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ics. We suggest a short introduction to fractional calculus as a theory of integration
and differentiation of noninteger order. Some applications of integro-differentiations of
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Quantum analogs of fractional derivatives and model of open nano-system systems with
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1. Introduction

In this paper we review some applications of fractional calculus and fractional

differential equations in physics and mechanics. The interest in such applications

has been growing continually during the last years. Fractional calculus is a theory

of integrals and derivatives of any arbitrary real (or complex) order. It has a long

history1–3 from 30 September 1695, when the derivatives of order α = 1/2 has

been described by Leibniz in a letter to L’Hospital. Therefore this date can be

regarded as the birthday of fractional calculus. We can probably think that Joseph

Liouville was the first in application of fractional calculus in physics.4 The fractional

differentiation and fractional integration go back to many great mathematicians

such as Leibniz, Liouville, Riemann, Abel, Riesz, Weyl.

All of us are familiar with derivatives and integrals, like first-order

f ′(x) = D1
xf(x) =

d

dx
f(x) , (I1f)(x) =

∫ x

0

dx1f(x1) .

and the nth order

f (n)(x) = Dn
xf(x) =

dn

dxn
f(x) ,
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(Inf)(x) =

∫ x

0

dx1

∫ x1

0

dx2 · · ·

∫ xn−1

0

dxnf(xn) ,

where n is integer number n = 1, 2, . . . , i.e., n ∈ N.

Mathematicians consider the noninteger order of the integrals and derivatives

from 1695,

f (α)(x) = Dα
xf(x) = ? , (Iαf)(x) = ? ,

where α ∈ R or α ∈ C.

At these moments there are international journals such as “Fractional Calcu-

lus and Applied Analysis”, “Fractional Differential Calculus”, “Communications in

Fractional Calculus”, which are dedicated entirely to the fractional calculus.

The first book dedicated specifically to fractional calculus is the book by Old-

ham and Spanier3 published in 1974. There are two remarkably comprehensive

encyclopedic-type monographs. The first such monograph is written by Samko,

Kilbus and Marichev5,6 and was published in Russian in 1987 and in English in

1993. In 2006 Kilbas, Srivastava and Trujillo published a very important and an-

other remarkable book,7 where one can find a modern encyclopedic, detailed and

rigorous theory of fractional differential equations. It should be noted the books on

fractional differential equation by Podlubny8 and an introduction to fractional cal-

culus for physicists by Herrmann.9 There exist mathematical monographs devoted

to special questions of fractional calculus. For example, these include the book by

McBride10 published in 1979 (see also Ref. 11), the work by Kiryakova12 of 1993.

The fractional integrals and potentials are described in the monograph by Rubin,13

the univalent functions, fractional calculus and their applications are described in

the volume edited by Srivastava and Owa.14 Fractional differentiation inequalities

are described in the book by Anastassiou15 published in 2009.

The physical applications of fractional calculus to describe complex media and

processes are considered in the very interesting volume edited by Carpintery and

Mainardi16 published in 1997. Different physical systems are described in the pa-

pers of volumes edited by Hilfer17 in 2000, and the edited volume of Sabatier,

Agrawal and Tenreiro Machado18 published in 2007. The most recent volumes on

the subject of application of fractional calculus are the volumes edited by Luo and

Afraimovich19 in 2010, and by Klafter, Lim and Metzler20 in 2011. The book by

West, Bologna and Grigolini21 published in 2003 is devoted to physical application

of fractional calculus to fractal processes. The first book devoted to application

of fractional calculus to chaos is the book by Zaslavsky22 published in 2005. The

interesting book by Mainardi23 devoted to the application of fractional calculus in

dynamics of viscoelastic materials. The books dedicated specifically to application

of derivatives and integrals with noninteger orders in theoretical physics are the

remarkable books by Uchaikin,24,25 and the monographs by Tarasov.26,27 We also

note a new book by Uchaikin and Sibatov28 devoted to fractional kinetics in solids.

Due to the fact that there are many books and reviews on application of frac-

tional calculus to describe physical processes and systems, it is almost impossible in
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this review to cover all areas of current research in the field of fractional dynamics.

Therefore we must choose some of the areas in this field. We have chosen areas of

fractional dynamics that can be considered as the most perspective directions of

research in my opinion. These areas are not related to a simple extension of equa-

tions with derivatives of integer order to noninteger. We consider fractional models

that give relationships between different types of equations describing apparently

the system and processes of various types. In addition, we think that these areas

and models can give new prospects for a huge number of fundamentally new results

in the construction of mathematical methods for the solution of physical problems,

and in the description of new types of physical processes and systems.

As a first type of model, we consider discrete maps with memory that are equiv-

alent to the fractional differential equations of kicked motions. These models are

promising since an approximation for fractional derivatives of these equations of

motion is not used. This fact allows us to study the fractional dynamics by com-

puter simulations without approximations. It allows us to find and investigate a

new type of chaotic motion and a new type of attractor.

As a second type of promising fractional models, we consider the discrete systems

(or media) with long-range interaction of particles, and continuous limits of these

systems such that equations of motion with long-range interaction are mapped into

continuous medium equations with the fractional derivatives. As a result we have

microscopic model for fractional dynamics of complex media.

The third type of models is related to the description of the fractional dynamics

by microscopic models of open quantum systems which interacts with its environ-

ment. We give an example that demonstrate that time fractional dynamics and

a fractional differential equation of motion can be connected with the interaction

between the system and its environment with power-law spectral density.

We also consider fractional models that allow us to describe specific properties

of fractal media dynamics; quantum analogs of fractional derivative with respect to

coordinate and momentum; the importance of self-consistent formulation of fractal

vector calculus and exterior calculus of differential forms that are not yet fully

implemented. This review starts with a short introduction to the fractional calculus.

2. Derivatives and Integrals of Noninteger Orders

There are many different definitions of fractional integrals and derivatives of non-

integer orders. The most popular definitions are based on the following.

(1) A generalization of Cauchy’s differentiation formula;

(2) A generalization of finite difference;

(3) An application of the Fourier transform.

We should note that many usual properties of the ordinary derivativeDn are not

realized for fractional derivative operators Dα. For example, a product rule, chain

rule, semi-group property have strongly complicated analogs for the operators Dα.
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2.1. A generalization of Cauchy’s differentiation formula

Let G be an open subset of the complex plane C, and f : G → C is a holomorphic

function. Then we have the Cauchy’s differentiation formula:

f (n)(x) =
n!

2πi

∮

L

f(z)

(z − x)n+1
dz . (1)

A generalization of (1) has been suggested by Sonin (1872) and Letnikov (1872) in

the form:

Dα
x f(x) =

Γ(α+ 1)

2πi

∮

L

f(z)

(z − x)α+1
dz , (2)

where α ∈ R and α 6= −1,−2,−3, . . . . See Theorem 22.1 in the book by Samko,

Kilbas and Marichev.5,6 Expression (2) is also called Nishimoto derivative.29 More

correctly it should be called Sonin–Letnikov derivative.

