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Fractal fluid is considered in the framework of continuous models with noninteger

dimensional spaces (NIDS). A recently proposed vector calculus in NIDS is used to get a

description of fractal fluid flow in pipes with circular cross-sections. The Navier–Stokes
equations of fractal incompressible viscous fluids are used to derive a generalization of

the Poiseuille equation of steady flow of fractal media in pipe.
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1. Introduction

A characteristic property of fractal materials and fluids is noninteger physical di-

mension such as mass and “particle” dimensions (see Refs. 1–3 and references

therein). Continuous models of fractal distributions of particle, media and fields

have been proposed in Refs. 4 and 5 in 2005 (see also Ref. 3) and then these models

have been developed by Ostoja-Starzewski,12–15 Balankin16–19 and other scientists.

These models are based on the notion of power-law density of states.3 The con-

tinuous model of fractal media and materials are formulated by using an integral

and differential operators on noninteger dimensional spaces (NIDS),20–22 which was

recently developed in Refs. 24 and 25.

It is well known that integral operators for NIDS are actively used in quan-

tum field theories20 for the dimensional regularization of ultraviolet divergences.

NIDS generalizations of integration and the Laplacian are proposed by Stillinger

in Ref. 21. The Stillinger approach21 has been extended in Ref. 22 for multiple

variables case by using product measure method. A new scalar Laplace operator for

NIDS has also been suggested by Palmer and Stavrinou in Ref. 22. In Refs. 21 and

22, only the scalar Laplacian of scalar fields for NIDS has been proposed. A NIDS

generalization of the vector Laplace operator23 is not considered in Refs. 21 and
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22. Problems of definition of NIDS differential operators such as gradient, diver-

gence, curl operators are not discussed in Refs. 21 and 22. A possibility to use only

the NIDS scalar Laplacian in the continuous models approach strongly restricts

an application that these models do to fractal dynamics of fluids. This restriction

leads us to the impossibility to consider equations for vector field v(r, t) in fractal

hydrodynamics.

Recently, a vector calculus for NIDS, where the NIDS differential operators of

first-order (gradient, divergence), and the second-order operators (the scalar and

vector Laplacians), have been proposed in Refs. 24 and 25. The suggested NIDS

operations give us the tool to describe fractal fluids and materials by continuous

models. For example, using the NIDS vector calculus, we formulate the fractal

elasticity,26 the fractal electrodynamics,27,28 the heat transfer in fractal materials,30

the acoustic waves in fractal media,31 and the fractal hydrodynamics.29

In Ref. 29, NIDS continuous models of flow of fractal fluid have been proposed.

The suggested generalizations of equations to describe flow of fractal fluid are based

on the NIDS models of fractal media. Instead of the other approaches,16–19,32 the

suggested approach, which is based on the vector calculus for NIDS,24,25 allows

us to derive exact solutions of equations for flow of fractal fluids in pipes. The

Poiseuille equations for fractal fluid and its solution have been first proposed by

author in article.29 In Refs. 16–19 and 32 and in the other articles, the solutions of

equations of fractal fluid in pipes are not suggested.

Using the proposed NIDS generalization of the Navier–Stokes equations and

the corresponding Poiseuille equations, in Ref. 29, we describe a flow of fractal fluid

in a pipe with the internal radius R1 and external radius R2 and the boundary

conditions vx(R1) = 0, vx(R2) = 0. Then, the flow in pipe without internal radius

R is derived as a limit case R1 → 0 and R2 = R, and the expression for vx(r) has

been suggested. This expression is incorrect since it gives the velocity of flow at

the center of this pipe (r = 0) equal to zero vx(0) = 0. For pipe without internal

radius (R1 = 0), vx(0) = 0 is physically incorrect value based on the boundary

conditions vx(R1) = vx(0) = 0 which is incorrect for this case. Note that the limit

case R1 → 0 cannot be applied to the boundary condition vx(R1) = 0. For the

pipes without internal radius (R1 = 0), we should use the boundary condition in

the form vx(0) = vmax.

In this article, we solve the fractal Poiseuille equation for isotropic incompress-

ible viscous fractal fluid with this correct boundary condition vx(0) = vmax, which

is correct for pipes without internal radius. The derived solution describes a physi-

cally correct expression for velocity vx(r) of flow of fractal fluids in pipes without

internal radius.

