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Abstract Discrete models of dislocations in fractional nonlocal materials are suggested. The

proposed models are based on fractional-order differences instead of finite differences of integer

orders that are usually used. The fractional differences allow us to describe long-range interactions

in materials. In continuous limit the suggested discrete models give continuum models of

dislocations in nonlocal continua. Fractional generalization of the Frenkel–Kontorova model by

using long-range interactions is suggested. We also propose a fractional generalization of

interacting atomic chains (IAC) model of dislocations by considering long-range interacting chains.
ª 2015 The Author. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Dislocations in materials can be described by a microscopic
approach based on discrete models and by a macroscopic

approach based on continuum models. Continuum description
of dislocations can be derived as a limit of lattice model, where
the length scales of infinitesimal continuum elements are much

greater than inter-particle distances in the lattice. The elasticity
theory of nonlocal continuum was initiated by the papers of
Eringen (1972). Models of nonlocal elasticity are based on
the assumption that the forces between material points are a

long-range type, thus reflecting the long-range character of
inter-atomic forces (Eringen, 2002; Rogula, 1983). As it was
shown in Tarasov (2006a,b, 2011, 2014, 2015) (see also
Tarasov, 2013, 2014a,b) the differential equations with frac-
tional derivatives of non-integer orders (Samko et al., 1993;

Kilbas et al., 2006; Yang, 2012) can be derived from equation
for lattice particles with long-range interactions by continuous
limit, where the distance between the lattice particles tends to
zero. A direct connection between lattice with long-range inter-

action and nonlocal continuum has been proved by using the
special transform operation (Tarasov, 2006a,b, 2011). The dis-
crete models for fractional nonlocal elasticity and the

correspondent continuum equations have been suggested in
Tarasov (2013, 2014a,b,c). In this paper, we apply this
approach to formulate discrete models for dislocations in frac-

tional nonlocal continua. The proposed models are based on
fractional-order differences of Grünwald–Letnikov type.
These differences, which are represented by infinite series,
allow us to describe long-range interactions in chains and lat-

tices. The suggested discrete models with long-range interac-
tion give fractional differential equations of continuum
dislocations in continuous limit.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksus.2015.04.001&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:tarasov@theory.sinp.msu.ru
http://dx.doi.org/10.1016/j.jksus.2015.04.001
http://www.sciencedirect.com/science/journal/10183647
http://dx.doi.org/10.1016/j.jksus.2015.04.001
http://creativecommons.org/licenses/by-nc-nd/4.0/


34 V.E. Tarasov
2. Fractional Frenkel–Kontorova model of dislocation

Let us consider the equations for displacements ui in the form

M
d2uiðtÞ
dt2

¼ KðaÞ
X1
m¼0

ð�1ÞmCð1þ aÞ
2Cðmþ 1ÞCð1þ a�mÞ uiþmðtÞ þ ui�mðtÞð Þ

�Up
b

sin
2pui
b

� �
; ð1Þ

where b is the Burgers vector, M is the particle mass, U is the

energy per unit area of the cut plane, a is the order of lattice
nonlocality, KðaÞ is the constant of long-range interactions
that depends on the Bravais vector a, respectively. For a cut

at the positive x-axis, the field uðxÞ ¼ uþðxÞ � u�ðxÞ is the rela-
tive displacement (the disregistry) across the cut plane. In
Volterra dislocation, uðxÞ is the step function bhðxÞ, equal to
b for x > 0 and zero otherwise. The term with sine at the right
hand side of (1) is the force acting on the atoms as a result of
having rigidly displaced the upper half of crystal a distance u
over the lower half.