2.2. A generalization of finite difference

It is well-known that derivatives of integer orders n can be defined by the finite

differences. The differentiation of integer order n can be defined by:

Dn
xf(x) = lim

h→0

∆n
hf(x)

hn
,

where ∆n
h is a finite difference of integer order n that is defined by:

∆n
hf(x) =

n
∑

k=0

(−1)k
(

n

k

)

f(x− kh) . (3)

The difference of noninteger order α > 0 is defined by the infinite series:

∆α
hf(x) =

∞
∑

k=0

(−1)k
(

α

k

)

f(x− kh) , (4)

where the binomial coefficients are:
(

α

β

)

=
Γ(α+ 1)

Γ(β + 1)Γ(α− β + 1)
.

The left-hand and right-hand sided Grünwald–Letnikov (1867, 1868) derivatives

of order α > 0 are defined by:

GLDα
x±f(x) = lim

h→0

∆α
∓hf(x)

hα
. (5)

It is interesting that series (4) can be used for α < 0 and Eq. (5) defines

Grünwald–Letnikov fractional integral if:

|f(x)| < c(1 + |x|)−µ , µ > |α| .

Then (5) can be represented by:

GLDα
x±f(x) =

α

Γ(1− α)

∫ ∞

0

f(x)− f(x∓ z)

zα+1
dz

if f(x) ∈ Lp(R), where 1 < p < 1/α and 0 < α < 1.

1330005-5

In
t. 

J.
 M

od
. P

hy
s.

 B
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 8

9.
20

8.
22

8.
63

 o
n 

03
/2

8/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.



March 22, 2013 9:31 WSPC/Guidelines-IJMPB S0217979213300053

V. E. Tarasov

2.3. A generalization by Fourier transform

If we define the Fourier transform operator F by:

(Ff)(ω) =
1

2π

∫ +∞

−∞

f(t)e−iωtdt , (6)

then the Fourier transform of derivative of integer order n is:

(FDn
xf)(ω) = (iω)n(Ff)(ω) .

Therefore we can define the derivative of integer order n by:

Dn
xf(x) = F−1{(iω)n(Ff)(ω)} .

For f(t) ∈ L1(R), the left-hand and right-hand side Liouville fractional deriva-

tives and integrals can be defined (see Theorem 7.1 in Refs. 5 and 6 and Theo-

rem 2.15 in Ref. 7) by the relations:

(Dα
±f)(x) = F−1

(

(±iω)α(Ff)(ω)
)

, (7)

(Iα±f)(x) = F−1

(

1

(±iω)α
(Ff)(ω)

)

, (8)

where 0 < α < 1 and

(±iω)α = |ω|α exp

(

±sgn(ω)
iαπ

2

)

.

The Liouville fractional integrals (8) can be represented by:

(Iα±f)(x) =
1

Γ(α)

∫ ∞

0

zα−1f(x∓ z)dz . (9)

The Liouville fractional derivatives (7) are:

(Dα
±f)(x) = Dn

x(I
n−α
± f)(x) =

1

Γ(n− α)

dn

dxn

∫ ∞

0

zn−α−1f(x∓ z)dz , (10)

where n = [α] + 1.

We can define the derivative of fractional order α by:

CDα
±f(t) = In−α

± (Dn
t f)(t) =

1

Γ(n− α)

∫ ∞

0

zn−α−1Dn
xf(x∓ z)dz , (11)

where n = [α]+1. It is the Caputo derivative of order α.7 For x ∈ [a, b] the left-hand

side Caputo fractional derivative of order α > 0 is defined by:

C
a D

α
t f(t) = aI

n−α
t Dn

t f(t) =
1

Γ(n− α)

∫ t

a

dτDn
τ f(τ)

(t− τ)α−n+1
, (12)

where n − 1 < α < n, and aI
α
t is the left-hand side Riemann–Liouville fractional

integral of order α > 0 that is defined by:

aI
α
t f(t) =

1

Γ(α)

∫ t

a

f(τ)dτ

(t− τ)1−α
, (a < t) .
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Note that the Riemann–Liouville fractional derivative has some notable disad-

vantages in applications such as nonzero of the fractional derivative of constants,

0D
α
t C =

t−α

Γ(1− α)
C ,

which means that dissipation does not vanish for a system in equilibrium. The

Caputo fractional differentiation of a constant results in zero

C
0 D

α
t C = 0 .

The desire to use the usual initial value problems

f(t0) = C0 , (D1
t f)(t0) = C1 , (D2

t f)(t0) = C2, . . .

lead to the application Caputo fractional derivatives instead of the Riemann–

Liouville derivative.

The Riemann–Liouville and Caputo derivatives are connected.7 Let f(t) be

a function for which the Caputo derivatives of order α exist together with the

Riemann–Liouville derivatives. Then these fractional derivatives are connected by

the relation:

C
a D

α
t f(t) = aD

α
t f(t)−

m−1
∑

k=0

(t− a)k−α

Γ(k − α+ 1)
f (k)(a) . (13)

The second term of the right-hand side of Eq. (13) regularizes the Caputo fractional

derivative to avoid the potentially divergence from singular integration at t = 0.

2.4. Some unusual properties of fractional derivatives

Let us demonstrate the unusual properties of derivatives of noninteger orders by

using the Riemann–Liouville derivatives.

(1) Semi-group property does not hold

(Dα
a+D

β
a+f)(x) = (Dα+β

a+ f)(x)−

[β]+1
∑

k=1

(Dβ−k
a+ f)(a+)

(x − a)−α−k

Γ(1− α− k)
(14)

for f(x) ∈ L1(a, b) and (In−α
a+ f)(x) ∈ ACn[a, b], (see Eq. (2.1.42) in Ref. 7).

As a consequence, in general we have:

Dα
a+D

α
a+ 6= D2α

a+ .

(2) The derivative of the nonzero constant is not equal to zero

(Dα
a+1)(x) =

(x− a)−α

Γ(1− α)
. (15)

(3) The initial conditions for differential equation with Riemann–Liouville

derivative differ from the conditions for ordinary differential equations of the integer

order:

(0D
α−k
t x)(0+) = ck , k = 1, . . . , n . (16)
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For example, conditions (16) for 1 < α < 2 give:

(0D
α−1
t x)(0+) = c1 , (0D

α−2
t x)(0+) = (0I

2−α
t x)(0+) = c2 .

(4) Representation in the form of an infinite series of derivatives of integer orders

(Dα
a+f)(x) =

∞
∑

n=0

Γ(α+ 1)

Γ(k + 1)Γ(α− k + 1)

(x− a)k−α

Γ(k − α+ 1)
Dn

xf(x) (17)

for analytic (expandable in a power series on the interval) functions on (a, b), (see

Lemma 15.3 in Refs. 5 and 6).