2. Motivation of Study of Fractal Fluids

The study of fractal fluid flow is important for fractal biophysical models of blood

flow in cardiovascular system,6–8 complex dynamics of fractal fluids in hydrology,9
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and in dynamics of multi-phase media10,11 with scale properties. It is known that

the blood is composed of proteins, glucose, mineral ions, hormones, carbon dioxide,

blood cells and other suspended particles. The blood as a multi-phase complex

medium can demonstrate some properties of a fractal distribution of some blood

components including bacteria, viruses and medicinal substances getting into the

blood.

The blood channels, such as veins and arteries, cannot be considered as pipes

with internal radius. Therefore, it is important to have a correct expression of the

flow of viscous fractal fluid in pipes without internal radius.

A fluid can be considered as a fractal fluid if we have the power law ND(W ) ∼
RD (or MD(W ) ∼ RD) for some scale region. The number D is called “particle”

(mass) dimension. The fractal fluid is called homogeneous if this power-law does not

depend on the translation of the region W . For homogeneous fractal fluid, any two

regions W1 and W2 with the equal volumes Vn(W1) = Vn(W2) have equal number

of particles ND(W1) = ND(W2).

We can consider a two-component medium where distribution of one compo-

nent into another component is characterized by noninteger “particle” or mass

dimension. This noninteger dimensional component can be considered as a fractal

fluid. The fractal dimension can be determined experimentally by using labels with

radioactive isotopes in particles of component, which is assumed fractal. Let us

describe five possible implementations of fractal fluids in two-component medium.

(1) A simplest model of fractal fluid is a liquid which is distributed in an empty

region with noninteger dimension D < 3. This model is a liquid analog of fractal

porous solid medium.

(2) Fractal fluid can also be viewed as a two-phase medium composed of a gas and

a liquid where the liquid phase is characterized by fractal dimension.

(3) An fractal emulsion, which is a mixture of two immiscible liquids, one of which

(the dispersed phase) is fractally dispersed in the other (the continuous phase).

In the emulsion, both the dispersed and the continuous phase are liquids, where

we consider the dispersed phase as a fractal fluid.

(4) A fractal solution, which is a homogeneous mixture i composed of two liquid

phase. In this case, we consider a fractal distribution of a solute dissolved in a

nonfractal solvent. The solute is described as a fractal fluid.

(5) A fractal suspension, which is an internal phase (solid) that is fractally dis-

tributed in the external phase (fluid). Then, we consider a fractal suspension,

where small solid particles are fractally distributed. For a liquid mixed with

solid particles, the noninteger dimensions can be caused by a power-law distri-

bution of solid particles by size or mass.

3. Differential Operators in Noninteger Dimensional Spaces

For simplification, the scalar fields ϕ and vector fields v function will be assumed to

be independent of the angles ϕ(r, t) = ϕ(r, t), v(r, t) = v(r, t) = vr(r, t) er, where
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er = r/r is the unit vector, and vr = vr(r, t) is a radial part of v. This means that

we consider the case of only rotationally covariant functions which is analogous to

simplification that is usually used for the NIDS integrations (see Sec. 4 of Ref. 20).

Consider a region WD of fractal fluid with the mass dimensions dim(WD) = D

and the dimension dim(Sd) = d of the boundary Sd = ∂WD. For these dimensions

the relation d = D − 1 does not hold (dim(∂WD) 6= dim(Sd) − 1) in general.

Therefore, we can use αr = D − d as a dimension in the radial direction er.

The NIDS gradient operator is defined24 by the equation

GradD,dr ϕ(r) =
Γ(αr/2)

παr/2 rαr−1

∂ϕ(r)

∂r
er, (1)

where ϕ(r, t) = ϕ(r, t) is the scalar field. Applying integration in NIDS and corre-

sponding Gauss’s theorem, we give24 the expression of the NIDS divergence in the

form

DivD,dr v(r) =
π(d+1−D)/2 Γ(D/2)

Γ((d+ 1)/2)

(
1

rD−d−1

∂vr(r)

∂r
+

d

rD−d vr(r)

)
. (2)

Equation (2) is rewritten by using αr as

DivD,dr v(r) =
π(1−αr)/2 Γ((d+ αr)/2)

Γ((d+ 1)/2)

(
1

rαr−1

∂vr(r)

∂r
+

d

rαr
vr(r)

)
. (3)

Using the operators (1) and (2) for the fields ϕ = ϕ(r) and v = vr(r) er, we

get24 the NIDS Laplacians in the form

S∆D,d
r ϕ = DivD,dr GradD,dr ϕ, V ∆D,d

r v = GradD,dr DivD,dr v. (4)

