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1. Introduction

Integrals and derivatives of fractional order1,2 have found many applications in re-

cent studies in physics.3–5 The interest in fractional equations has been growing

continually during the last few years because of numerous applications: kinetic theo-

ries of systems with chaotic and pseudochaotic dynamics;6–15 electordynamics,19–20

dynamical systems21–26 and many others.

The new type of problems has rapidly increased interest in areas in which the

fractal features of a process or the medium impose a necessity of applying the

tools that are non-traditional in “regular” smooth physical equations. In many

problems the real fractal structure of matter can be disregarded and the medium

can be replaced by some smoothed continuous mathematical model where fractional

integrals appear.11,12,14,20 The order of fractional integral is equal to the fractal

mass dimension of medium and in this way one can take into account the fractality

of media. It was proved that integrals on net of fractals can be approximated by

fractional integrals16 and that fractional integrals can be considered as integrals

over the space with fractional dimension up to a numerical factor.17,18
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It is known that Bogoliubov equations can be derived from the Liouville equation

and the definition of average value.29–32 In Ref. 17, the Liouville equation for

fractional systems is derived from the fractional normalization condition. In Ref. 18,

the first Bogoliubov equation for fractional systems is derived from the Liouville

equation. It is known that gasdynamic equations can be derived from generalized

transport equation28 which is directly derived from first Bogoliubov equation.29,31,33

In this paper, the gasdynamic equations for fractional systems are derived from the

generalized Enskog transport equations.

In Sec. 2, the fractional average values and some notations are considered. In

Sec. 3, we define the reduced one-particle and two-particle distribution functions. In

Sec. 4, the Liouville and first fractional Bogoliubov equations for fractional systems

are considered. In Sec. 5, we derive the fractional analog of the Enskog transport

equation. In Sec. 6, the gasdynamic equations for fractional systems are derived

from the generalized transport equations. Finally, a short conclusion is given in

Sec. 7.

2. Fractional Systems

Let us consider a dynamical system that is described by the coordinates q̄k and

momenta p̄k that satisfy the equations of motion:

dq̄k

dt̄
=

p̄k

M
,

dq̄k

dt̄
= fk(q̄, p̄, t̄) k = 1, . . . , n . (1)

Let us introduce the dimensionless variables

qk =
q̄k

q0

, pk =
p̄k

p0

, t =
t̄

t0
, Fk =

fk

F0

.

where q0 is a characteristic scale in the configuration space; p0 is a characteristic

momentum, F0 is a characteristic value of force, and t0 is a typical time. Then

Eq. (1) has the form

dqk

dt
=

pk

m
,

dqk

dt̄
= ZFk(q, p, t) , (2)

where

m = Mq0/t0p0 , Z =
t0F0

p0

, (3)

are dimensionless parameters. Using the dimensionless variables (q, p, t), we can

generalize Eq. (2) for arbitrary powers of qk and pk:

dqα
k

dt
=

pα
k

m
,

dqα
k

dt̄
= ZFk(qα, pα, t) , (4)

where

qα
k = β(q)(qk)α = sgn(qk)|qk|

α , (5)

pα
k = β(p)(pk)α = sgn(pk)|pk|

α . (6)
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Here k = 1, . . . , n, and β(x) = [sgn(x)]α−1. The function sgn(x) is equal to +1 for

x ≥ 0, and −1 for x < 0.

A system is called a fractional system if the phase space is described by the frac-

tional powers of coordinates (5) and momenta (6). We can describe the fractional

systems in the usual phase space (q, p) and in the fractional phase space (qα, pα). In

the second case, the equations of motion for the fractional systems are more simple.

Therefore we use the fractional phase space. The fractional space is considered as

a space with the fractional measure that is used in the fractional integrals.

