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Toward fractional gradient elasticity
Abstract: The use of an extension of gradient elasticity 

through the inclusion of spatial derivatives of fractional 

order to describe the power law type of non-locality is dis-

cussed. Two phenomenological possibilities are explored. 

The first is based on the Caputo fractional derivatives in 

one dimension. The second involves the Riesz fractional 

derivative in three dimensions. Explicit solutions of the cor-

responding fractional differential equations are obtained in 

both cases. In the first case, stress equilibrium in a Caputo 

elastic bar requires the existence of a nonzero internal body 

force to equilibrate it. In the second case, in a Riesz-type 

gradient elastic continuum under the action of a point load, 

the displacement may or may not be singular depending on 

the order of the fractional derivative assumed.
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1  Introduction
The use of fractional derivatives and integrals [1–3] allows 

us to investigate the behavior of material processes and 

systems that are characterized by power law non-locality, 

power law long-term memory, and fractal properties. Frac-

tional calculus has emerged as a powerful tool that has a 

wide range of applications in mechanics and physics (e.g., 

[4–13]).

Non-local effects in elasticity theory have been 

treated with two different approaches: the gradient elas-

ticity theory (weak non-locality) and the integral elastic-

ity theory (strong non-locality). The fractional calculus 

can then be used to establish a fractional generalization 

of non-local elasticity in two forms: the fractional gradi-

ent elasticity theory (weak non-locality) and the fractional 

integral elasticity theory (strong non-locality).

Some developments in framework and derivation of 

corresponding results for the fractional integral elastic-

ity have been made in [14–16]. This has not been done, 

however, for gradient elasticity (for a recent review of 

the subject, one may consult [17, 18]). An extension of the 

phenomenological theory of gradient elasticity using the 

Caputo and Riesz spatial derivatives of non-integer order 

is suggested in the present article.

In Section 2, a phenomenological fractional generali-

zation of one-dimensional gradient elasticity is discussed 

using the Caputo derivative to include gradient effects in 

the constitutive equation for the stress. The correspond-

ing fractional differential equation for the displacement is 

solved analytically and expressed in terms of the Mittag-

Leffler functions. In order that the stress field be equili-

brated, the material should develop an internal force that 

should be added to the externally applied body force field.

In Section 3, a fractional generalization of gradi-

ent elasticity is discussed using the Riesz derivative (in 

particular, the fractional Laplacian in the Riesz form). 

Analytical solutions of the corresponding fractional dif-

ferential equation are obtained for two cases: the sub-

gradient and the super-gradient elasticities (in analogy 

to sub-diffusion and super-diffusion cases) for a con-

tinuum carrying a point load. Asymptotic expressions 

are derived for the displacement field near the point of 

application of the external load. They may or may not be 

singular depending on the order of the fractional deriva-

tive used.

2   Fractional gradient elasticity 
based on the Caputo derivative

In this section, we suggest a fractional generalization of 

the gradient elasticity model that includes the Caputo 

derivative of non-integer order. For this one-dimensional 

model, we derive a general solution of the correspond-

ing fractional differential equation for the displacement. 

We demonstrate how to overcome the difficulties caused 

by the unusual properties of fractional derivatives. An 
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alternative fractional gradient elasticity model for a 

three-dimensional case using the Riesz fractional deriva-

tive (in the form of a fractional Laplacian) is discussed in 

Section 3.

2.1  Fractional gradient elasticity equation

Let us consider the constitutive relation for a one-dimen-

sional fractional gradient elasticity model that is based on 

the Caputo derivative in the form

 
2( ) ( ) ( ),C

ax E x l E D xβ
β

σ ε ε+= ±
 

(1)

where σ(x) is the stress and ε(x) is the strain, with the 

space variable x and the scale parameter 2l
β

 being dimen-

sionless. The symbol C
aD
β
+  is the Caputo derivative of 

order β with n-1 < β < n. The  ±  sign is kept for generality, as 

various previous nonfractional gradient elasticity models 

use either sign (for a comprehensive of nonfractional gra-

dient elasticity models, the reader may consult [18]). The 

left-sided Caputo fractional derivative [3] of order α > 0 for 

x∈[a, b] is defined by
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where n-1 < α < n and aI
α
+  is the left-sided Riemann-Liouville 

fractional integral of order α > 0 defined as

1-

1 ( )
( ) , ( ).

