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Leibniz Rule and Fractional
Derivatives of Power Functions
In this paper, we prove that unviolated simple Leibniz rule and equation for fractional-
order derivative of power function cannot hold together for derivatives of orders a 6¼ 1.
To prove this statement, we use an algebraic approach, where special form of fractional-
order derivatives is not applied. [DOI: 10.1115/1.4031364]

1 Introduction

Theory of fractional derivatives of noninteger orders [1–4],
which has a long history [5,6], has wide applications in physics
and mechanics, since it allows us to describe systems, media, and
fields that are characterized by power-law nonlocality and mem-
ory of power-law type. Are known various types of fractional
derivatives that are suggested by Riemann, Liouville, Riesz,
Caputo, Gr€unwald, Letnikov, Sonin, Marchaud, Weyl, and some
others scientists [1–3]. These fractional derivatives have a set of
unusual properties. For example, all fractional derivatives violate
the usual form of the Leibniz rule [7]. The correct form of a gener-
alization of the Leibniz rule for fractional-order derivatives has
been suggested by Liouville [8] in 1832 (see also Theorem 15.1 in
Refs. [1,2]). Generalizations of the Leibniz rule for fractional
derivatives are also derived by Osler in Refs. [9–12]. The unusual
properties of the fractional derivatives allow us to describe
unusual properties of materials and systems in physics and
mechanics (for example, see Refs. [13–15] and references
therein). Authors of some papers suggest new types of fractional
derivatives and assume that the unviolated Leibniz rule and the
equation for fractional-order derivative of power function hold
together for these derivatives. In this paper, we prove that the
Leibniz rule Daðf ðxÞ gðxÞÞ ¼ ðDaf ðxÞÞ gðxÞ þ f ðxÞ ðDagðxÞÞ and
the equation for fractional-order derivative of power function
Daxb ¼ Cðbþ 1Þ=Cðb� aþ 1Þ xb�a cannot hold together for
derivatives of orders a 6¼ 1. In our proof, we consider fractional-
order derivatives Da of by using an algebraic approach, where
special form of fractional derivatives is not important for our
consideration.

2 Fractional Derivative of Power Functions

The well-known equation for the integer-order derivative of
power function is

Dnxb ¼ C bþ 1ð Þ
C b� nþ 1ð Þ xb�n; b > 0; x 2 Rþð Þ (1)

where Dn ¼ dn=dxn is the derivative of integer-order n 2N. For
n < b 2N, we can consider x 2 R instead of x 2 Rþ.

For the case b ¼ n� 1� k, where k¼ 0 or k 2N, we should
use the Euler’s reflection formula such that

C bþ 1ð Þ
C b� nþ 1ð Þ ¼

sin p n� bð Þð Þ
p

C n� bð ÞC bþ 1ð Þ (2)

Equation for fractional-order derivative Da of power function
xb is usually considered in the form

Daxb ¼ aða; bÞ xb�a; ðx 2 Rþ; a > 0; b > 0Þ (3)

where the coefficient aða;bÞ is a function of the parameters a > 0
and b > 0. Note that we do not assume that Eq. (3) holds for all
types of fractional derivatives. For example, the Hadamard and
Hadamard type fractional derivatives of the power of the power
function yield the same function, apart from a constant multiplica-
tion factor (see Eqs. (2.7.21)–(2.7.24) of Property 2.25 in Refs.
[3,16]). At the same time, we should have a principle of corre-
spondence, according to which expression for the derivative Daxb

should give Eq. (1) for a ¼ n 2N.
Using the principle of correspondence with integer-order case,

we assume that Eq. (3) with a ¼ n 2N should give Eq. (1).
Therefore, the function aða; bÞ should satisfy the following
requirement.

PROPOSITION 1. (“Correspondence principle I”) The coefficients
aða;bÞ of relation (3) for fractional derivative Da of power func-
tion xb should satisfy the condition

a n; bð Þ ¼ C bþ 1ð Þ
C b� nþ 1ð Þ n 2Nð Þ (4)

For this reason, the fractional derivatives of power functions
are defined such that relation (3) is usually considered with the
coefficients

a a;bð Þ ¼ C bþ 1ð Þ
C b� aþ 1ð Þ ; a > 0ð Þ (5)

Note that we cannot use this form of coefficients aða;bÞ for
b� aþ 1 ¼ �k, where k¼ 0 or k 2N. In this case, we should
use the Euler’s reflection formula, such that Eq. (5) takes the form

a a;bð Þ ¼ sin p a� bð Þð Þ
p

C a� bð ÞC bþ 1ð Þ (6)

3 Leibniz Rules

The Leibniz rule for first-order derivative has the simple form

Dnðf ðxÞ gðxÞÞ ¼ ðDnf ðxÞÞ gðxÞ þ f ðxÞ ðDngðxÞÞ; ðn ¼ 1Þ (7)

The well-known equation for the integer-order derivative of posi-
tive integer-orders n 2N for the product of functions has the
form

Dn f xð Þ g xð Þð Þ ¼
Xn

k¼0

n!

n� kð Þ! k!
Dn�kf xð Þ
� �

Dkg xð Þ
� �

; n 2Nð Þ

(8)

where the binomial coefficient can be represented in terms of the
Gamma functions

n!

n� kð Þ! k!
¼ C nþ 1ð Þ

C n� k þ 1ð ÞC k þ 1ð Þ (9)

Using the principle of correspondence with integer-order case, it
seems obvious that all generalizations of the Leibniz rule for
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noninteger orders a of derivatives should give expression (8) for
a ¼ n 2N. Therefore, we have the following requirement.