The generalization of Hamiltonian system is described by

dqα
k

dt
=

∂H

∂pα
k

,
dpα

k

dt
= −

∂H

∂qα
k

, (7)

where H is an analog of the Hamiltonian. Using the fractional power Poisson

brackets

{A, B}α =

n
∑

k=1

(

∂A

∂qα
k

∂B

∂pα
k

−
∂A

∂pα
k

∂B

∂qα
k

)

, (8)

we rewrite Eq. (7) in the form

dqα
k

dt
= {qα

k , H}α ,
dpα

k

dt
= {pα

k , H}α . (9)

These equations describe the system in the fractional phase space (qα, pα). For the

usual phase space (q, p), Eq. (7) has the form

dqk

dt
=

(qkpk)1−α

α2

∂H

∂pk

,
dpk

dt
= −

(qkpk)1−α

α2

∂H

∂qk

. (10)

and these systems are non-Hamiltonian systems. A classical system is called Hamil-

tonian if the right-hand sides of the equations

dqk

dt
= gk(q, p) ,

dpk

dt
= fk(q, p) (11)

satisfy the Helmholtz conditions:27

∂gk

∂pl

−
∂gl

∂pk

= 0 ,
∂gk

∂ql

−
∂fl

∂pk

= 0 ,
∂fk

∂ql

−
∂fl

∂qk

= 0 . (12)

It is easy to prove these conditions are not satisfied for Eq. (10). Therefore the

dymanical system (10) is a non-Hamiltonian system. The fractional phase space

allows us to write Eq. (9) in the simple form (7) and describe some non-Hamiltonian

systems as a Hamiltonian systems in generalized space.

If dqα
k /dt = pβ

k/m, then an analog of Hamiltonian

Hα,β =

n
∑

k,l=1

αpα+β
k

m(α + β)
+ U(q) . (13)
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The omega function for system (11) is defined by

Ω =

n
∑

k=1

(

∂gk

∂qk

+
∂fk

∂pk

)

, (14)

and describes the velocity of phase volume change. If Ω < 0, then the system is

called a dissipative system. If Ω 6= 0, then the system is a generalized dissipative

system. For system (10), the omega function (14) is not equal to zero, and the

systems is the general dissipative system.

It is not hard to prove that Hamiltonian (13) is connected with the non-Gaussian

statistics. Dissipative and non-Hamiltonian systems can have the canonical Gibbs

distribution as a solution of the stationary Liouville equations.40 Using Ref. 40, it is

easy to prove that some of fractional systems can have fractional Gibbs distribution

ρ(q, p) = exp[F − Hα,β(q, p)]/kT , (15)

as a solution of fractional Liouville equation.17

3. Fractional Average Values and Reduced Distributions

3.1. Fractional average values for configuration space

Let us derive the fractional generalization of average value of classical observable

A(q, p). For configuration space, the usual average value is

〈A〉1 =

∫ ∞

−∞

A(x)ρ(x)dx , (16)

and can be written

〈A〉1 =

∫ y

−∞

A(x)ρ(x)dx +

∫ ∞

y

A(x)ρ(x)dx . (17)

Using

(Iα
+f)(y) =

1

Γ(α)

∫ y

−∞

f(x)dx

(y − x)1−α
,

(Iα
−f)(y) =

1

Γ(α)

∫ ∞

y

f(x)dx

(x − y)1−α
,

we rewrite Eq. (17) in the form

〈A〉1 = (I1
+Aρ)(y) + (I1

−Aρ)(y) .

The fractional generalization of this equation is

〈A〉α = (Iα
+Aρ)(y) + (Iα

−Aρ)(y) . (18)

We can rewrite Eq. (18) in the form

〈A〉α =
1

2

∫ ∞

−∞

((Aρ)(y − x) + (Aρ)(y + x))dµα(x) , (19)
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where

dµα(x) =
|x|α−1dx

Γ(α)
=

dxα

αΓ(α)
, xα = sgn(x)|x|α . (20)

Equation (18) defines the fractional generalization of the average value for coordi-

nate space.

