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We consider dynamical systems that are described by fractional power of coordinates
and momenta. The fractional powers can be considered as a convenient way to describe
systems in the fractional dimension space. For the usual space the fractional systems are
non-Hamiltonian. Generalized transport equation is derived from Liouville and Bogoli-
ubov equations for fractional systems. Fractional generalization of average values and
reduced distribution functions are defined. Gasdynamic equations for fractional systems
are derived from the generalized transport equation.
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1. Introduction

Integrals and derivatives of fractional order!:? have found many applications in re-
cent studies in physics.> ® The interest in fractional equations has been growing
continually during the last few years because of numerous applications: kinetic theo-
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ries of systems with chaotic and pseudochaotic dynamics; electordynamics,

21726 and many others.

dynamical systems

The new type of problems has rapidly increased interest in areas in which the
fractal features of a process or the medium impose a necessity of applying the
tools that are non-traditional in “regular” smooth physical equations. In many
problems the real fractal structure of matter can be disregarded and the medium
can be replaced by some smoothed continuous mathematical model where fractional
integrals appear.'!:12:1420 The order of fractional integral is equal to the fractal
mass dimension of medium and in this way one can take into account the fractality
of media. It was proved that integrals on net of fractals can be approximated by
fractional integrals'® and that fractional integrals can be considered as integrals
over the space with fractional dimension up to a numerical factor.'”-'8
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It is known that Bogoliubov equations can be derived from the Liouville equation
and the definition of average value.?? 32 In Ref. 17, the Liouville equation for
fractional systems is derived from the fractional normalization condition. In Ref. 18,
the first Bogoliubov equation for fractional systems is derived from the Liouville
equation. It is known that gasdynamic equations can be derived from generalized
transport equation?® which is directly derived from first Bogoliubov equation.??-31:33
In this paper, the gasdynamic equations for fractional systems are derived from the
generalized Enskog transport equations.

In Sec. 2, the fractional average values and some notations are considered. In
Sec. 3, we define the reduced one-particle and two-particle distribution functions. In
Sec. 4, the Liouville and first fractional Bogoliubov equations for fractional systems
are considered. In Sec. 5, we derive the fractional analog of the Enskog transport
equation. In Sec. 6, the gasdynamic equations for fractional systems are derived
from the generalized transport equations. Finally, a short conclusion is given in
Sec. 7.

2. Fractional Systems

Let us consider a dynamical system that is described by the coordinates g and
momenta Py that satisfy the equations of motion:

A9 _ Pk da

— = —_— = q, D t k = ]. PN . ].
dt M’ dt fk(q7p7‘) b) 7n ( )
Let us introduce the dimensionless variables
qk Dk t fx
gk = — > Pk = — t:_; Fk:_
qo Do to Fy

where qo is a characteristic scale in the configuration space; pg is a characteristic
momentum, Fy is a characteristic value of force, and ty is a typical time. Then
Eq. (1) has the form

dgr. _pr dgx

=== = =7F t 2
dt m7 dt k(Q7pa )7 ( )
where
toF
m = Mgqo/topo , Z:%, (3)

are dimensionless parameters. Using the dimensionless variables (g, p,t), we can
generalize Eq. (2) for arbitrary powers of g and py:

qu Pr qu a o
It m ) I k(q Dy ) ’ ( )

where

v = B(a)(qr)™ = sgn(ar)lar|”, ()

P = B(p)(pr)™ = sgn(pr)|pr|” . (6)
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Here k = 1,...,n, and §(z) = [sgn(x)]*~L. The function sgn(z) is equal to +1 for
z >0, and —1 for x < 0.

A system is called a fractional system if the phase space is described by the frac-
tional powers of coordinates (5) and momenta (6). We can describe the fractional
systems in the usual phase space (¢, p) and in the fractional phase space (¢%, p®). In
the second case, the equations of motion for the fractional systems are more simple.
Therefore we use the fractional phase space. The fractional space is considered as
a space with the fractional measure that is used in the fractional integrals.