PROPOSITION 2. (“Correspondence principle II”) Generalizations
of the Leibniz rule for fractional derivatives Da of noninteger
order a > 0 should give the relation

Da f xð Þg xð Þð Þ¼
Xn

k¼0

C aþ1ð Þ
C a�kþ1ð ÞC kþ1ð Þ D

a�kf xð Þ
� �

Dkg xð Þ
� �

;

a¼ n2Nð Þ (10)

for integer values of a ¼ n 2N.
As a corollary of this statement, we can say that the Leibniz

rule for derivative of noninteger order a 6¼ 1 cannot have the sim-
ple form

Daðf ðxÞ gðxÞÞ ¼ ðDaf ðxÞÞ gðxÞ þ f ðxÞ ðDagðxÞÞ (11)

A violation of relation (11) is a characteristic property of all
derivatives of integer-orders n 2N greater than one and for all
types fractional-order derivatives with a > 0.

In Ref. [7], theorem “No violation of the Leibniz rule. No frac-
tional derivative” has been proved. In the proof, we consider
fractional-order derivatives Da of by using an algebraic approach.
Exact expression and definition of fractional derivatives are not
important for this proof. The property of linearity and the Leibniz
rule are used only.

THEOREM. (No violation of the Leibniz rule. No fractional deriv-
ative) If an operator Da

x satisfies the condition of R-linearity

Daðc1f ðxÞ þ c2gðxÞÞ ¼ c1ðDaf ðxÞÞ þ c2 ðDagðxÞÞ; ðc1; c2 2 RÞ
(12)

and the Leibniz rule

Daðf ðxÞ gðxÞÞ ¼ ðDaf ðxÞÞ gðxÞ þ f ðxÞ ðDagðxÞÞ (13)

then this operator is the derivative of integer (first) order, which
can be represented in the form Da ¼ aðxÞD1, where a(x) is a
function on R.

This theorem states that fractional derivatives of noninteger
orders a 6¼ 1 cannot satisfy the Leibniz rule (11). A correct form
of the Leibniz rule for fractional-order derivatives should be
obtained as a generalization of the Leibniz rule for integer-order
derivatives (for example, see Sec. 2.7.2 of Ref. [17] and/or
Ref. [9]). For example, the fractional generalization of the Leibniz
rule for the Riemann–Liouville derivatives has the form of the
infinite series

Da f xð Þg xð Þð Þ ¼
X1

k¼0

C aþ 1ð Þ
C a� k þ 1ð ÞC k þ 1ð Þ D

a�kf xð Þ
� �

Dkg xð Þ
� �

(14)

where the f(x) and g(x) are analytic functions for x 2 ½a; b� (see
Theorem 15.1 of Refs. [1,2]), Da is the Riemann–Liouville deriva-
tive; Dk is derivative of integer-order k 2N. It should be noted
that Eq. (14) contains an infinite sum. Moreover, the sum contains
integrals of noninteger order for the values k > ½a� þ 1. Equation
(14) first suggested in Ref. [8] in 1832. Correct form of general-
izations of the Leibniz rule for fractional derivatives is derived by
Osler in Refs. [8–12]. For some remarks about the rule (14), see
Theorem 2.18 and corresponding comments of Ref. [18].

4 Leibniz Rules for Power Functions

Let us consider the two power functions

f ðxÞ ¼ xb; gðxÞ ¼ xc ðx 2 RþÞ (15)

where b > 0 and c > 0. For b; c � a > 0, we consider functions
(15) with x � 0 instead of x> 0. Using Eq. (3) for the functions
(15), we have

Daxb ¼ aða;bÞ xb�a (16)

Daxc ¼ aða; cÞ xc�a (17)

where x 2 Rþ. Equations (16) and (17) give that the expression
on the right side of the Leibniz rule (11) for the product (15) has
the form

ðDaf ðxÞÞ gðxÞ þ f ðxÞ ðDagðxÞÞ ¼ ðDaxbÞ xc þ xb ðDaxcÞ
¼ ðaða; bÞ þ aða; cÞÞ xbþc�a (18)

Using Eq. (3), the fractional-order derivative of product of func-
tions (15) is

Daðf ðxÞgðxÞÞ ¼ Daxbþc ¼ aða;bþ cÞ xbþc�a (19)

If the Leibniz rule (11) holds, then we should have the relation

aða; bþ cÞ ¼ aða;bÞ þ aða; cÞ (20)

for all a > 0; b > 0 and c > 0.
As a result, we have the following requirement.
PROPOSITION 3. In order to the Leibniz rule (11) holds together

with the equation for fractional-order derivative of power function
(3), the relation (20) should be satisfied for all a > 0; b > 0, and
c > 0.