Eq. (1) can be considered as a fractional generalization of
the Frenkel–Kontorova model, where the nonlocality is
considered by long-range interactions. For a ¼ 2, Eq. (1) give

the well-known equations of the Frenkel–Kontorova model

M
d2ui

dt2
¼ Kð2Þðuiþ1 � 2ui þ ui�1Þ �

Up
b

sin
2pui
b

� �
: ð2Þ

Discrete Eq. (2) have been suggested by Frenkel and
Kontorova in 1938 to describe a model of interconnected har-

monic springs in a periodic potential, which may be created by
a fixed substrate (Frenkel and Kontorova, 1939; Nabarro,
1967; Braun and Kivshar, 2004). Dislocations are described

by kink solutions of these equations (Nabarro, 1967), but the
distortion ðuiþ1 � uiÞ decays exponentially far from the disloca-
tion core, not as 1=i as the elastic far field of a true dislocation
does. This unrealistic exponential decay remains in some

related microscopic models.
Other discrete models of dislocations such as a model of

moving screw dislocations in terms of sliding chains (Suzuki,

1967) and the Landau–Kovalev–Kondratiuk model of inter-
acting atomic chains (IAC) for edge dislocations (Landau
et al., 1993) change the Frenkel–Kontorova model to get an

algebraic decay of the distortion far from dislocation cores.
They are all related to the Frenkel–Kontorova model of
idealized springs on a periodic substrate and are related to dis-
cretization of linear elasticity by finite differences. We suggest

new discrete models based on differences of non-integer orders
instead of finite differences of integer orders that are usually
used. These differences allow us to describe dislocations in

the fractional nonlocal continua. As fractional differences we
use the Grünwald–Letnikov differences of fractional orders
(see Section 20 of Samko et al. (1993)). Continuum analogs

of the fractional-order difference operators of the Grünwald–
Letnikov type are the fractional derivatives of Grünwald–
Letnikov type (Tarasov, 2014).

Fractional-order difference operator, which is used in Eq.
(1), is transformed by the continuous limit operation into the
fractional derivative of Grünwald–Letnikov type with respect
to coordinate. The continuum fractional derivatives of the

Grünwald–Letnikov type GLDa;�
C are defined by
GLDa;�
C ¼ 1

2
GLDa

xj ;þ �
GLDa

xj ;�

� �
; ð3Þ

which contain the Grünwald–Letnikov fractional derivatives
GLDa

x;� with respect to space coordinate x that can be written as

GLDa
x;�uðx; tÞ ¼ lim

a!0þ

1

jaja
X1
m¼0

ð�1ÞmCðaþ 1Þ
Cðmþ 1ÞCða�mþ 1Þuðx�ma; tÞ;

ða > 0Þ: ð4Þ

In the continuous limit a! 0, equations of motion (1) give
the continuum equation for displacement fiels uðx; tÞ in the
form

@2uðx; tÞ
@t2

¼ AðaÞGLDa;þ
C uðx; tÞ �Up

b
sin

2puðx; tÞ
b

� �
; ð5Þ

where AðaÞ ¼ KðaÞaa=M. For a ¼ 2, we have GLDa;þ
C ¼ @2=@x2.

Note that the Grünwald–Letnikov fractional derivatives (4)
coincide with the Marchaud fractional derivatives (see
Section 20.3 in Samko et al. (1993)) for the functions from

the space LrðRÞ, where 1 6 r <1 (see Theorem 20.4 in
Samko et al. (1993)). Moreover both the Grünwald–Letnikov
and Marchaud derivatives have the same domain of

definition. The Marchaud fractional derivative is defined by
the equation

MDa;�
x uðx; tÞ ¼ 1

aða; sÞ

Z 1

0

Ds;�
z uðx; tÞ
zaþ1 dz; ð0 < a < sÞ; ð6Þ

where Ds;�
z are the finite differences of integer order s,

Ds;�
z uðx; tÞ ¼

Xs
k¼0

ð�1Þks!
ðs� kÞ!k!