3.2. Fractional average values for phase space

Let us introduce some notations to define the fractional average value for phase

space. Tilde operators

Txk
f(. . . , xk, . . .) =

1

2
(f(. . . , x′

k − xk, . . .) + f(. . . , x′

k + xk, . . .))

allows us to rewrite

1

4
(A(q′ − q, p′ − p, t)ρ(q′ − q, p′ − p, t) + A(q′ + q, p′ − p, t)ρ(q′ + q, p′ − p, t)

+A(q′ − q, p′ + p, t)ρ(q′ − q, p′ + p, t) + A(q′ + q, p′ + p, t)ρ(q′ + q, p′ + p, t))

in the simple form

TqTp(A(q, p, t)ρ(q, p, t)) .

For k particle with coordinates qks and momenta pks, where s = 1, . . . , m, we define

the operator

T [k] = Tqk1
Tpk1

· · ·Tqkm
Tpkm

.

For the n-particle system phase space, we use

T [1, . . . , n] = T [1] · · ·T [n] .

Let us define the integral operators Îα
xk

by

Îα
xk

f(xk) =

∫ +∞

−∞

f(xk)dµα(xk) , (21)

then Eq. (19) has the form

〈A〉α = Îα
x TxA(x)ρ(x) .

For k-particle we use the operator

Îα[k] = Îα
qk1

Îα
pk1

· · · Îα
qkm

Îα
pkm

,

such that

Îα[k]f(qk,pk) =

∫

f(qk ,pk)dµα(qk ,pk) , (22)

where dµα(qk,pk) is an elementary 2m-dimensional phase volume

dµα(qk,pk) = (αΓ(α))−2mdqα
k1 ∧ dpα

k1 ∧ · · · ∧ dqα
km ∧ dpα

km .
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For the n-particle system, we use

Îα[1, . . . , n] = Îα[1] · · · Îα[n] .

Using the suggested notations, we can define the fractional generalization of the

average value for n-particle by

〈A〉α = Îα[1, . . . , n]T [1, . . . , n]Aρn . (23)

In the simple case (n = m = 1), we have

〈A〉α =

∫ ∞

−∞

∫ ∞

−∞

dµα(q, p)TqTpA(q, p)ρ(q, p) . (24)

The fractional generalization of normalization condition17 can be written by

〈1〉α = 1 .

3.3. Reduced distribution functions

Let us consider a classical system with fixed number n of identical particles. Suppose

k particle is described by the dimensionless generalized coordinates qks and gener-

alized momenta pks, where s = 1, . . . , m. We use the notations qk = (qk1, . . . , qkm)

and pk = (pk1, . . . , pkm). The state of this system is described by dimensionless

n-particle distribution function ρn in the 2mn-dimensional phase space

ρn(q,p, t) = ρ(q1,p1, . . . ,qn,pn, t) . (25)

We assume that function (25) is invariant under the permutations of identical

particles:34

ρ(. . . ,qk ,pk, . . . ,ql,pl, . . . , t) = ρ(. . . ,ql,pl, . . . ,qk,pk, . . . , t) .

Then the average values can be simplified.34 Using the tilde distribution functions

ρ̃n(q,p, t) = T [1, . . . , n]ρn(q,p, t) , (26)

we define

ρ̃1(q,p, t) = ρ̃(q1,p1, t) = Îα[2, . . . , n]ρ̃n(q,p, t) (27)

which is one-particle reduced distribution function. Obviously, that ρ̃1 satisfies the

normalization condition:17

Îα[1]ρ̃1(q,p, t) = 1 . (28)

Two-particle reduced distribution function ρ̃2 is defined by the fractional integration

of ρ̃n over all qk and pk, except k = 1, 2:

ρ̃2(q,p, t) = ρ̃(q1,p1,q2,p2, t) = Îα[3, . . . , n]ρ̃n(q,p, t) . (29)
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4. Liouville and Bogoliubov Equations for Fractional Systems