(5) A generalization of the classical Leibniz rule

Dn(fg) =

n
∑

k=0

(

n

k

)

f (n−k)g(k)

from integer n to fractional α contains an infinite series

(Dα
a+(fg))(x) =

∞
∑

k=0

Γ(α+ 1)

Γ(k + 1)Γ(α− k + 1)
(Dα−k

x f)(x)Dk
xg (18)

for analytic functions on (a, b) (see Theorem 15.1 in Refs. 5 and 6). The sum is

infinite and contains integrals of fractional order (for k > [α] + 1).

(6) The increasing complexity of the Newton–Leibniz equation for

(Iαa+D
α
a+f)(x) = f(x)−

n
∑

k=1

(x− a)α−k

Γ(α− k + 1)
(Dn−kIn−α

a+ f)(a)

for f(x) ∈ L1(a, b), (I
n−αf)(x) ∈ ACn[a, b], (see Eq (2.1.39) in Ref. 7).

For 0 < α ≤ 1, we have:

(Iαa+D
α
a+f)(b) = f(b)−

(b− a)α−1

Γ(α)
(I1−α

a+ f)(a) .

For n ∈ N

(Ina+D
n
a+f)(x) = f(b)−

n−1
∑

k=0

f (k)(a)

k!
(b − a)k ,

(I1a+D
1
a+f)(b) = f(b)− f(a)

(see Eq. (2.1.41) in Ref. 7).

(7) For the fractional derivatives there is an analogue of the exponent. The

Mittag–Leffler function

Eα[z] =

∞
∑

k=0

zn

Γ(kα+ 1)

is invariant with respect to the Riemann–Liouville

Dα
a+Eα[λ(x − a)α] = λEα[λ(x − a)α]

(see Eq. (2.1.57) in Ref. 7).

1330005-8

In
t. 

J.
 M

od
. P

hy
s.

 B
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 8

9.
20

8.
22

8.
63

 o
n 

03
/2

8/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.



March 22, 2013 9:31 WSPC/Guidelines-IJMPB S0217979213300053

Review of Some Promising Fractional Physical Models

3. Introduction to Fractional Dynamics

Fractional dynamics is a field in physics and mechanics, studying the behavior of

objects and systems that are described by using integrations and differentiation of

fractional orders, i.e., by methods of fractional calculus. Derivatives and integrals

of noninteger orders are used to describe objects that can be characterized by the

following properties.

(1) A power-law nonlocality;

(2) A power-law long-term memory;

(3) A fractal-type property.

3.1. Fractional diffusion-wave equation

In mathematics and physics the following equations are well-known, the diffusion

equation:

∇2u(t,x) = C1D
1
tu(t,x) ,

and the wave equation:

∇2u(t,x) = C2D
2
tu(t,x) .

We can consider a generalization of these equations such that it includes deriva-

tives of noninteger order with respect to time. This generalization describes phe-

nomena that can be characterized by diffusion and waves properties. The fractional

diffusion-wave equation is the linear fractional differential equation obtained from

the classical diffusion or wave equations by replacing the first- or second-order

time derivatives by a fractional derivative (in the Caputo sense) of order α with

0 < α < 2,

∇2u(t,x) = Cα
C
0D

α
t u(t,x) .

The solutions of these fractional partial differential equations are described in

the book7 (see Sec. 6.1.2). This equation describes diffusion-wave phenomena,33,34

which is also called the anomalous diffusion such that we have the superdiffusion

for 1 < α < 2, and subdiffusion for 0 < α < 1. A more detailed description of these

effects and phenomena can be found in the reviews.35,36

3.2. Viscoelastic material

If the force is immediately relaxed, then the deformation disappears. This property

is called the elasticity. The elasticity is a physical property of materials which return

to their original shape after they are deformed. The other well-known property is

called the viscosity. The viscosity of a fluid is a measure of its resistance to gradual

deformation by shear stress or tensile stress.

Mechanically, this behavior is represented with a spring of modulus E, which

describes the instantaneous elastic response. The stress σ(t) is proportional to the
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zeroth derivative of strain ε(t) for elastic solids and to the first derivative of strain

for viscous fluids.

The elastic solids are described by the Hooke’s law:

σ(t) = Eε(t) ,

where E is the elastic moduli.

The viscous fluids are described by the law of Newtonian fluids:

σ(t) = ηD1
t ε(t) ,

where η is the coefficient of viscosity.

There are materials that demonstrate these two properties (elasticity and vis-

cosity) at the same time. These materials are called viscoelastic. To describe the

fractional viscoelasticity Scott Blair (1947) uses the relation30,31

σ(t) = Eα
C
0D

α
t ε(t) ,

where Eα is a constant.

If F (x) is an acting force and x is the displacement, then Hooke’s model of

elasticity

F (x) = −kD0
tx(t) ,

and Newton’s model of a viscous fluid

F (x) = −kD1
tx(t) ,

can be considered as particular cases of the relation

F (x) = −kDα
t x(t) .

This force describe the property that is called the fractional friction.

More complicated fractional models for viscoelasticity of materials are consid-

ered in the books by Rabotnov32 and Mainardi.23

3.3. Power-law memory and fractional derivatives

A physical interpretation of equations with derivatives and integrals of noninteger

order with respect to time is connected with the memory effects.

Let us consider the evolution of a dynamical system in which some quantity

A(t) is related to another quantity B(t) through a memory function M(t) by:

A(t) =

∫ t

0

M(t− τ)B(τ)dτ . (19)

This operation is a particular case of composition products suggested by Vito

Volterra. In mathematics, Eq. (19) means that the value A(t) is related with B(t)

by the convolution A(t) = M(t) ∗B(t).

Equation (19) is a typical equation obtained for the systems coupled to an

environment, where environmental degrees of freedom are being averaged. Let us
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note the memory functions for the case of the absence of the memory and the case

of power-law memory.

The absence of the memory: For a system without memory, the time dependence

of the memory function is:

M(t− τ) = M(t)δ(t− τ) , (20)

where δ(t− τ) is the Dirac delta-function. The absence of the memory means that

the function A(t) is defined by B(t) at the only instant t. In this case, the system

loses all its values of quantity except for one: A(t) = M(t)B(t). Using (19) and

(20), we have:

A(t) =

∫ t

0

M(t)δ(t− τ)B(τ)dτ = M(t)B(t) . (21)

Expression (21) corresponds to the well-known physical process with complete ab-

sence of memory. This process relates all subsequent values to previous values

through the single current value at each time t.

Power-law memory: The power-like memory function is defined by:

M(t− τ) = M0(t− τ)ε−1 , (22)

where M0 is a real parameter. It indicates the presence of the fractional derivative

or integral. The integral representation is equivalent to a differential equation of the

fractional order. Substitution of (22) into (19) gives the temporal fractional integral

of order ε:

A(t) = λIεt B(t) =
λ

Γ(ε)

∫ t

0

(t− τ)ε−1B(τ)dτ , 0 < ε < 1 , (23)

where λ = Γ(ε)M0. The parameter λ can be regarded as the strength of the pertur-

bation induced by the environment of the system. The physical interpretation of the

fractional integration is an existence of a memory effect with power-like memory

function. The memory determines an interval [0, t] during which B(τ) affects A(t).

