law relation M ∼ RD can be naturally derived by using the fractional integral.

In Ref. 14, we prove that the mass fractal dimension is connected to the order of

fractional integrals.

Let us consider the region W of solid in three-dimensional Euclidean space E3.

The volume of the region W is denoted by V (W ). The mass of the region W in the

fractal solid is denoted by M(W ). The fractality of solid means that the mass of

this solid in any region W of Euclidean space E3 increases more slowly than the

volume of this region. For the ball region of the fractal solid, this property can be

described by the power law M ∼ RD, where R is the radius of the ball W .

Fractal solid is called a homogeneous if the following property is satisfied: for

all regions W and W ′ of the homogeneous fractal solid such that the volumes are

equal V (W ) = V (W ′), we have the masses of these regions equal too i.e. M(W ) =

M(W ′). Note that the wide class of the fractal media satisfies the homogeneous

property. In Refs. 14 and 15, the fractional continuous medium model for the fractal

media has been suggested. Note that the fractality and homogeneity properties in

the fractional continuous model are realized in the following forms:

(1) Homogeneity: The local density of the homogeneous fractal solid in the contin-

uous model has the form ρ(r) = ρ0 = const.

(2) Fractality: The mass of the ball region W of fractal solid obeys a power law

relation M ∼ RD, where D < 3, R is the radius of the ball.
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The mass of the region W in the solid with integer mass dimension is derived

by the equation realized by the fractional generalization of the equation

M3(W ) =

∫

W

ρ(r)dV3 . (1)

We can consider the fractional generalization of this equation. Let us define the

fractional integral in Euclidean space E3 in the Riesz form.1 The fractional gener-

alization of Eq. (1) can be realized in the following form

MD(W ) =

∫

W

ρ(r)dVD , (2)

where dVD = c3(D, r)dV3, and

c3(D, r) =
23−DΓ(3/2)

Γ(D/2)
|r|D−3 . (3)

Here, we use the initial points in the fractional integrals which are set to zero.

The numerical factor in Eqs. (2) and (3) has this form in order to derive the

usual integral in the limit D → (3 − 0). Note that the usual numerical factor

γ−1
3 (D) = Γ(1/2)/2Dπ3/2Γ(D/2), which is used in Ref. 1 leads to γ−1

3 (3 − 0) =

Γ(1/2)/23π3/2Γ(3/2) = 1/(4π3/2) in the limit D → (3 − 0).

In order to have the usual dimensions of the physical values, we can use vector

r and coordinates x, y, z as dimensionless values.

We can rewrite Eq. (2) in the form

MD(W ) =
23−DΓ(3/2)

Γ(D/2)

∫

W

ρ(r)|r|D−3dV3 . (4)

If we consider the homogeneous fractal solid (ρ(r) = ρ0 = const.) and the ball

region W = {r : |r| ≤ R}, then we have

MD(W ) = ρ0
23−DΓ(3/2)

Γ(D/2)

∫

W

|r|D−3dV3 . (5)

Using the spherical coordinates, we get

MD(W ) =
π25−DΓ(3/2)

Γ(D/2)
ρ0

∫

W

|r|D−1d|r| =
25−DπΓ(3/2)

DΓ(D/2)
ρ0R

D . (6)

As a result, we have M(W ) ∼ RD, i.e., we derive equation M ∼ RD up to the

numerical factor. Therefore, the fractal solid with non-integer mass dimension D

can be described by fractional integral of order D. Note that the interpretation of

the fractional integration is connected with fractional dimension.10,11 This inter-

pretation follows from the well-known formulas for dimensional regularizations.26

The fractional integral can be considered as a integral in the fractional dimension

space up to the numerical factor Γ(D/2)/[2πD/2Γ(D)].
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3. Moment of Inertia of Fractal Solids

3.1. Fractional equation for moment of inertia

The moment of inertia of a solid body with density ρ(r) with respect to a given

axis is defined by the volume integral

I =

∫

W

ρ(r)r2
⊥dV3 , (7)

where r2
⊥

is the perpendicular distance from the axis of rotation. This can be broken

into components as

Ikl =

∫

W

ρ(r)(r2δkl − xkxl)dV3 , (8)

for a continuous mass distribution. Here, r = xkek is the distance to a point (not the

perpendicular distance) and δkl is the Kronecker delta. Depending on the context,

Ikl may be viewed either as a tensor or a matrix.