The generalization of Hamiltonian system is described by

dgy _ OH - dpi __oH -
dt — Opy’ dt oqy

where H is an analog of the Hamiltonian. Using the fractional power Poisson

brackets
" /9A 9B 0A 0B
A,B}, = ), 8
4.5} ;<5q2‘5p2‘ 329?%3‘) ®

we rewrite Eq. (7) in the form
dgi; dpj;
= {q}, H}a = {(p}, H}o.
dt {qk ’ } ) dt {pk ) } (9)

These equations describe the system in the fractional phase space (¢, p®). For the
usual phase space (¢, p), Eq. (7) has the form
dar _ (ap)' ™ OH  dpi __(axp)'™" OH (10)
dt a? Opr’  dt a? oqr,
and these systems are non-Hamiltonian systems. A classical system is called Hamil-
tonian if the right-hand sides of the equations

dqy, dpx
Ar L 11
o = 9ap), = fula,p) (11)
satisfy the Helmholtz conditions:27
dgr  Ogi Ogr.  Ofi Ofk  0fi
___207 __—:O’ —= — — =90. 12
Opr Opk dqr  Opx dq Oqx (12)

It is easy to prove these conditions are not satisfied for Eq. (10). Therefore the
dymanical system (10) is a non-Hamiltonian system. The fractional phase space
allows us to write Eq. (9) in the simple form (7) and describe some non-Hamiltonian
systems as a Hamiltonian systems in generalized space.

If dggt/dt = pf /m, then an analog of Hamiltonian

a+0

=2 narp U@ (13
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The omega function for system (11) is defined by
— (g, Of k>
Q= =4+ =, 14
,; <3Qk Opy, ( )

and describes the velocity of phase volume change. If Q < 0, then the system is
called a dissipative system. If Q # 0, then the system is a generalized dissipative
system. For system (10), the omega function (14) is not equal to zero, and the
systems is the general dissipative system.

It is not hard to prove that Hamiltonian (13) is connected with the non-Gaussian
statistics. Dissipative and non-Hamiltonian systems can have the canonical Gibbs
distribution as a solution of the stationary Liouville equations.*® Using Ref. 40, it is
easy to prove that some of fractional systems can have fractional Gibbs distribution

p(q;p) = explF — Ha 5(q,p)]/ET, (15)

as a solution of fractional Liouville equation.!”

3. Fractional Average Values and Reduced Distributions
3.1. Fractional average values for configuration space

Let us derive the fractional generalization of average value of classical observable
A(g,p). For configuration space, the usual average value is

= [ " A)ple)de (16)
and can be written
= [ A@p@d+ [ A@ps. (1)

Using

1 /y f(x)dx

(@) Jooo (y—2)t7”

R =

U2 =

we rewrite Eq. (17) in the form

(A)1 = (I3 Ap)(y) + (I Ap)(y) -

The fractional generalization of this equation is

(Ao = (I£Ap)(y) + (12 Ap)(y) - (18)
We can rewrite Eq. (18) in the form
o= [ (A0 —0)+ Aoy +2)dao), (19)
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where

|z|*~tdx dx®
dpg(x) = = , x% = «. 20
pa() = Cpay = apy © =@k (20)
Equation (18) defines the fractional generalization of the average value for coordi-
nate space.