Equation (23) is a special case of relation for A(t) and B(t), where A(t) is

directly proportional to B(t). In a more general case, the values A(t) and B(t) can

be related by the equation:

f(A(t) , M(t) ∗Dn
t B(t)) = 0 , (24)

where f is a smooth function. For dynamical systems relation (24) defines a mem-

ory effect. In this case (24) gives the relation f(A(t), C
0D

α
t B(t)) = 0 with Caputo

fractional derivative. Relation (24) is a fractional differential equation.

4. Discrete Physical Systems with Memory

Discrete maps (universal, Chirikov-Taylor, rotator, Amosov, Zaslavsky, Henon) can

be obtained from the correspondent equations of motion with a periodic sequence

of delta-function-type pulses (kicks).
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An approximation for derivatives of these equations is not used. This fact is

used to study the evolution that is described by differential equations with periodic

kicks.

Example: The universal map without memory

xn+1 = xn + pn+1T , pn+1 = pn −KTG[xn] (25)

is obtained from the differential equation of second-order with respect to time

D2
tx(t) +KG[x(t)]

∞
∑

k=1

δ(t/T − k) = 0 , (26)

where T = 2π/ν is the period, and K is an amplitude of the pulses.

If G[x] = sin(x), then we have the Chirikov–Taylor map.

For G[x] = −x we have the Amosov system.

4.1. Universal map with Riemann–Liouville type memory

The Cauchy-type problem for the differential equations:

0D
α
t x(t) = −KG[x(t)]

∞
∑

k=1

δ

(

t

T
− k

)

, 1 < α 6 2 (27)

with the initial conditions:

(0D
α−1
t x)(0+) = c1 , (0D

α−2
t x)(0+) = (0I

2−α
t x)(0+) = c2 , (28)

where 0D
α−1
t is the Riemann–Liouville derivative, is equivalent to the map equa-

tions in the form:

xn+1 =
Tα−1

Γ(α)

n
∑

k=1

pk+1Vα(n− k + 1) +
c2T

α−2

Γ(α− 1)
(n+ 1)α−2 , (29)

pn+1 = pn −KTG[xn] , (1 < α 6 2) , (30)

where p1 = c1, and Vα(z) = zα−1− (z−1)α−1, (z > 1). The proof of this statement

is given in Refs. 26 and 40. If G[x] = sin(x), then we have the Chirikov–Taylor map

with memory. For G[x] = −x we have the Amosov system with memory.

4.2. Universal map with Caputo type memory

The Cauchy-type problem for the differential equations:

D1
tx(t) = p(t) , (31)

C
0D

α−1
t p(t) = −KG[x(t)]

∞
∑

k=1

δ

(

t

T
− k

)

, (1 < α < 2) , (32)
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with the initial conditions x(0) = x0, p(0) = p0, where C
0D

α−1
t is the Caputo

derivative, is equivalent to the map equations in the form:

xn+1 = x0 + p0(n+ 1)T −
KTα

Γ(α)

n
∑

k=1

(n+ 1− k)α−1G[xk] , (33)

pn+1 = p0 −
KTα−1

Γ(α− 1)

n
∑

k=1

(n+ 1− k)α−2G[xk] . (34)

The proof of this statement is given in Refs. 26 and 40. This map allows us to

describe fractional maps with memory for dynamics with usual initial conditions.

4.3. Kicked damped rotator map with memory

Equation of motion:

0D
α
t x− q 0D

β
t x = KG[x]

∞
∑

n=0

δ(t− nT ) , (35)

where q ∈ R, 1 < α 6 2, β = α − 1 and 0D
α
t is Riemann–Liouville derivative, can

be represented in the form of the discrete map,

xn+1 =
1

Γ(α− 1)

n
∑

k=0

pk+1Wα(q, T, n+ 1− k) , (36)

pn+1 = eqT (pn +KG[xn]) , (37)

where the function Wα is defined by:

Wα(q, T,m+ 1) = Tα−1

∫ 1

0

e−qTy(m+ y)α−2dy . (38)

The proof of this statement is given in Ref. 26 (see also Refs. 38 and 41).

4.4. New type of attractors

The suggested maps with memory are equivalent to the correspondent fractional

kicked differential equations.37,38,40 An approximation for fractional derivatives of

these equations is not used. This fact is used to study the evolution that is described

by fractional differential equations. Computer simulations of the suggested discrete

maps with memory prove that the nonlinear dynamical systems, which are described

by the equations with fractional derivatives, exhibit a new type of chaotic motion

and a new type of attractors. For example, the slow converging and slow diverging

trajectories, ballistic trajectories and fractal-like sticky attractors, in the chaotic

sea can be observed39 for Chirikov–Taylor map with power-law memory (see also

Refs. 39, 41–44).
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5. Dynamics of Systems with Long-Range Interaction

Dynamics with long-range interaction has been the subject of continuing interest in

different areas of science. The long-range interactions have been studied in discrete

systems as well as in their continuous analogues.

The dynamics described by the equations with fractional space derivatives can

be characterized by the solutions that have power-like tails.7 Similar features were

observed in the lattice models with power-like long-range interactions.46–50 As it

was shown,51–59 the equations with fractional derivatives can be directly connected

to chain and lattice models with long-range interactions.

Equations of motion of one-dimensional lattice system of interacting particles:

d2un(t)

dt2
= g

+∞
∑

m=−∞,m 6=n

J(n,m)[un(t)− um(t)] + F (un(t)) , (39)

where un(t) are displacements from the equilibrium, F (un) is the external on-site

force and

J(n,m) = J(|n−m|) ,

∞
∑

n=1

|J(n)|2 < ∞ . (40)

5.1. Long-range interaction of power-law type

We define a special type of interparticle interaction

lim
k→0

Ĵα(k)− Ĵα(0)

|k|α
= Aα , α > 0 , 0 < |Aα| < ∞ , (41)

where

Ĵα(k∆x) =

+∞
∑

n=−∞
n 6=0

e−ikn∆xJ(n) = 2

∞
∑

n=1

J(n) cos(kn∆x) . (42)

This interaction is called the interaction of power-law type α.

As an example of the power-law type interaction, we can consider:

J(n−m) =
1

|n−m|β+1
. (43)

The other examples of power-law type interaction are considered in Refs. 26, 52

and 53.

Equations of motion (39) with the power-law interaction (43) give the following

equations in the continuous limits:

(1) For 0 < β < 2 (β 6= 1) we get the Riesz fractional derivative Dα
x of order α = β:

∂2

∂t2
u(x, t)−GαAαD

α
xu(x, t) = F (u(x, t)) , 0 < α < 2 , (α 6= 1) . (44)
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(2) For β > 2 (β 6= 3, 4, 5, . . .) we get derivative of order α = 2:

∂2

∂t2
u(x, t) +Gαζ(α− 1)D2

xu(x, t) = F (u(x, t)) , α > 2 , (α 6= 3, 4, . . .) ,

(45)

where Gα = g|∆x|min{α;2} is the finite parameter.