The fractional generalization of Eq. (8) has the form

I
(D)
kl =

∫

W

ρ(r)(r2δkl − xkxl)dVD , (9)

where dVD = c3(D, r)dV3. The moment of inertia tensor is symmetric (I
(D)
kl = I

(D)
lk ).

The principal moments are given by the entries in the diagonalized moment of

inertia matrix. The principal axes of a rotating body are defined by finding values

of λ such that

(I
(D)
kl − λδkl)ωl = 0 , (10)

which is an eigenvalue problem. Here, ω = ωkek is the angular velocity vector. The

tensor I
(D)
kl may be diagonalized by transforming to appropriate coordinate system.

The moments of inertia in the coordinate system, corresponding to the eigenvalues

of the tensor, are known as principal moments of inertia.

3.2. Moment of inertia of fractal solid sphere

For a fractal solid sphere with radius R, and mass M , the moment of inertia can be

derived by Eq. (9). The moment of inertia can be computed directly by noting that

the component of the radius perpendicular to the z-axis in spherical coordinates is

r2
⊥ = (r sin φ)2 , (11)

where φ is the angle from the z-axis. Using the fractional generalization of Eq. (7),

we have

I(D)
z =

∫

W

ρ(r)r2
⊥

dVD

=
23−DΓ(3/2)

Γ(D/2)

∫ R

0

∫ 2π

0

∫ π

0

ρ(r)(r sin φ)2rD−1 sin φdφdθdr
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=
23−DΓ(3/2)

Γ(D/2)

∫ R

0

∫ 2π

0

∫ π

0

ρ(r)rD+1 sin3 φdφdθdr

=
23−DΓ(3/2)

Γ(D/2)

∫ R

0

∫ 2π

0

∫ π

0

ρ(r)rD+1(1 − cos2 φ) sin φdφdθdr .

Making the change of variables

u = cos φ , du = − sin φdφ , (12)

we then allow the integral to be written simply and solved by quadrature. For

homogeneous fractal solid sphere (ρ(r) = ρ0), we have

I(D)
z =

23−DΓ(3/2)

Γ(D/2)

∫ R

0

∫ 2π

0

∫ 1

−1

ρ0r
D+1(1 − u2)dudθdr

=
25−DΓ(3/2)

3Γ(D/2)

∫ R

0

∫ 2π

0

ρ0r
D+1dθdr

=
π26−DΓ(3/2)

3Γ(D/2)
ρ0

∫ R

0

rD+1dr .

As a result, we get

I(D)
z =

π26−DΓ(3/2)

3(D + 2)Γ(D/2)
ρ0R

D+2 . (13)

The mass of the fractal solid sphere is defined by Eq. (2). Therefore, we have

MD =

∫

W

ρ(r)dVD =
23−DΓ(3/2)

Γ(D/2)

∫ R

0

∫ 2π

0

∫ π

0

ρ(r)rD−1 sin φdφdθdr

=
23−DΓ(3/2)

Γ(D/2)

∫ R

0

∫ 2π

0

∫ π

0

ρ(r)rD−1 sin φdφdθdr .

Making the change of variables (12) then allows the integral to be written simply

and solved by quadrature. For homogeneous solid sphere (ρ(r) = ρ0), we get

MD =
23−DΓ(3/2)

Γ(D/2)

∫ R

0

∫ 2π

0

∫ 1

−1

ρ0r
D+1dudθdr

=
23−DΓ(3/2)

Γ(D/2)

∫ R

0

∫ 2π

0

ρ0r
D+1(u)+1

−1dθdr

=
24−DΓ(3/2)

Γ(D/2)

∫ R

0

∫ 2π

0

ρ0r
D−1dθdr

=
π25−DΓ(3/2)

Γ(D/2)
ρ0

∫ R

0

rD−1dr .