3.2. Fractional average values for phase space

Let us introduce some notations to define the fractional average value for phase
space. Tilde operators

Toif oy, )==(f( o 2 — gy )+ [ 2 + Tk, .. )

allows us to rewrite

1
Z(A(q’ —q.p =, t)p(d —aq.p" —p.t) + Al + 4.0 —p.t)p(d + 4,0 —p,t)

+A(d —q¢.p" +p,t)p(d —q.0" +p,t) + Ad +a.0" +p.t)p(d + 4,0 +p.t))

in the simple form

T,Tp(Alg, p,t)p(a,p, 1)) -

For k particle with coordinates qrs and momenta pxs, where s = 1,...,m, we define
the operator

Tk =Ty, Tpr - Ty T,

dk1 dkm = Pkm *

For the n-particle system phase space, we use

Let us define the integral operators f;‘k by

+oo

i flay) = / F (@) i) (21)

—00

then Eq. (19) has the form
(Ao = [2T, A(2)p(a)
For k-particle we use the operator

Pl = o fe . je o

qk1~ Pkl qkm = Pkm ’

such that
[k (e pi) = / £ (e Pr)dita(qe B) (22)

where dp, (qi, pr) is an elementary 2m-dimensional phase volume

dpta(ar, Pr) = (al'(a) 2™ dggy Adpy A -+ A dgiy, A dpfy, -
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For the n-particle system, we use

Using the suggested notations, we can define the fractional generalization of the
average value for n-particle by

(Ao = I°[1,....0]T[1,...,n]Apy. (23)

In the simple case (n = m = 1), we have

(Ao = / h / " a0 )T T Alg. p)o(0.) (24)

The fractional generalization of normalization condition'” can be written by

(1)e = 1.

3.3. Reduced distribution functions

Let us consider a classical system with fixed number n of identical particles. Suppose
k particle is described by the dimensionless generalized coordinates qxs and gener-
alized momenta pys, where s = 1,..., m. We use the notations q; = (qr1,- - -, @km)
and pr = (Pk1,-.-,Pkem). The state of this system is described by dimensionless
n-particle distribution function p,, in the 2mn-dimensional phase space

pn(qapat):p(qlaplw"aqnapnat)' (25)

We assume that function (25) is invariant under the permutations of identical
particles:34

p("'7qkapka"'aqlvpla"'at):p('"7qlapla'"7qk7pka"'at)'

Then the average values can be simplified.>* Using the tilde distribution functions
pn(@p,t) = T[L,....;nlpn(q, P, 1), (26)

we define
pr(a,p,t) = plar, p1,t) = I°2,...,n]pn(q, p, 1) (27)

which is one-particle reduced distribution function. Obviously, that p; satisfies the

normalization condition:!?

I*[1)p1(a,p,t) = 1. (28)

Two-particle reduced distribution function ps is defined by the fractional integration
of p,, over all q; and pg, except k =1,2:

ﬁ?(q7p7t) = ﬁ(qlaplaq25p27t) = fa[gv .. an]ﬁn(qapat) . (29)
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4. Liouville and Bogoliubov Equations for Fractional Systems

Let us consider the Hamilton’s equations for n-particle system in the form

dgj; k dpy; k
= :G a7 a 9 = :ZF a7 aat ) 30
it S0, o (a%p",1) (30)
where Z is defined in Eq. (3). The evolution of p,, is described by the Liouville
equation'” for fractional system

dpr,

Quapn =0. 31
o T ap (31)
This equation can be derived!” from the fractional normalization condition

IoM, .. n)pn(q,p,t) = 1. (32)

In Eq. (31) the derivative d/ dt is a total time derivative

kos Zm dpks 0
dt 8t ~ dt 5qk5 dt Opgs

that can be written for the fractional powers

n,m n,m

d 0 v O
dt ot k,s=1 q k,s=1 apks
The a-omega function is
Qo = Z ({G];,pgs}a + Z{qys Fsk}a) ) (34)
k,s=1
where
< [ 0A 9B 9A OB
A, B}, = — . 35
4, B} ,g::l <3q§£‘s s O 3(12;) (35)
Using Egs. (33) and (34), we get Eq. (31) in the form
Ipn -
“ar An n
5 p (36)
where A,, is Liouville operator:
SN (0(GE) 5(F’“ﬁn))
Appn = — ( st 7 . (37)
k,gz:l aqks 8pks
2932

The Bogoliubov equations describe the evolution of the reduced distribu-
tion functions, and can be derived from the Liouville equation. In Ref. 18, we derive
the first fractional Bogoliubov equation from Eq. (36):

%+iw+zimz(n_l)zj(ﬁ2), (38)

ot = Oqf, —  Opf,
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Here I(p2) is a term with two-particle reduced distribution function,

_ —~ 0 -, _
I(p2) = = 3 5o " RIFPo (39)
s=1 1s

Equation (38) is called a first Bogoliubov equation for fractional systems.