The scalar NIDS Laplacian S∆D,d
r for d 6= D − 1 for the field ϕ = ϕ(r) is

S∆D,d
r ϕ = A(d, αr)

(
1

r2αr−2

∂2ϕ

∂r2
+
d+ 1− αr
r2αr−1

∂ϕ

∂r

)
, (5)

where

A(d, αr) =
Γ((d+ αr)/2) Γ(αr/2)

π(2αr−1)/2 Γ((d+ 1)/2)
. (6)

The vector NIDS Laplacian V ∆D,d
r for d 6= D−1 for vector field v(r) = vr(r) er

has the form

V ∆D,d
r v = A(d, αr)

(
1

r2αr−2

∂2vr
∂r2

+
d+ 1− αr
r2αr−1

∂vr
∂r
− dαr
r2αr

vr

)
er. (7)

The NIDS differential operators (1), (2), (5) and (7) allow us to get equations

of fractal fluid with boundary dimension d 6= D− 1 in the framework of continuous

models with NIDS.
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4. Fractal Navier–Stokes Equations

Noninteger mass or “particle” dimensions are basic characteristics of fractal fluids.3

In the region W ⊂ R3 of fractal fluid, the number of particles ND(W ) or mass

MD(W ) increase more slowly than the volume V3(W ) ofW . In isotropic fractal fluid,

the number of particles ND(W ) in the ball region W with radius R, has the relation

ND(W ) = N0(R/R0)D, where R0 is a characteristic scale, and D is the “particle”

dimension. If particles have identical masses m0, then ND(W ) = N0(R/R0)D gives

the expression for the region mass MD(W ) = M0(R/R0)D, where M0 = m0N0,

which means that mass dimension is equal to “particle” dimension. Fluid can be

called a fractal fluids if the “particle” or mass dimension is a noninteger.

Using NIDS approach, the incompressible viscous fractal fluid can be described

by the equations

DivD,dr v(r, t) = 0, (8)

dv

dt
= f − 1

ρ
GradD,dr p+ ν V ∆D,d

r v, (9)

where ν = µ/ρ is kinematic viscosity, µ is dynamic viscosity µ, ρ is fluid density, f

is vector field that describes a mass force, d/dt denotes the material derivative

dv

dt
=
∂v

∂t
+

(
v,GradD,dr v

)
, (10)

where the NIDS gradient GradD,dr , the NIDS divergence DivD,dr , and the NIDS

vector Laplace operator V ∆D,d
r are defined by Eqs. (1), (3) and (7). Equations (8)–

(10) are the Navier–Stokes equations for fractal fluids. These equations describe

incompressible viscous fractal fluids within NIDS approach.

For convenience of description, we use dimensionless variables x/R0 → x,

y/R0 → x, z/R0 → x, r/R0 → r. Here R0 is the characteristic length in frac-

tal medium. Using these variables, density ρ and fields p, v, f have usual “integer”

physical dimensions.

The suggested Navier–Stokes equations can be applied to describe isotropic

fractal fluids with spherical or cylindrical symmetry, i.e., when the fields p, v, f are

not dependent on the angles.

5. Poiseuille Equation for Fractal Fluid in Pipe

Let us describe a motion of an incompressible fractal fluid in pipe with circular

cross-section. We will use the suggested continuous models with NIDS to consider

equations of steady flow of fractal fluids in pipes. We assume that X-axis is the

axis of this pipe. For laminar case, the flow of fractal fluid is along the X-axis at all

points. Then the velocity field is a function of r only, i.e., v(r, t) = vx(r) ex. In this

case, the continuity equation holds identically. For Y -axis and Z-axis, the suggested

Navier–Stokes equation (9) give a constant pressure over circular cross-section of
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the pipe. Fractal Navier–Stokes equation (9) has the form

S∆D,d
r vx(r) =

1

µ

dp

dx
, (11)

where µ = ρ ν, and dp/dx = const. Using is the pressure difference between ∆p the

ends of pipe and its length l, the pressure gradient dp/dx can be represented as

−∆p/l.