As a result, we have

MD =
π25−DΓ(3/2)

DΓ(D/2)
ρ0R

D . (14)
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Substituting ρ0 from Eq. (14) in Eq. (13), we get the moment of inertia for

fractal solid sphere in the form

I(D)
z =

2D

3(D + 2)
MDR2 . (15)

If D = 3, then we have the usual relation I
(3)
z = (2/5)MR2. If D = (2+0), then we

have I
(2+0)
z = (1/3)MR2. Note that fractal solid sphere with dimension D = (2+0)

cannot be considered as a spherical shell that has Iz = (2/3)MR2. In fractal solid

sphere, we have the homogeneous distribution of fractal matter in the volume.

Because of the symmetry of the sphere, each principal moment is the same, so

the moment of inertia of the sphere taken about any diameter is Eq. (15).

The moments of inertia I
(D)
z and I

(3)
z are connected by the relation

I(D)
z /I(3)

z = 1 +
2(D − 3)

3(D + 2)
. (16)

Using 2 < D ≤ 3, we get (5/6) < I
(D)
z /I

(3)
z ≤ 1.

3.3. Moment of inertia for fractal solid cylinders

The equation for the moment of inertia of homogeneous cylinder with integer mass

dimension has the well-known form

I(2)
z = ρ0

∫

S

(x2 + y2)dS2

∫

L

dz . (17)

Here, z is the cylinder axis, and dS2 = dxdy. The fractional generalization of

Eq. (17) can be defined by the equation

I(α)
z = ρ0

∫

S

(x2 + y2)dSα

∫

L

dlβ , (18)

where we use the following notations

dSα = c(α)(
√

x2 + y2)α−2dS2 , dS2 = dxdy ,

c(α) =
22−α

Γ(α/2)
, dlβ =

|z|β−1

Γ(β)
dz .

(19)

The numerical factor in Eq. (18) has this form in order to derive usual integral in

the limit α → (2 − 0) and β → (1 − 0). The parameters α and β are

1 < α ≤ 2 , 0 < β ≤ 1 .

If α = 2 and β = 1, then Eq. (18) has form (17). The parameter α is a fractal

mass dimension of the cross-section of the cylinder. This parameter can be easily

calculated from the experimental data. It can be calculated by box-counting method

for the cross-section of the cylinder.

Substituting Eq. (19) in Eq. (18), we get

I(α)
z =

ρ0c(α)

Γ(β)

∫

S

(x2 + y2)α/2dS2

∫ H

0

zβ−1dz . (20)
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Here, we consider the cylindrical region W that is defined by the relations

L = {z : 0 ≤ z ≤ H} , S = {(x, y) : 0 ≤ x2 + y2 ≤ R2} . (21)

Using the cylindrical coordinates (φ, r, z), we have

dS2 = dxdy = rdrdφ , (x2 + y2)α/2 = rα . (22)

Therefore the moment of inertia is defined by

I(α)
z =

2πρ0c(α)

Γ(β)

∫ R

0

rα+1dr

∫ H

0

zβ−1dz =
2πρ0c(α)

(α + 2)βΓ(β)
Rα+2Hβ . (23)

As a result, we have the moment of inertia of the fractal solid cylinder in the form

I(α)
z =

2πρ0c(α)

(α + 2)βΓ(β)
Rα+2Hβ . (24)

If α = 2 and β = 1, we get I
(2)
z = (1/2)πρ0R

4H .

The mass of the usual homogeneous cylinder (21) is defined by the equation

M = ρ0

∫

S

dS2

∫

L

dz = 2πρ0

∫ R

0

rdr

∫ H

0

dz = πρ0R
2H . (25)

We can consider the fractional generalization of this equation. The mass of the

fractal solid cylinder (21) can be defined by the equation

Mα = ρ0

∫

S

dSα

∫

L

dlβ , (26)

where dSα and dlβ are defined by Eq. (19). Using the cylindrical coordinates, we

get the mass of fractal solid cylinder in the form

Mα =
2πρ0c(α)

Γ(β)

∫ R

0

rα−1dr

∫ H

0

zβ−1dz =
2πρ0c(α)

αβΓ(β)
RαHβ . (27)

As a result, we have

Mα =
2πρ0c(α)

αβΓ(β)
RαHβ . (28)

Substituting mass (28) into the moment of inertia (24), we get the relation

I(α)
z =

α

α + 2
MαR2 . (29)

Note that Eq. (29) has not the parameter β. If α = 2, we have the well-known

relation I
(2)
z = (1/2)MR2 for the homogeneous cylinder that has the integer mass

dimension D = 3 and α = 2.