Let us consider the Hamilton’s equations for n-particle system in the form

dqα
ks

dt
= Gk

s (qα, pα) ,
dpα

ks

dt
= ZF k

s (qα, pα, t) , (30)

where Z is defined in Eq. (3). The evolution of ρn is described by the Liouville

equation17 for fractional system

dρ̃n

dt
+ Ωαρ̃n = 0 . (31)

This equation can be derived17 from the fractional normalization condition

Îα[1, . . . , n]ρ̃n(q,p, t) = 1 . (32)

In Eq. (31) the derivative d/dt is a total time derivative

d

dt
=

∂

∂t
+

n,m
∑

k,s=1

dqks

dt

∂

∂qks

+

n,m
∑

k,s=1

dpks

dt

∂

∂pks

that can be written for the fractional powers

d

dt
=

∂

∂t
+

n,m
∑

k,s=1

Gk
s

∂

∂qα
ks

+ Z

n,m
∑

k,s=1

F k
s

∂

∂pα
ks

. (33)

The α-omega function is

Ωα =

n,m
∑

k,s=1

({Gk
s , pα

ks}α + Z{qα
ks, F

k
s }α) , (34)

where

{A, B}α =

n,m
∑

k,s=1

(

∂A

∂qα
ks

∂B

∂pα
ks

−
∂A

∂pα
ks

∂B

∂qα
ks

)

. (35)

Using Eqs. (33) and (34), we get Eq. (31) in the form

∂ρ̃n

∂t
= Λnρ̃n , (36)

where Λn is Liouville operator:

Λnρ̃n = −

n,m
∑

k,s=1

(

∂(Gk
s ρ̃n)

∂qα
ks

+ Z
∂(F k

s ρ̃n)

∂pα
ks

)

. (37)

The Bogoliubov equations29–32 describe the evolution of the reduced distribu-

tion functions, and can be derived from the Liouville equation. In Ref. 18, we derive

the first fractional Bogoliubov equation from Eq. (36):

∂ρ̃1

∂t
+

m
∑

s=1

∂(G1
sρ̃1)

∂qα
1s

+ Z

m
∑

s=1

∂(F 1e
s ρ̃1)

∂pα
1s

= (n − 1)ZI(ρ̃2) . (38)
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Here I(ρ̃2) is a term with two-particle reduced distribution function,

I(ρ̃2) = −
m

∑

s=1

∂

∂pα
1s

Îα[2]F 12
s ρ̃2 . (39)

Equation (38) is called a first Bogoliubov equation for fractional systems.

The physical meaning of the term I(ρ̃2) is following: The term I(ρ̃2)dµα(q,p) is

a velocity of particle number change in 4m-dimensional elementary phase volume

dµα(q1,p2,q2,p2). This change is caused by the interactions between particles. If

α = 1, then we have the first Bogoliubov equation for non-Hamiltonian systems.

5. Transport Equation for Fractional Systems

Let us define the coordinate distribution (the density of number of particles) by the

equation

n(q, t) = Îα[p]ρ̃1(q,p, t) , (40)

where Î [p] is a fractional integration over the momenta

Îα[p] =

m
∏

s=1

Îα
ps

= Îα
p1

· · · Îα
pm

. (41)

We can define the local mean values by

〈A〉p,α = 〈A〉p,α(q, t) =
1

n(q, t)
Îα[p]A(q,p)ρ̃1(q,p, t) . (42)

In the general case,

〈A〉p,α 6= ∠A〉α , (43)

and 〈1〉p,α = 1. The fractional average value 〈A〉α is connected with the mean value

〈A〉p,α by

〈A〉α = Îα[q]n(q, t)〈A〉p,α ,

where Î [q] is a fractional integration over the coordinates q = (q1, . . . , qm).

Fractional analog of mean local velocity is

Vs(q, t) =
1

n(q, t)
Îα[p]Gs(q,p)ρ1(q,p, t) , (44)

i.e.