(3) For β = 1 we get derivative of order α = 1 and α = 2 for β = 3, 5, 7, . . .:

∂2u(x, t)

∂t2
− iG1

∂u(x, t)

∂x
= F (u(x, t)) , (46)

where G1 = πg∆x is the finite parameter.

(4) For β = 3, 5, 7, . . . (β = 2m − 1, where m = 2, 3, 4, . . .), we get equation with

derivative of order α = 2:

∂2u(x, t)

∂t2
−G2

∂2u(x, t)

∂x2
= F (u(x, t)) , (47)

where

G2 =
(−1)m−1(2π)2m−2

4(2m− 2)!
B2m−2 g(∆x)2 (48)

are the finite parameters, and B2m−2 are Bernoulli numbers.

(5) For β = 2k − 2, where k ∈ N, we have the logarithmic poles.

The effects of synchronization, breather-type and solution-type solutions for

the systems with nonlocal interaction of power-law type 0 < β < 2 (β 6= 1) were

investigated.54–57 Nonequilibrium phase transitions in the thermodynamic limit for

long-range systems are considered in Ref. 58. Statistical mechanics and dynamics

of solvable models with long-range interactions are discussed in Ref. 60. Stationary

states of fractional dynamics of systems with long-range interactions are discussed

in Ref. 59. Fractional dynamics of systems with long-range space interaction and

temporal memory is also considered in Refs. 57 and 59.

Fractional derivatives with respect to coordinates describe power-law nonlocal

properties of the distributed system. Therefore the fractional statistical mechanics

can be considered as special case of the nonlocal statistical mechanics.66 As shown

in the articles52,53 the spacial fractional derivatives are connected with long-range

interparticle interactions. We prove that nonlocal alpha-interactions between parti-

cles of crystal lattice give continuous medium equations with fractional derivatives

with respect to coordinates. In the monographs by Vlasov,66 a nonlocal statistical

model of crystal lattice is suggested. Therefore we conclude26 that the nonlocal and

fractional statistical mechanics are directly connected with statistical dynamics of

systems with long-range interactions.60

5.2. Nonlocal generalization of the Korteweg–de Vries equation

The Korteweg–de Vries equation is used in a wide range of physics phenomena,

especially those exhibiting shock waves, travelling waves and solitons.61 In the quan-

tum mechanics certain physical phenomena can be explained by Korteweg–de Vries
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models. This equation is used in fluid dynamics, aerodynamics and continuum me-

chanics as a model for shock wave formation, solitons, turbulence, boundary layer

behavior and mass transport.

The continuous limits of the equations of lattice oscillations

∂un(t)

∂t
= g1

+∞
∑

m=−∞
m 6=n

J1(n,m)[u2
n − u2

m] + g3

+∞
∑

m=−∞
m 6=n

J3(n,m)[un − um] ,

give the nonlocal generalization of the Korteweg–de Vries equation:

∂

∂t
u(x, t)−G1u(x, t)

∂

∂x
u(x, t) +G3

∂3

∂x3
u(x, t) = 0

in the form

∂

∂t
u(x, t)−Gα1

u(x, t)
∂α1

∂|x|α1

u(x, t) +Gα3

∂α3

∂|x|α3

u(x, t) = 0 , (49)

where Gα1
= g1|∆x|α1 and Gα3

= g3|∆x|α3 are finite parameters. Equation (49) is

a fractional generalization of Korteweg–de Vries equation.62

The nonlinear power-law type interactions defined by f(u) = u2 and f(u) =

u − gu2 for the discrete systems are used to derive the Burgers and Boussinesq

equations and their fractional generalizations in the continuous limit. Note that a

special case of this equation is suggested in Refs. 63 and 64.

5.3. Nonlocal generalization of the Burgers and Boussinesq

equations

Let us consider examples of quadratic-nonlinear long-range interactions.26,52,53

We can consider the discrete systems that are described by the equations:

∂un(t)

∂t
= g1

+∞
∑

m=−∞
m 6=n

J1(n−m)[u2
n − u2

m] + g2

+∞
∑

m=−∞
m 6=n

J2(n−m)[un − um] , (50)

where J1(n−m) and J2(n−m) define interactions of power-law type with α1 and

α2. If α1 = 1 and α2 = 2, then we get the well-known Burgers equation that is

a nonlinear partial differential equation, which is used to describe boundary layer

behavior, shock wave formation and mass transport. If α2 = α, then we get the

fractional Burgers equation that is suggested in Ref. 63. In the general case, the

continuous limit gives the fractional Burgers equation in the form:

∂

∂t
u(x, t) +Gα1

u(x, t)
∂α1

∂|x|α1

u(x, t)−Gα2

∂α2

∂xα2

u(x, t) = 0 . (51)

We can consider the chain and lattice equations of the form

∂2un(t)

∂t2
= g2

+∞
∑

m=−∞
m 6=n

J2(n,m)[f(un)− f(um)]
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+ g4

+∞
∑

m=−∞
m 6=n

J4(n,m)[un − um] , (52)

where f(u) = u − gu2, and J2(n − m) and J4(n − m) define the interactions of

power-law types with α2 and α4. If α2 = 2 and α4 = 4, then in continuous limit we

obtain the well-known nonlinear partial differential equation of forth-order that is

called the Boussinesq equation. This equation was subsequently applied to problems

in the percolation of water in porous subsurface strata, and it used to describe long

waves in shallow water and in the analysis of many other physical processes. In the

general case, the continuous limit gives the fractional Boussinesq equation of the

form:

∂2

∂t2
u(x, t)−Gα2

∂α2

∂xα2

u(x, t) + gGα2

∂α2

∂xα2

u2(x, t) +Gα4

∂α4

∂xα4

u(x, t) = 0 . (53)

Fractional generalization of Korteweg–de Vries, Burgers, Boussinesq equations can

be used to describe properties of media with nonlocal interaction of particles.

6. Fractional Models of Fractal Media

Fractals are measurable metric sets with a noninteger Hausdorff dimension.87,88

The main property of the fractal is noninteger Hausdorff dimension that should

be observed on all scales. In real physical objects the fractal structure cannot be

observed on all scales but only those for which R0 < R < Rm, where R0 is the

characteristic scale of the particles, and Rm is the scale of objects. Real fractal

media can be characterized by the asymptotic form for the relation between the

mass M(W ) of a region W of fractal medium, and the radius R containing this

mass:

MD(W ) = M0(R/R0)
D , R/R0 ≫ 1 .

The number D is the mass dimension. The parameter D, does not depend on the

shape of the region W , or on whether the packing of sphere of radius R0 is close

packing, a random packing or a porous packing with a uniform distribution of holes.

The fractality of medium means than the mass of fractal homogeneous medium

in any region W ⊂ Rn increases more slowly than the n-dimensional volume of this

region:

MD(W ) ∼
(

Vn(W )
)D/n

.

As a result, we can define that fractal medium is a system or medium with non-

integer physical (mass, charge, particle, . . .) dimension.