uðx� kz; tÞ; ð7Þ

and aða; sÞ is defined by

aða; sÞ ¼ s

a

Z 1

0

ð1� nÞs�1

ðlnð1=nÞÞa dn: ð8Þ
3. Fractional long-range interacting atomic chains model of

dislocation

The interacting atomic chains (IAC) model of edge disloca-
tions considers displacement vectors with a single non-zero
component ðui;jðtÞ; 0; 0Þ in two space dimensions (Landau

et al., 1993). We can propose a generalization of this model
to describe dislocations in materials with power-law nonlocal-

ity. The main idea is to consider a model of long-range inter-
acting atomic chains. As a model of long-range interacting
atomic chains (LLIAC) we can consider discrete model that
is described by equations

d2ui;j

dt2
þ c

dui;j
dt
¼KxðaÞ

X1
m¼0

ð�1ÞmCð1þ aÞ
2Cðmþ 1ÞCð1þ a�mÞ

� uiþm;jðtÞþ ui�m;jðtÞ
� �
þKyðbÞ sin

X1
n¼0

ð�1ÞnCð1þ bÞ
Cðnþ 1ÞCð1þ b� nÞui;jþnðtÞ

 ! 

þ sin
X1
n¼0

ð�1ÞnCð1þ bÞ
Cðnþ 1ÞCð1þ b� nÞui;j�nðtÞ

 !!
; ð9Þ
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where, for simplicity, the atomic masses and the interatomic

distances are assumed to be equal to unity. Here c is the dimen-
sionless friction coefficient, and the dimensionless parameter
KyðbÞ characterizes the amplitude of long-range interaction

between atom chains.
For a ¼ 2 and b ¼ 1, using the properties of the Grünwald–

Letnikov differences, Eq. (9) give well-known equations of
interacting atomic chains (IAC), which are suggested in
Landau et al. (1993), in the form

d2ui;j

dt2
þ c

dui;j
dt
¼ Kxð2Þðuiþ1 � 2ui þ ui�1Þ

� Kyð1Þ sinðui;j � ui;jþ1Þ þ sinðui;j � ui;j�1Þ
� �

:

ð10Þ
In the continuous limit a! 0, equations of motion (9) give the
continuum equation for displacement field uðx; y; tÞ in the form

@2uðx; y; tÞ
@t2

þ c
@uðx; y; tÞ

@t
¼ AxðaÞGLDa;þ

C uðx; y; tÞ

þ AyðbÞGLDb;þ
C uðx; y; tÞ: ð11Þ

where AxðaÞ ¼ KxðaÞaa
x, and AyðaÞ ¼ 2KyðbÞab

y . It should be

noted that GLD
b;þ
C is nonlocal operator for b ¼ 1 that cannot

be represented as derivative of integer order (Tarasov, 2014).
For a ¼ b ¼ 2, Eq. (11) gives the equation of continuum model
in the from

@2u

@t2
þ c

@u

@t
¼ Axð2Þ

@2u

@x2
þ Ayð2Þ

@2u

@y2

¼ Axð2Þ
@2u

@x2
þ @

2u

@y2�

� �
¼ Axð2ÞDu; ð12Þ

where the coordinate y has been rescaled as

y� ¼ ðAxð2Þ=Ayð2ÞÞ�1=2y. The static continuum case satisfies

the harmonic equation Du ¼ 0.

Discrete models of dislocations for gradient elasticity the-
ory can be based on the lattice models suggested in Tarasov
(2014, 2015).

In paper Ariza and Ortiz (2005) (see also
Ramasubramaniam et al., 2007), an approach based on finite
elements discretization of elasticity by using algebraic topology

is proposed. We assume that a discretization of fractional gra-
dient elasticity also can be realized.

Note that kink-like solutions for equations of chain of cou-
pled oscillators with the long-range power-law interactions

have been considered in Korabel et al. (2007).
More complete discrete models can be obtained by taking

into account anisotropic linear nonlocal elasticity far from

defect cores and dislocation glide. A way to get this can be
based on a fractional generalization of models suggested in
Carpio and Bonilla (2005) and Bonilla et al. (2007). In this

paper the gradient of the displacement vector in the strain ten-
sor is redefined as a nonlinear periodic function of the
corresponding finite differences that restores the translation

invariance of the crystal and allows sliding of atomic chains
as a dislocation moves.
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