Vs(q, t) = 〈Gs〉p,α , (45)

where Gs = G1
s(q,p) is defined by (30). We can consider Gs as a fractional gener-

alization of the velocity that has the form

Gs =
pα

s

M
. (46)
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For the fractional generalization of kinetic energy of relative motion

m
∑

s=1

M

2
(pα

s − Vs)
2 , (47)

we define density of this energy by

E(q, t) =
M

2
Îα[p](G −V)2ρ1(q,p, t) , (48)

where G = pα/m, and V = V(q, t). The local temperature T (q, t) is defined by

the mean kinetic energy of relative motion:

T (q, t) =
2E(q, t)

3kBn(q, t)
.

To derive Enskog transport equation for fractional systems, we multiply both

sides of Eq. (38) by the observable A(p), and integrate with respect to momenta.

The first and second terms of left hand side of Eq. (38) are transformed by

Î [p]A
∂ρ̃1

∂t
=

∂

∂t
Î [p]Aρ̃1 =

∂

∂t
n(q, t)〈A〉p,α(q, t) , (49)

Î [p]A
∂(Gsρ̃1)

∂qα
s

=
∂

∂qα
s

Î [p]AGsρ̃1 =
∂

∂qα
s

n(q, t)〈AGs〉p,α . (50)

Integrating by part the third term of Eq. (38) and using the boundary condition

lim
p→±∞

ρ̃1(q,p, t) = 0 , (51)

we get

Î [p]A
∂(Fsρ̃1)

∂pα
s

= Î [p]
∂

∂pα
s

AFsρ̃1 − Î [p]Fsρ̃1

∂A

∂pα
s

= (AFsρ̃1)
+∞

−∞ − Î [p]Fsρ̃1

∂A

∂pα
s

= −n(q, t)

〈

Fs

∂A

∂pα
s

〉

p,α

. (52)

Then we use the usual assumption

Î [p]A(p)I(ρ̃2) = 0 . (53)

for A = M , A = pα
s and A = p2α.

Finally, we obtain the Enskog transport equation for fractional systems:

∂

∂t
(n(q, t)〈A〉p,α) +

∂

∂qα
(n(q, t)〈AG〉p,α) = n(q, t)Z

〈

F
∂A

∂pα

〉

p,α

, (54)

where

F
∂

∂pα
=

m
∑

s=1

Fs

∂

∂pα
s

,
∂

∂qα
(n(q, t)〈AG〉p,α) =

m
∑

s=1

∂

∂qα
s

(n(q, t)〈AGs〉p,α) .
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6. Gasdynamic Equation for Fractional Systems

Let us consider the special cases of transport equation (54) for

A = M , A = pα
s = MGs , A =

p2α

2M
.

If we use A = M , then Eq. (54) gives

∂

∂t
ρ̃M (q, t) +

∂

∂qα
s

ρ̃M (q, t)〈Gs〉p,α(q, t) = 0 , (55)

where ρM is mass density

ρ̃M (q, t) = Mn(q, t) . (56)

For A = pα
s = MGs, we obtain

∂

∂t
ρ̃MVl(q, t) +

∂

∂qα
s

ρ̃M 〈GsGl〉p,α = ρ̃M (q, t)Z〈Fl〉p,α , (57)

where we use Eqs. (46) and (56), and the relation

∂Gl

∂pα
s

= Mδls .

For A = p2α/2M , we get

∂

∂t
ρ̃M (q, t)

〈

p2α

2M2

〉

p,α

+
∂

∂qα
s

ρ̃M (q, t)

〈

1

2
G2

l Gs

〉

p,α

= ρ̃M (q, t)Z〈FsGs〉p,α . (58)

Here 〈FsGs〉p,α is a local mean value.