To describe fractal media by fractional continuous model, we can use two dif-

ferent notions such as density of states cn(D, r) and distribution function ρ(r).

(1) The function cn(D, r) is a density of states in the n-dimensional Euclidean

space Rn. The density of states describes the closely packed permitted states of
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particles in the space R
n. The expression cn(D, r) dVn represents the number of

states (permitted places) between Vn and Vn + dVn.

(2) The function ρ(r) is a distribution function for the n-dimensional Euclidean

space Rn. The distribution function describes a distribution of physical values (for

example, the mass, probability, electric charge, number of particles) on a set of

possible states in the space Rn.

Note that some elementary models of fractal density of states and fractal dis-

tributions by open and closed boxes are suggested in Ref. 26.

6.1. Homogeneity and fractality

To describe the fractal medium, we use a continuous medium model. In this model

the fractality and homogeneity properties can be realized in the following forms:

(1) Homogeneity: The local density of homogeneous fractal medium can be

described by the constant density ρ(r) = ρ0 = const. This property means that

the equations with constant density must describe the homogeneous media, i.e., if

ρ(r) = const and V (W1) = V (W2), then MD(W1) = MD(W2).

(2) Fractality: The mass of the ball region W of fractal homogeneous medium

obeys a power law relation M ∼ RD, where 0 < D < 3, and R is the radius of

the ball. If Vn(W1) = λnVn(W2) and ρ(r, t) = const, then the fractality means that

MD(W1) = λDMD(W2).

These two conditions cannot be satisfied if the mass of a medium is described by

integral of integer order. These conditions can be realized by the fractional equation:

MD(W, t) =

∫

W

ρ(r, t)dVD , dVD = c3(D, r)dV3 , (54)

where r is dimensionless vector variable.

6.2. Balance equations for fractal media

The equation of continuity (mass balance) for fractal media:
(

d

dt

)

D

ρ = −ρ∇D
k uk . (55)

The equation of momentum balance for fractal media:

ρ

(

d

dt

)

D

uk = ρfk +∇D
l pkl . (56)

The equation of energy balance for fractal media:

ρ

(

d

dt

)

D

e = c−1
3 (D, r)c2(d, r)pkl∇luk +∇D

k qk . (57)

Here D is a mass dimension of fractal medium and
(

d

dt

)

D

=
∂

∂t
+ c−1

3 (D, r)c2(d, r)ul∇l , ∇D
k A = c−1

3 (D, r)∇k(c2(d, r)A) .

These equations are proved in Ref. 107.
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6.3. Moment of inertia for fractal bodies

The moments of inertia of fractal-homogeneous rigid ball:

I(D)
z =

2D

3(D + 2)
MDR2 ,

I
(D)
z

I
(3)
z

= 1 +
2(D − 3)

3(D + 2)
. (58)

The moments of inertia of fractal-homogeneus rigid cylinder:

I(α)z =
α

α+ 2
MDR2 ,

I
(α)
z

I
(q)
z

= 1 +
α− 2

α+ 2
. (59)

The parameter α is a fractal mass dimension of the cross-section of cylinder (1 <

α 6 2). This parameter can be easily calculated from the experimental data by box

counting method for the cross-section of the cylinder.

The periods of oscillation for the Maxwell pendulum with fractal rigid cylinder:

T
(α)
0

T
(2)
0

=

√

4(α+ 1)

3(α+ 2)
. (60)

The deviation T
(α)
0 from T

(2)
0 for 1 < α 6 2 is no more that 6%. Equation (60)

allows us to use an experimental determination of a fractal dimensional for fractal

rigid body by measurements of periods of oscillations.

For a ball with mass MD, radius R, and a mass fractal dimension D, we can

consider the motion without slipping on an inclined plane with a fixed angle β to

the horizon. The condition of rolling without slipping means that at each time point

of the ball regarding the plane is stationary and the ball rotates on its axis. The

center of mass of a homogeneous cylinder moves in a straight line. Using the law of

energy conservation, we obtain the equation:

v(D) =
3(D + 2)

5D + 6
gt sinβ . (61)

As a result, we have:

v(D)

v(3)
=

21(D + 2)

5(5D + 6)
. (62)

Note that the deviation of velocity v(D) of fractal solid sphere from the velocity

v(3) of usual ball is less than 5%.

The suggested equations allows us to measure experimentally the fractional mass

dimensions D of fractal materials by measuring the velocities. Note that this mea-

sured dimension D must be related to the fractal dimension that can be determined

by the box counting method.

6.4. Dipole and quadrupole moment of charged fractal

distributions

The fractional model can be used to describe fractal distribution of charges.89,90

The distribution of charged particles is called a homogeneous one if all regions W
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and W ′ with the equal volumes VD(W ) = VD(W ′) have the equal total charges

on these regions, QD(W ) = QD(W ′). For charged particles that are distributed

homogeneously over a fractal with dimension D, the electric charge Q satisfies the

scaling law Q(R) ∼ RD, whereas for a regular n-dimensional Euclidean object we

have Q(R) ∼ Rn. This property can be used to measure the fractal dimension D of

fractal distributions of charges. We consider this power-law relation as a definition

of a fractal charge dimension. If all particles of a distribution are identical, then the

charge dimension is equal to the mass dimension. In general, these dimensions can

be considered as different characteristics of fractal distribution.

Let us consider the example of electric dipole moment for the homogeneous

(ρ(r) = ρ0) fractal distribution of electric charges in the parallelepiped region

0 ≤ x ≤ A , 0 ≤ y ≤ B , 0 ≤ z ≤ C . (63)

In the case of Riemann–Liouville fractional integral, we have the dipole moment

p
(D)
x in the form:

p(D)
x =

ρ0
Γ3(a)

∫ A

0

dx

∫ B

0

dy

∫ C

0

dzxaya−1za−1

=
ρ0(ABC)a

Γ3(a)

A

a2(a+ 1)
, (64)

where a = D/3. The electric charge of parallelepiped region is defined by:

Q(W ) = ρ0

∫

W

dVD =
ρ0(ABC)a

a3Γ3(a)
. (65)

Then the dipole moment for fractal distribution in parallelepiped is:

p(D)
x =

a

a+ 1
Q(W )A . (66)

By analogy with this equation,

p(D)
y =

a

a+ 1
Q(W )B , p(D)

z =
a

a+ 1
Q(W )C . (67)

Using a/(a+ 1) = D/(D + 3), we obtain:

p(D) =
2D

D + 3
p(3) , (68)

where p(3) = |p(3)| are the dipole moment for the usual three-dimensional homoge-

neous distribution. For example, the relation 2 ≤ D ≤ 3 leads us to the inequality:

0.8 ≤ p(D)/p(3) ≤ 1 . (69)

These inequalities describe dipole moment of fractal distribution of charged particles

in the parallelepiped region.