The physical meaning of the term I(p2) is following: The term I(p2)dpus(q, p) is
a velocity of particle number change in 4m-dimensional elementary phase volume
die(q1, P2, d2, P2)- This change is caused by the interactions between particles. If
a =1, then we have the first Bogoliubov equation for non-Hamiltonian systems.

5. Transport Equation for Fractional Systems

Let us define the coordinate distribution (the density of number of particles) by the
equation

Tl(q, t) = fa[p]ﬁl (qa P, t) ) (40)

where I[p] is a fractional integration over the momenta
el =115 =231y, (1)

We can define the local mean values by

(A = (A1) = e P PA(G D)1 (0P.). (42)
In the general case,
(Ahpa # £A)a (13)

and (1), o = 1. The fractional average value (A), is connected with the mean value
(A)p,a by

(Ao = I*[dln(q, 1)(A)p.a

where I [q] is a fractional integration over the coordinates q = (q1, ..., ¢m)-
Fractional analog of mean local velocity is

V@) = s Gy @ plp(ap.). (14)
ie.
Velaot) = (Gulpa (15)

where G5 = G1(q, p) is defined by (30). We can consider G as a fractional gener-
alization of the velocity that has the form

G.="= (46)
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For the fractional generalization of kinetic energy of relative motion
m
M
Z 7 bs — ) (47)
s=1

we define density of this energy by

B(a,t) = 5 I*B)(G - V)mu(a,p,1). (15)

where G = p*/m, and V = V(q,t). The local temperature T'(q,t) is defined by
the mean kinetic energy of relative motion:

2E(q, 1)
3kpn(q,t)
To derive Enskog transport equation for fractional systems, we multiply both

sides of Eq. (38) by the observable A(p), and integrate with respect to momenta.
The first and second terms of left hand side of Eq. (38) are transformed by

T(q,t) =

A op1 0 i .0
Ip]A—5> = Z1[PlA7 = Zon(a,1)(A)pala b)), (49)
0G0 9
Integrating by part the third term of Eq. (38) and using the boundary condition
lim pi(q,p,t) =0, (51)
p—Eoo
we get
G BEp) D 0A
[ ] ap? - I[p] 8]9? AFSPI I[p]Fspl 8]9?
A 0A 0A
= (AF;p1)T% — I[p|F.p = —n(q,t) { Fy=— . 2
AR - TR = na@n) (Pg) @

Then we use the usual assumption
I[p]A(p)I(p2) = 0. (53)
for A= M, A=p% and A = p**
Finally, we obtain the Enskog transport equation for fractional systems:

57 (10 0a) + 5o (0, DG =@ 07 () . (o

where

m

YR s s (@ D(AG)0) = 3 o (1@ 1(AG) ).

s=1 s=1
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6. Gasdynamic Equation for Fractional Systems

Let us consider the special cases of transport equation (54) for

A=M, A=p?=MG;,, A:%.
If we use A = M, then Eq. (54) gives
0 . 0
HrPm(art) + @pM(qa t)(Gs)palat) =0, (55)
where pjys is mass density
pm(a;t) = Mn(q,1). (56)
For A = p¢ = MG, we obtain
0 _ 0 . -
HrPuVilat) + ¢ Pv{GsGl)p.a = pr(Q 1) Z(F)p,a s (57)

where we use Egs. (46) and (56), and the relation

0G|
opg

= M.