Let us consider the fractal solid cylinder with the mass and radius that are equal

to mass and radius of the homogeneous solid cylinder with integer mass dimension.

In this case, the moments of inertia of these cylinders are connected by the equation

I(α)
z =

2α

α + 2
I(2)
z . (30)
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Here, I
(2)
z is the moment of inertia for the cylinder with integer mass dimension

D = 3 and α = 2. For example, the parameter α = 1.5 leads us to the relation

I(3/2) = (6/7)I
(2)
z . Using 1 ≤ α ≤ 2, we have the relation

(2/3) ≤ I(α)
z /I(2)

z ≤ 1 . (31)

As a result, the fractal solid cylinder with the mass M , and radius R, has the

moment of inertia I
(α)
z such that

I(α)
z /I(2)

z = 1 +
α − 2

α + 2
, (32)

where α is a fractal mass dimension of cross-section of the cylinder (1 < α ≤ 2).

The parameter α can be calculated by box-counting method for the cross-section

of the cylinder. Here, I(2) is the moment of inertia of usual cylinder with the mass

M , and radius R.

4. Equations of Motion for Fractal Solids

4.1. Euler’s equations for fractal solids

The moment of momentum L = Lkek is defined by the equation

L =

∫

W

[r,v]ρ(r)dV3 , (33)

where [ , ] is a vector product. The vector r = xkek is a radius vector, and v = vkek

is a velocity of points with masses dM3 = ρ(r)dV3. The fractional generalization of

Eq. (33) has the form

L(D) =

∫

W

[r,v]ρ(r)dVD , (34)

where we use dMD = ρ(r)dVD . Using v = [ω, r], we get moment of momentum in

the form

L
(D)
k = I

(D)
kl ωl . (35)

The moment of inertia tensor I
(D)
kl is related to the angular momentum vector L(D)

by Eq. (35), where ω = ωkek is the angular velocity vector.

For a fractal solid with one point fixed, if the angular momentum L(D) is mea-

sured in the frame of the rotating body, we have the equation

dL(D)

dt
+ [ω,L(D)] = N , (36)

where ω is the angular velocity vector and N = Nkek is the torque (moment of

force). For components, we have

dL
(D)
k

dt
+ εklmωlL

(D)
m = Nk , (37)
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where Lk are defined by the relations

L
(D)
k =

∫

W

ρ(r)εklmxlvmdVD . (38)

Here, εklm is the permutation symbol, ω = ωkek is the angular frequency, and

N = Nkek is the external torque.

If the principle body axes are chosen, L
(D)
k = I

(D)
k ωk, then

d(I
(D)
k ωk)

dt
+ εklmωlωmI(D)

m = Nk . (39)

These are Euler’s equations of motion. Taking the principal axes frame, we get the

Euler’s equations of motion for fractal solid in the form

I(D)
x

dωx

dt
+ (I(D)

z − I(D)
y )ωyωz = Nx ,

I(D)
y

dωy

dt
+ (I(D)

x − I(D)
z )ωxωz = Ny ,

I(D)
z

dωz

dt
+ (I(D)

y − I(D)
x )ωxωy = Nz ,

where I
(D)
x , I

(D)
y , and I

(D)
z are the principal moments of inertia. As a result, we

proved that equations of motion for fractal solid have the same form as the equations

for usual solids.

For general non-rigid motion, the equation of motion is Liouville’s equation10,11

which can be considered as the generalization of Euler’s equations of motion to

systems that are not rigid. In Eulerian form, the rotating axes are chosen to coincide

with the instantaneous principle axes of the continuous system. For general non-

rigid motion, Euler’s equations are then replaced by Eq. (36) or, in component form

(37). The extension of the Liouville equation to include collisions is known as the

Bogoliubov equations.11,12

4.2. Pendulum with fractal solids

In this section, we consider the possible experimental testing of the continuous

medium model for fractal solids. In this test we suggest measuring the period of

pendulum with a fractal solid which is unequal to the period of the usual solid with

the same mass and form.