Let us derive Poiseuille equation for fractal fluids from the Navier–Stokes

equation (11). For the scalar field ϕeff(r) = vx(r), we can use Eqs. (1), (3) and

(5), where D → Dx = D − αx and d → dx = d − αx, we can get corresponding

equation. Substitution of (5) into the Navier–Stokes equation (11) that describes

fractal fluid with αr = D − d 6= 1 in pipe, we get the equation

A(dx, αr)

(
1

r2αr−2

∂2vx(r)

∂r2
+
dx + 1− αr
r2αr−1

∂vx(r)

∂r

)
− 1

µ

dp

dx
= 0, (12)

where A(dx, αr) is defined by (6), dx = d − αx, and αx is dimension along the

X-axis. Equation (12) with αr = αx = 1 gives

∂2vx(r)

∂r2
+
D − 2

r

∂vx(r)

∂r
− 1

µ

dp

dx
= 0, (13)

since D = d+ αr. For 1 < D < 3, the general solution of (12) has the form

vx(r) = C1 r
αr−dx + C2 +

1

2 (dx + αr)αr A(dx, αr)µ

dp

dx
r2αr (1 < D < 3). (14)

For fractal fluid in a pipe with the external radius R (and with zero internal

radius), the constants C1 and C2 of the solution (14) can be derived from the

boundary conditions

vx(0) = vmax, vx(R) = 0. (15)

These conditions give

C1 = 0, C2 = − 1

2 (dx + αr)αr A(dx, αr)µ

dp

dx
R2αr . (16)

Substituting (16) into (14), we obtain

vx(r) = − 1

2 (dx + αr)αr A(dx, αr)µ

dp

dx
R2αr

(
1−

( r
R

)2αr
)

(1 < D < 3). (17)

This is the Poiseuille equation of isotropic fractal fluids. Nonfractal fluids are

characterized by the integer dimensions αr = 1 and dx = 1. In this case, Eq. (17)

gives the standard Poiseuille equation

vx(r) = − 1

4µ

dp

dx
R2

(
1−

( r
R

)2
)
. (18)

Using the effective dynamic viscosity

µeff(αx, dx) =
1

2
(dx + αr)αr A(dx, αr)µ, (19)
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we represent Eq. (17) in the form

vx(r) = − 1

4µeff(αr, dx)

dp

dx
R2αr

(
1−

( r
R

)2αr
)

(1 < D < 3), (20)

where µeff(αr, dx) for nonfractal case (dx = αr = 1) is equal to µ. Note that Eq. (20)

gives nonzero velocity at the center of the pipe

vx(0) = − 1

4µeff(αr, dx)

dp

dx
R2αr (1 < D < 3) (21)

as opposed to incorrect limit expression vx(0) = 0 of Ref. 29 for zero internal radius

R1 = 0. The plots of function (20) are presented by Figs. 1, 3, 5, 7 and 9, where

µ = 1 and dp/dx = −1.

In Ref. 29, it is suggested the equation

vx(r) = − 1

4µeff(αr, dx)

dp

dx
R2αr

(( r
R

)αr−dx
−
( r
R

)2αr
)

(1 < D < 3) (22)

as a limit case of the equation for flow of fractal fluid in a pipe with the internal ra-

dius R1 and external radius R2, when R1 → 0 and R2 = R. The main disadvantage

of Eq. (22) is zero velocity vx(0) = 0 at the center of the pipe r = 0. For comparison,

see (21). For pipe without internal radius (R1 = 0), Eq. (22) gives physically incor-

rect results. This is an incorrect expression of the limit case (R1 → 0) is obtained

due to the use of the boundary condition vx(0) = 0. The plots of function (22) are

presented by Figs. 2, 4, 6, 8 and 10, where µ = 1 and dp/dx = −1. We can see that

the velocity of flow decreases when approaching the center of the pipe.
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Fig. 1. Plot of the velocity function z = v(r, αr) defined by (20) for the ranges x = r/R ∈ [0.1; 1],

y = αr ∈ [0.1; 1], and dx = 0.9, dp/dx = −1 and µ = 1.
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Fig. 2. Plot of the velocity function z = v(r, αr) defined by (22) for the ranges x = r/R ∈ [0.1; 1],

y = αr ∈ [0.1; 1], and dx = 0.9, dp/dx = −1 and µ = 1.
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Fig. 3. Plot of the velocity function z = v(r, dx) defined by (20) for the ranges x = r/R ∈ [0.1; 1],
y = dx ∈ [0.1; 1], and αr = 0.9, dp/dx = −1 and µ = 1.