For the coefficients (5), relation (20) can be written as

C bþ cþ 1ð Þ
C bþ c� aþ 1ð Þ �

C bþ 1ð Þ
C b� aþ 1ð Þ �

C cþ 1ð Þ
C c� aþ 1ð Þ ¼ 0 (21)

For b ¼ c ¼ a, Eq. (21) has the form

C 2aþ 1ð Þ
C aþ 1ð Þ � 2 C aþ 1ð Þ ¼ 0 (22)

that can be rewritten as

Cð2aþ 1Þ � 2 C2ðaþ 1Þ ¼ 0 (23)

To illustrate relation (22), we give a plot of the function

ZðxÞ ¼ Cð2xþ 1Þ � 2 C2ðxþ 1Þ (24)

defined by the left-hand side of Eq. (23) The plot of the function
is presented by Fig. 1 for range of x ¼ a 2 ½0; 1:5�.

If we use 0 < a � 1, b¼ 1, c¼ 1, and x � 0, then Eq. (21) has
the form

C 3ð Þ
C 3� að Þ �

2 C 2ð Þ
C 2� að Þ ¼ 0 (25)

Using Cð3� aÞ ¼ ð2� aÞCð2� aÞ, and Cðnþ 1Þ ¼ n!, condi-
tion (25) can be rewritten as

2 a� 1ð Þ
C 3� að Þ ¼ 0 (26)

This means that the unviolated Leibniz rule (11) holds only for
a¼ 1.

As a result, we have the following requirement.
PROPOSITION 4. In order to the Leibniz rule (11) holds, the rela-

tion (21) should be satisfied for all a > 0; b > 0, and c > 0.
It is easy to see that this requirement holds only for a¼ 1. This

means that the Leibniz rule (11) cannot be performed for deriva-
tives of noninteger orders (and integer-orders a > 1). It is impor-
tant to emphasize that this proposition is true for any function
space, if it includes power functions and we can consider
fractional-order derivative of power function in the form (3).
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We should emphasize that violation of the Leibniz rule (11) is a
characteristic property of fractional-order derivatives of all types
[7,19] and derivatives of integer-orders a 6¼ 1. In addition, the vio-
lation of the Leibniz rule (11) for fractional derivatives does not
depend on the class of functions (in contrast to statements in Refs.
[20–22]), if the relation (3) can be used.

Unfortunately, the unviolated Leibniz rule (11) and Eq. (3) for
fractional-order derivative of power function are used together for
so-called modified Riemann–Liouville derivatives and local frac-
tional derivatives in Refs. [20–40].

Equation (3) and the Leibniz rule (11) are assumed for so-
called modified Riemann–Liouville derivatives that are also called
as Jumarie derivatives (see Eqs. (3.10) and (3.11) of Ref. [23];
Eqs. (4.2) and (4.3) of Ref. [26]; Eqs. (4.3) and (4.4) of Ref. [27];
Eqs. (13) and (14) of Ref. [29]; Eqs. (2.13) and (2.14) in
Ref. [30]; “Simple rules” and Eq. (2) of Ref. [32]; and Simple
rules of Eqs. (2.2) and (2.3) of Ref. [33]).

For so-called modified Riemann–Liouville derivatives, which
are also called as Jumarie derivatives, Eq. (3) and the Leibniz rule
(11) are assumed together (see Eq. (31) of Ref. [37], Eq. (5) of
Ref. [38], and Proposition 2.4. of Ref. [40]).

It should be noted that statement [20], that the Leibniz rule in
the form (11) holds for nondifferentiable functions is incorrect.
The following statements are proved in Ref. [19].

PROPOSITION 5.

(1) The Leibniz rule (11) for fractional derivatives of orders
a 6¼ 1 is not satisfied on a set of differentiable functions.
The Leibniz rule (11) holds on a set of differentiable func-
tions only for a¼ 1.

(2) The Leibniz rule (11) for fractional derivatives of orders
a 6¼ 1 is not satisfied on a set of fractional–differentiable
functions. Equation (3) for fractional-order derivative of
power function and the Leibniz rule (11) on a set of
fractional–differentiable functions hold together only for
a¼ 1.

(3) The Leibniz rule (11) cannot be used for nondifferentiable
functions that are not fractional–differentiable.

The violation of relation (11) is a characteristic property of all
types fractional-order derivatives. In addition, relation (11) does
not hold for derivatives of integer-orders n 2N greater than one.
Moreover, unusual properties of fractional-order derivatives such
as a violation of the usual Leibniz rule, a deformations of the
usual chain rule [41,42], a violation of the semigroup property,
and other characteristic properties [43,44] allow us to describe
new unusual properties of complex media and physical systems.
Note that a violation of the Leibniz rule in quantum theory is dis-
cussed in Ref. [45]. Therefore, these unusual properties are very
important for application and attempts to remove a violation of

the Leibniz rule for fractional-order derivatives can be described
as “Throw out the baby with the bathwater” [46,47].
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