For A = p?®/2M, we get
J . p2© a9 1,
EPM(qa t) <m>p’a + @PM(CL t) <§Gz G

= m(@, ) Z(FsGs)p.a- (58)

p,x

Here (FsGs)p o is a local mean value.
Let us define the deviation of velocity from its mean value by

Cs(q,t) = Gs — Vs(q,t) = Gs — (Gs)p,a - (59)
Substituting G5 = Vs + C; in the kinetic energy tensor (GsGi)p.o, We get
<G3Gl>p,o¢ = VSVS - <Cscl>p7a7 (60)

where we use (Cs)p o = 0. From Eq. (60), we have

201 2 2
9] MV MC
<2M> =3 + 5 - (61)
p,x
The tensor of internal stress
Psl - <Cscl>p7a 5 (62)

can be represented as the sum

Psl((L t) = 6slp(q7 t) + sl (q7 t) sy Tss (qa t) =0,
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where 74(q,t) is the tensor of viscous stress. Then

G Cadna = B (Vi O (Va4 O

_ TM (V2 4 CE+2Vi0) (Vs + C5))pa

= BL (V2 + (CR)pa)Vi + 2ViP + B (CRC (63)

Substituting Eq. (62) in Eq. (57), and substituting Eqgs. (61) and (63) in Eq. (58),
we get the equations for the functions pas(q,t), Vs(q,t), E(q,t). From Eq. (55), we

get the continuity equation for fractional systems:!7-!8
0 0
B = PM + B4 aPMV 0, (64)

which may be regarded as the equation of balance of “fractional matter”. This
matter can be described by fractional systems (30). In addition to pps, the continuity
equation (64) includes the density of momentum pa; V. To obtain the equation for
the density of momentum, we multiplied first fractional Bogoliubov equation by
p®, and use fractional integration over p. Taking advantage of the assumption (53)
and the boundary condition (51), we get the equation for the components of the
vector of density of momentum

0 .
+ =—(pmVsVi+ Py) = fi, (65)

Y
pait 0q%

o
where f; = fi(q,t) = Z(F)p.a-

Finally, to write down the equation of balance of fractional kinetic energy den-
sity, we multiplied first fractional Bogoliubov equation by p®, and use fractional
integrated with respect to p. Taking advantage of the assumption (53) and the
boundary condition (51), we come to the equation for the density of kinetic energy
of fractional systems:

0
ot

where

1 0 o V2
( pMVQ—FE)‘F@(Vs [p”; +E]+PSM+QS>=J2VS, (66)

Q. = BHCHCpa

Equations (64), (65), and (66) are the gasdynamic equations for fractional systems.
Obviously, the set of this five equations is not closed. If we have 74 = 0 and Q5 = 0,
then these equations are

d . 0

Fri Py (Gs)pa = 0. (67)
0 oP
(9 pMV—FaqS (pMVV) —@‘Ffl, (68)
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o (1. _, ) puV? _
E(ipMV —|—E)—|—8—qg(‘/s|:T+E+P:|>—fs‘/sa (69)

and the set of equations is closed.

7. Conclusion

In this paper the gasdynamic equations for fractional systems are derived. In or-
der to derive these equations, we use the first fractional Bogoliubov equation.'®
Then we define the fractional generalization average values and the reduced distri-
bution functions. The Enskog equation for fractional systems is considered. Gasdy-

namic equations (64), (65) and (66) can be considered as equations in the fractional

space!™18 or for systems with non-Gaussian statistics.!”1®

Dissipative and non-Hamiltonian systems can have stationary states of the
Hamiltonian systems.?® Classical dissipative systems can have canonical Gibbs dis-
tribution as solutions of Liouville equations for the dissipative systems.'44%4! Using
the methods'#4? it is easy to find solutions for the Bogoliubov equations for frac-
tional systems. Suggested Bogoliubov equation allows to formulate the dynamics
for fractional generalization of quantum dissipative systems by methods suggested
in Refs. 36-38.
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