If the radial dimension of fractal fluid is equal to one (αr = 1), then Eq. (20)

gives the fractal Poiseuille equation in the form

vx(r) = − 1

4µeff(D)

dp

dx
R2

(
1−

( r
R

)2
)
, (23)

where 1 < D < 3 and the effective dynamic viscosity is

µeff(D) =
D − 1

2
µ. (24)
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Fig. 4. Plot of the velocity function z = v(r, dx) defined by (22) for the ranges x = r/R ∈ [0.1; 1],

y = dx ∈ [0.1; 1], and αr = 0.9, dp/dx = −1 and µ = 1.
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Fig. 5. Plot of the velocity function z = v(r, dx) defined by (20) for the ranges x = r/R ∈ [0.1; 1],
y = dx ∈ [0.1; 1], and αr = 0.6, dp/dx = −1 and µ = 1.

In this case, the dependence of the velocity vx(r) on the distance r is the same as

for the standard (nonfractal) case.

As a result, we obtain the following:

(1) For fractal fluids with αr = 1, the velocity distribution across the pipe is

parabolic (23). This means that the behavior of fractal fluids with the radial

dimension αr = 1 is similar to the behavior of nonfractal fluids with dynamic

viscosity µeff(D).
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Fig. 6. Plot of the velocity function z = v(r, dx) defined by (22) for the ranges x = r/R ∈ [0.1; 1],

y = dx ∈ [0.1; 1], and αr = 0.6, dp/dx = −1 and µ = 1.
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Fig. 7. Plot of the velocity function y = v(r) defined by (20) for the ranges x = r/R ∈ [0; 1],
αr = 1, and dx = 0.7, dp/dx = −1 and µ = 1.

(2) For fractal fluids with αr 6= 1, we have noninteger power-law (20) and the

effective dynamic viscosity in the form (19). See Figs. 1, 3, 5, 7 and 9.

The dimensions αr < 1 and αx < 1 describes the fractal fluids. We assume

that αx > 1 describes a fractal turbulent flow, since the trajectories of the fluid

particles can be considered as fractal curves with αx > 1 (the Koch curve has

αx = ln(4)/ ln(3) ≈ 1.26).
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Fig. 8. Plot of the velocity function y = v(r) defined by (22) for the ranges x = r/R ∈ [0; 1],

αr = 1, and dx = 0.7, dp/dx = −1 and µ = 1.
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Fig. 9. Plot of the velocity function y = v(r) defined by (20) for the ranges x = r/R ∈ [0; 1],
αr = 1, and dx = 0.3, dp/dx = −1 and µ = 1.

As a simple model of fractal fluid, we can consider a liquid, which is distributed

in space R3 with mass dimension D < 3. Fractal fluids are liquid analogues of

solid materials with fractal distribution of porous. In more general cases, we can

consider two-component media, where distribution of one component (solid, liquid,

gas) into another component (gas, empty space, fluid) is characterized by noninteger

“particle” or mass dimension.
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Fig. 10. Plot of the velocity function y = v(r) defined by (22) for the ranges x = r/R ∈ [0; 1],
αr = 1, and dx = 0.3, dp/dx = −1 and µ = 1.

6. Conclusion

The Poiseuille equations for fractal fluid and its solution were first proposed in

article.29 Using the suggested NIDS calculus,24,25 the flow of fractal fluids in a pipe

with the internal radius R1 and external radius R2.

In this article, we solve the suggested Poiseuille equation for isotropic incom-

pressible viscous fractal fluid with the boundary condition vx(0) = vmax. The de-

rived solution describes a physically correct results for flow of fractal fluids in pipes

without internal radius. The behavior of fractal fluids with the radial dimension

αr = 1 is similar to the behavior of nonfractal fluids with some effective dynamic

viscosity. For fractal fluids with αr = 1, the velocity distribution across the pipe is

parabolic. For fractal fluids with αr 6= 1, we have noninteger power-law distribution

across the pipe.

The suggested approach to describe flow of fractal fluid are based on the NIDS

models of fractal media. Instead of the other approaches,16–19,32 the suggested ap-

proach allows us to derive exact solutions of equations for flows of fractal fluids

in pipes. We assume that proposed continuous models with NIDS and the sug-

gested Navier–Stokes and Poiseuille equations of fractal fluid will be important

in application in biophysics of blood flow in cardiovascular system, The blood as

a multi-phase complex medium can demonstrate fractal properties of some blood

components including bacteria, viruses and medicinal substances getting into the

blood. The complex dynamics of fractal fluids in geophysics and hydrology can be

described by the proposed approach to fractal hydrodynamics.
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