Let us define the deviation of velocity from its mean value by

Cs(q, t) = Gs − Vs(q, t) = Gs − 〈Gs〉p,α . (59)

Substituting Gs = Vs + Cs in the kinetic energy tensor 〈GsGl〉p,α, we get

〈GsGl〉p,α = VsVs − 〈CsCl〉p,α , (60)

where we use 〈Cs〉p,α = 0. From Eq. (60), we have
〈

p2α

2M

〉

p,α

=
MV2

2
+

MC2

2
. (61)

The tensor of internal stress

Psl = 〈CsCl〉p,α , (62)

can be represented as the sum

Psl(q, t) = δslP (q, t) + πsl(q, t) , πss(q, t) = 0 ,
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where πsl(q, t) is the tensor of viscous stress. Then

ρM

2
〈G2

l Gs〉p,α =
ρM

2
〈(Vl + Cl)

2(Vs + Cs)〉p,α

=
ρM

2
〈(V 2

l + C2
l + 2VlCl)(Vs + Cs)〉p,α

=
ρM

2
(V 2

s + 〈C2
l 〉p,α)Vl + 2VlPls +

ρM

2
〈C2

l Cs〉p,α . (63)

Substituting Eq. (62) in Eq. (57), and substituting Eqs. (61) and (63) in Eq. (58),

we get the equations for the functions ρM (q, t), Vs(q, t), E(q, t). From Eq. (55), we

get the continuity equation for fractional systems:17,18

∂

∂t
ρ̃M +

∂

∂qα
s

ρ̃MVs = 0 , (64)

which may be regarded as the equation of balance of “fractional matter”. This

matter can be described by fractional systems (30). In addition to ρM , the continuity

equation (64) includes the density of momentum ρMV. To obtain the equation for

the density of momentum, we multiplied first fractional Bogoliubov equation by

pα, and use fractional integration over p. Taking advantage of the assumption (53)

and the boundary condition (51), we get the equation for the components of the

vector of density of momentum

∂

∂t
ρ̃MVl +

∂

∂qα
s

(ρ̃MVsVl + Psl) = fl , (65)

where fl = fl(q, t) = Z〈Fs〉p,α.

Finally, to write down the equation of balance of fractional kinetic energy den-

sity, we multiplied first fractional Bogoliubov equation by pα, and use fractional

integrated with respect to p. Taking advantage of the assumption (53) and the

boundary condition (51), we come to the equation for the density of kinetic energy

of fractional systems:

∂

∂t

(

1

2
ρ̃MV 2 + E

)

+
∂

∂qα
s

(

Vs

[

ρ̃MV 2

2
+ E

]

+ PslVl + Qs

)

= fsVs , (66)

where

Qs =
ρM

2
〈C2

l Cs〉p,α .

Equations (64), (65), and (66) are the gasdynamic equations for fractional systems.

Obviously, the set of this five equations is not closed. If we have πsl = 0 and Qs = 0,

then these equations are

∂

∂t
ρ̃M +

∂

∂qα
s

ρ̃M 〈Gs〉p,α = 0 . (67)

∂

∂t
ρ̃MVl +

∂

∂qα
s

(ρ̃MVsVl) = −
∂P

∂qα
l

+ fl , (68)
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∂

∂t

(

1

2
ρ̃MV 2 + E

)

+
∂

∂qα
s

(

Vs

[

ρ̃MV 2

2
+ E + P

])

= fsVs , (69)

and the set of equations is closed.

7. Conclusion

In this paper the gasdynamic equations for fractional systems are derived. In or-

der to derive these equations, we use the first fractional Bogoliubov equation.18

Then we define the fractional generalization average values and the reduced distri-

bution functions. The Enskog equation for fractional systems is considered. Gasdy-

namic equations (64), (65) and (66) can be considered as equations in the fractional

space17,18 or for systems with non-Gaussian statistics.17,18

Dissipative and non-Hamiltonian systems can have stationary states of the

Hamiltonian systems.39 Classical dissipative systems can have canonical Gibbs dis-

tribution as solutions of Liouville equations for the dissipative systems.14,40,41 Using

the methods14,40 it is easy to find solutions for the Bogoliubov equations for frac-

tional systems. Suggested Bogoliubov equation allows to formulate the dynamics

for fractional generalization of quantum dissipative systems by methods suggested

in Refs. 36–38.
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