Let us consider the Maxwell pendulum with the fractal solid cylinder. Usually,

the Maxwell pendulum is used to demonstrate transformations between gravita-

tional potential energy and rotational kinetic energy. The device has some initial

gravitational potential energy when the string is winding on the small axis. When

released, this gravitational potential energy is converted into rotational kinetic en-

ergy, with a lesser amount of translational kinetic energy. We consider the Maxwell

pendulum as a cylinder that is suspended by string. The string is wound on the

cylinder.
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The equations of motion for Maxwell pendulum have the form

Mα
dvy

dt
= Mαg − T , I(α)

z

dωz

dt
= RT , (40)

where g is the acceleration such that g ' 9.81 (m/s
2
); the axis z is a cylinder axis,

T is a string tension, Mα is a mass of the cylinder. Using vy = ωzR, we have

Mα
dvy

dt
= Mαg −

I
(α)
z

R2

dvy

dt
.

As a result, we get the acceleration of the cylinder

a(α)
y =

dvy

dt
=

Mαg

Mα + I
(α)
z /R2

. (41)

Substituting Eq. (29) in Eq. (41), we get

a(α)
y =

(

1 −
α

2α + 2

)

g . (42)

For the fractal mass dimension of the cross-section of the cylinder α = 1.5, we get

a
(α)
y = (3/5)g ' 6.87 (m/s

2
). For the cylinder with integer mass dimension of the

cross-section (α = 2), we have a
(2)
y = (2/3)g ' 6.54 (m/s

2
). The period T

(α)
0 of

oscillation for this Maxwell pendulum is defined by the equation

T
(α)
0 = 4t0 = 4

√

2L/a
(α)
y ,

where L is a string length, and the time t0 satisfies the equation a
(α)
y t20/2 = L.

Therefore, we get the relation for the periods

(T
(α)
0 /T

(2)
0 )2 = 1 +

1

3

α − 2

α + 2
. (43)

If we consider 2 < D < 3 such that 1 < α < 2, we can see that

(8/9) < (T
(α)
0 /T

(2)
0

)2

< 1 . (44)

Note the parameter α can be calculated by box-counting method for the cross-

section of the cylinder. For α = 1.5, we have (T
(α)
0 /T

(2)
0 )2 = 0.952.

A simple experiment to test the fractional continuous model14,15 for fractal

media is proposed. This experiment allows us to prove that the fractional integrals

can be used to describe fractal media. For example, the experiment can be realized

by using the sandstone. Note that Katz and Thompson29 presented experimental

evidence indicating that the pore spaces of a set of sandstone samples are fractals

and are self-similar over three to four orders of magnitude in length extending from

10 angstrom to 100 µm. The deviation T
(α)
0 from T

(2)
0 is no more that 6 per cent.

Therefore, the precision of the experiments must be high.
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5. Conclusion

In this paper we consider mechanics of fractal solids which are described by a frac-

tional continuous medium model.14,15 In the general case, the fractal solid cannot

be considered as a continuous solid. There are points and domains that are not filled

of particles. In Refs. 14 and 15, we suggest considering the fractal media as special

(fractional) continuous media. We use the procedure of replacement of the medium

with fractal mass dimension by some continuous model that uses the fractional

integrals. This procedure is a fractional generalization of Christensen approach.30

Suggested procedure leads to the fractional integration and differentiation to de-

scribe fractal media. The fractional integrals are considered as approximation of

integrals on fractals.25 Note that fractional integrals can be considered as integrals

over the space with fractional dimension up to numerical factor.10–12 The fractional

integrals are used to take into account the fractality of the media.

In this paper we suggest computing the moments of inertia for fractal solids.

The simple experiments17 to test the fractional continuous model14,15 for fractal

media can be performed. This experiment allows us to prove that the fractional

integrals can be used to describe fractal solids.

Note that the fractional continuous models of fractal media can have a wide

application. This is due in part to the relatively small numbers of parameters that

define a random fractal medium of great complexity and rich structure. In order

to describe the media with non-integer mass dimension, we must use the fractional

calculus. Smoothing of the microscopic characteristics over the physically infinites-

imal volume transform the initial fractal medium into fractional continuous model

that uses the fractional integrals. The order of fractional integral is equal to the

fractal mass dimension of medium. The fractional continuous model allows us to

describe dynamics for wide class fractal media.8,9,15,16,23
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