The example of electric quadrupole moment for the homogeneous (ρ(r) = ρ0)

fractal distribution in the ellipsoid region W :

x2

A2
+

y2

B2
+

z2

C2
≤ 1 (70)
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is considered in Refs. 26, 89 and 90. The fractional model of fractal media gives89,90

the electric quadrupole moments for fractal ellipsoid

Q
(D)
kk =

5D

3D + 6
Q

(3)
kk , (71)

Q
(D)
kl =

5π

D + 2

Γ2(D/6 + 1/2)

Γ2(D/6)
Q

(3)
kl , (72)

where k 6= l and k, l = 1, 2, 3. For 2 < D < 3, we get:

5

6
< Q

(D)
kk /Q

(3)
kk < 1 , (73)

0.6972 < Q
(D)
kl /Q

(3)
kl < 1 . (74)

These inequalities describe values of the diagonal and nondiagonal elements of the

electric quadrupole moments for fractal distribution of charged particles in ellipsoid

region.

6.5. Some applications of fractional models of fractal media

In this section, we considered some fractional models to describe dynamics of fractal

media. In general, the fractal medium cannot be considered as a continuous medium.

There are points and domains that are not filled of particles. We consider the

fractal media as special continuous media. We use the procedure of replacement of

the medium with fractal mass dimension by some continuous model that uses the

fractional integrals. The main notions that allow us to describe fractal media are

a density of states and density of distributions. The fractional integrals are used

to take into account the fractality of the media. Note that fractional integrals can

be considered as integrals over the space with fractional dimension up to numerical

factor.26

The suggested fractional models of fractal media can have a wide application.

This is due in part to the relatively small numbers of parameters that define a

fractal medium of great complexity and rich structure. In many cases, the real

fractal structure of matter can be disregarded and we can describe the medium

by a fractional model, in which the fractional integration is used. The order of

fractional integral is equal to the fractal physical dimension of the medium.

The fractional continuous model allows us to describe dynamics of fractal me-

dia and fractal distributions.26,27,150 Applications of fractional models to describe

fractal distributions of charges are considered in Refs. 26 and 90. We note that

gravitational field of fractal distribution of particles and fields can be described by

fractional continuous models108 (see also Ref. 83). Using fractional integrals, the

fractional generalization of the Chapman–Kolmogorov equation and the Fokker–

Planck equation for fractal media are derived.109 We note applications of fractional

continuous models by Ostoja–Starzewski to the thermoelasticity,91 and the ther-

momechanics,92 the turbulence of fractal media,93 the elastic and inelastic media
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with fractal geometries,94 the fractal porous media95 and the fractal solids.96 The

hydrodynamic accretion in fractal media104–106 is considered by Roy and Ray by

using a fractional continuous model.

7. Open System in Environment

The closed, isolated and Hamiltonian systems are idealizations that are not observ-

able and therefore do not exist in the real world. As a rule, any system is always

embedded in some environment and therefore it is never really closed or isolated.

Frequently, the relevant environment is unobservable or it is unknown in principle.

This would render the theory of open, non-Hamiltonian and dissipative quantum

systems a fundamental generalization of the theory of closed Hamiltonian quantum

systems. Now the open, dissipative and non-Hamiltonian quantum systems are of

strong theoretical interest.133–138

7.1. System and environment

Let Q and P be the self-adjoint operators of coordinate and momentum of the

system respectively, and qk and pk describe those of the environment.

The Hamiltonian H of the system is:

Hs =
P 2

2M
+ V (Q) . (75)

As a model of environment, we consider an infinite set of harmonic oscillators

coupled to the system. The environment Hamiltonian is:

He =
N
∑

n=1

(

p2n
2mn

+
mnω

2
nq

2
n

2

)

. (76)

This model is called the independent-oscillator model, since the oscillators do not

interact with each other.

The interaction between the system and the environment will be considered in

the form:

Hi = −Q

N
∑

n=1

Cnqn +Q2
N
∑

n=1

C2
n

2mnω2
n

, (77)

where Cn are the coupling constants.

Note that the total Hamiltonian H = Hs + He + Hi for the case V (Q) =

(MΩ2/2)Q2 is the well-known Caldeira–Leggett Hamiltonian.68,69
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7.2. Equations of motion for open systems

Using total Hamiltonian H = Hs + He +Hi, we can derive Heisenberg equations

for the system and the environment. For the system we have:

dQ

dt
=

1

i~
[Q,H ] = M−1P ,

dP

dt
=

1

i~
[P,H ] = −V ′(Q) +

∑N
n=1

(

Cnqn −
C2

n

mnω2
n

Q

)

.

(78)

The Heisenberg equations for the environment are:

dqn
dt

=
1

i~
[qn, H ] = m−1

n pn ,
dpn
dt

=
1

i~
[pn, H ] = −mnω

2
nqn + CnQ . (79)

Eliminating the operators P and pn, n = 1, . . . , N , we can write Eqs. (78) and (79)

in the form:

M
d2Q

dt2
+ V ′(Q) =

N
∑

n=1

(

Cnqn −
C2

n

mnω2
n

Q

)

, (80)

mn
d2qn
dt2

+mnω
2
nqn = CnQ . (81)

The solution of operator Eq. (81) has the form:

qn(t) = qn(0) cos(ωnt) +
pn(0)

mnωn
sin(ωnt) +

Cn

mnωn

∫ t

0

Q(τ) sinωn(t− τ)dτ , (82)

where qn(0) and pn(0) are the initial values of coordinate and momentum operators

of the environment nth oscillators.

Using solution of (82) we can derive the equation:

M
d2Q

dt2
+

∫ t

0

M(t− τ)
dQ(τ)

dτ
dτ + V ′(Q) = F (t) , (83)

where the function

M(t) =

N
∑

n=1

C2
n

mnω2
n

cos(ωnt) (84)

is called the memory kernel. The one-parameter operator function:

F (t) =

N
∑

n=1

(

Cnqn(0) cos(ωnt) +
Cnpn(0)

mnωn
sin(ωnt)−

C2
n

mnω2
n

Q(0) cos(ωnt)

)

(85)

can be interpreted as a stochastic force since the initial states of the environment

are uncertain and it can be determined by a distribution of the average values of

qn(0) and pn(0).
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7.3. Quantum dynamics with memory

The memory function M(t) describes dissipation if M(t) is positive definite and

decreases monotonically. These conditions are achieved ifN → ∞ and if C2
n/(mnω

2
n)

and ωn are sufficiently smooth functions of the index n.

For N → ∞, the sum in Eq. (84) is replaced by the integral

M(t) =
2

π

∫ ∞

−∞

J(ω)

ω
cos(ωt)dω , (86)

where J(ω) is spectral density. We assume that the oscillator environment contains

an infinite number of oscillators with a continuous spectrum.

For the spectral density:

J(ω) =
πω

2

N
∑

n=1

C2
n

mnω2
n

δ(ω − ωn) , (87)

Eq. (86) gives the memory function (84). If we consider the Cauchy distribution

J(ω) = a/(ω2+λ2), then equation (86) gives the exponential memory kernelM(t) =

(a/λ)e−λt.

We can consider a power-law for the spectral density:

J(ω) = Aωβ , 0 < β < 1 , (88)

where A > 0. Note that density (88) leads to the power-law for the memory function

M(t) ∼ t−β . Equation (88) can be achieved by a different type of combinations of

coupling coefficients C(ω) and density of states g(ω):

J(ω) =
πω

2
g(ω)C(ω) .

Using the Fourier cosine-transform
∫ ∞

0

x−α cos(xy)dx =
π

2Γ(α) cos(πα/2)
yα−1, (0 < α < 1) , (89)

we get the equation:

M
d2Q

dt2
+

A

sin(πβ/2)
0D

β
t Q+ V ′(Q) = F (t) , (90)

where 0D
β
t is the Caputo fractional derivative

0D
β
t Q(t) =

1

Γ(1− β)

∫ t

0

(D1Q)(τ)dτ

(t− τ)β
, (0 < β < 1) . (91)

As a simple example of quantum system, which is described by (90), we

can consider the linear fractional oscillator that is an object of numerous

investigations110–114,117–122 because of different applications.

If F (t) 6= 0, then Eq. (90) can be considered as a fractional Langevin equa-

tion. We also can consider a general quantum analogs of fractional Langevin equa-

tion123–126,128,130–132 that can be connected with the quantum Brownian motion

that is considered by Lindblad.140
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As a result, we obtain a fractional differential equation for operators Q(t) from

the interaction between the system and the environment with power-law spectral

density.67 The parameter α can be used to control quantum dynamics of nano-

systems like individual atoms and molecules in an environment.73–76 Quantum con-

trol is concerned with active manipulation of physical and chemical processes on

the atomic and molecular scale. Controlled manipulation by atomic and molecular

quantum systems has attracted a lot of research attention in recent years.70–72 Note

that the models to control of open quantum system dynamics is a very important

subject of nanotechnology.

7.4. Quantum analogs of fractional derivatives

One of the way to derive a quantum description of physical systems is an application

of a procedure of quantization to classical models. We can use the Weyl quantization

to obtain quantum analogs of differential operator of noninteger orders with respect

to coordinates.

The Weyl quantization πW is defined by:

πW

(

qkA(q, p)
)

=
1

2
(QkÂ+ ÂQk) , πW

(

pkA(q, p)
)

=
1

2

(

PkÂ+ ÂPk

)

, (92)

πW

(

D1
pk
A(q, p)

)

= −
1

i~
(PkÂ− ÂPk) , πW

(

D1
pk
A(q, p)

)

=
1

i~

(

QkÂ− ÂQk

)

,

(93)

for any Â = A(Q,P ) = πW (A(q, p)), where k = 1, . . . , n, Qk = πW (qk) and Pk =

πW (pk).

Weyl quantization πW maps86 the differential operator L[q, p,D1
q , D

1
p] on the

function space and the superoperator L[L+
Q, L

+
P ,−L−

P , L
−
Q] acting on the operator

space, where,

L−
AB̂ =

1

i~
(ÂB̂ − B̂Â) , L+

AB̂ =
1

2
(ÂB̂ + B̂Â) .

If A(x) is an analytic function for x ∈ (0, b), then the Riemann–Liouville frac-

tional derivative can be represented in the form:

0D
α
xA(x) =

∞
∑

n=0

a(n, α)xn−αDn
xA(x) , (94)

where

a(n, α) =
Γ(α+ 1)

Γ(n+ 1)Γ(α− n+ 1)Γ(n− α+ 1)
.

Equation (94) defines a fractional derivative on operator algebra.86

The Weyl quantization of the Riemann–Liouville fractional derivatives with re-

spect to phase-space coordinates45 gives:

0D
α
Qk

= π(0D
α
qk
) =

∞
∑

n=0

a(n, α)(L+
Qk

)n−α(−L−
Pk
)n , (95)
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0D
α
Pk

= π(0D
α
pk
) =

∞
∑

n=0

a(n, α)(L+
Pk
)n−α(L−

Qk
)n , (96)

where L±
A are defined by the equations:

L−
AB̂ =

1

i~
(ÂB̂ − B̂Â) , L+

AB̂ =
1

2
(ÂB̂ + B̂Â) .

For example, we have:

0D
α
QQ

n =
Γ(n+ 1)

Γ(n+ 1− α)
Qn−α , 0D

α
PP

n =
Γ(n+ 1)

Γ(n+ 1− α)
Pn−α ,

where n > 1, and α > 0.

It not only allows to consistently formulate the evolution of such quantum

systems, but also to consider the dynamics of a wide class of quantum systems,

such as the nonlocal non-Hamiltonian, dissipative and nonlinear systems. Quan-

tum analogs of the nonlocal systems with regular and strange attractors can be

described.86 The regular quantum attractors can be considered as stationary states

of non-Hamiltonian quantum systems. The condition given by Davies139 defines

the stationary state of non-Hamiltonian quantum system. An example, where the

stationary state is unique and approached by all states for long time is considered

by Lindblad140 for Brownian motion of quantum harmonic oscillator. Spohn141–143

derives sufficient condition for the existence of a unique stationary state for the

non-Hamiltonian quantum system described by Lindblad equation. The stationary

solution of the Wigner function evolution equation for non-Hamiltonian quantum

system was discussed in Refs. 144 and 145. Quantum effects in the steady states

of the dissipative map are considered in Ref. 146. Stationary pure states of quan-

tum non-Hamiltonian systems are considered in Refs. 147 and 148. For classical

non-Hamiltonian systems, stationary states are presented in Refs. 149–151.

8. Fractional Generalization of Vector Calculus

The fractional calculus has a long history from 1695. The history of fractional vector

calculus is not so long. It has little more than ten years and can be reduced to small

number of papers (about twenty articles) (see Ref. 65).

A consistent fractional vector calculus is important for application in the

following research directions.

(1) Nonlocal statistical mechanics. It should be noted that Vlasov66 book is

entirely devoted to nonlocal statistical mechanics. The fractional derivatives in

equations can be connected with a long-range power-law interparticle interactions

in statistical mechanics.52,60

(2) Nonlocal electrodynamics,77–80 where the spatial dispersion describes non-

local properties of media.

(3) Nonlocal hydrodynamics and waves propagation in media with long-range

interaction81 (see also Sec. 8.16 in Ref. 26).
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It is known that the theory of differential forms is very important in mathemat-

ics and physics.82 The fractional differential forms can be interesting to formulate

fractional generalizations of differential geometry, including symplectic, Kahler, Rie-

mann and affine-metric geometries. These generalizations allow us to derive new

rigorous results in modern theoretical physics and astrophysics83 and in fractional

generalization of relativistic field theory152–166 in curved space–time. We assume

that the fractional differential forms and fractional integral theorems for these forms

can also be used to describe classical dynamics84 and thermodynamics.

It is important to have fractional generalizations of the symplectic geometry, Lie

and Poisson algebras, the concept of derivation on operator algebras. It allows to

apply a generalization of algebraic structures of fractional calculus to classical and

quantum mechanics. Note that the theory of operator algebras are very important

in quantum theory.85,86
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