( ) ( - )

x

a a

f z dzI f x z a
x z

α

αΓ α+ = >∫
Then using the usual definition of the strain ε(x) in 

terms of the displacement u(x)

 

1( ) ( ),xx D u xε =
 

(3)

we obtain the fractional stress displacement equation in 

the form
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(4)

In view of the fractional vector calculus framework, 

we can derive the fractional equation of equilibrium in the 

form
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aA x D x f xα
α
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(5)

with the given functions A
α
(x) and f(x) denoting, as usual, 

the external body force field. The explicit form of the 

function A
α
(x) is derived from the conservation law for 

non-local media using the fractional vector calculus [19]. 

Substitution of Eq. (4) into (5) gives
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where
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For the case α = 1, the governing fractional differential 

equation reads
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In general, we have 1 1 2 .C C
x x xD D Dβ β+ +≠

2.2   Solution of the fractional gradient 
 elasticity equation

Let us make use of the explicit form concerning the viola-

tion of the semigroup property for the Caputo derivative 

that gives the relationship between the product C C
a aD Dα β

+ +  

and the derivative .C
aD
α β+
+

Using Eq. (2.4.6) in [3] of the form

 

-1
-

0

( )( )
( )( ) ( )( )- ( - )

( - 1)

kn
C RL k

a a
k

D f aD f x D f x x a
k

α α α

Γ α+ +
=

=
+∑

 

(9)

and using Property 2.1, Eq. (2.1.16), in [3],
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where α > 0 and β > -1, we obtain the relation
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(11)

where 0 < α  ≤  1, n-1 < β  ≤  n. This relation explicitly shows 

a violation of the semigroup property for the Caputo 

derivative.

Using Eq. (11), we rewrite Eq. (6) in the form
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(12)

where 0 < α < 1, 1 < β < 2 (n = 2), or 2 < β < 3 (n = 3) and feff(x) is an 

effective body force defined by
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(13)

Eq. (12) is a nonhomogeneous fractional differential 

 equation with constant coefficients.

The solutions to equations of this type are given by 

theorem 5.16 in [3] (see also theorem 5.13 in [3] for the 

homogeneous case, feff(x) = 0). To use these results, we 

assume that a = 0. Let us consider the case 0 < α < 1, 1 < β < 2 
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(i.e., 1 < α+1 < 2 = m, 2 < β+1 < 3 = n). Then the solution of 

Eq. (12) has the form
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where
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and
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The arbitrary real constants C
0
, C

1
, and C

2
 in the case 

of the Caputo fractional derivatives are defined by the 

values of the integer-order derivatives u(0), u(1)(0), and 

u(2)(0).

Here, E
α, β

(z) is the Mittag-Leffler function [3], which 

is defined by

 
,

0
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Note also that E
1, 1

[z] = ez. The asymptotic behavior (see 

Eq. (1.8.27) in [3]) of the Mittag-Leffler function E
α,

 
β
(z) is
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where 0 < α < 2.

Remark: It should be emphasized that the absence of the 

external force (f(x) = 0) does not imply the vanishing of the 

effective force feff. In general, feff(x)≠0 for f(x) = 0. Only in 

the case of commutativity of the Caputo fractional deriva-

tives, i.e., if the semigroup property

( )( ) ( )( )C C C
a a aD D u x D u xα β α β+

+ + +=

is not violated, the vanishing of the external force f(x) = 0 

leads to the vanishing of the effective force feff(x) = 0. It is 

easy to see that the semigroup property is satisfied if

 
(3) (4) (5)(0) (0) (0) 0.u u u= = =

 
(21)

If we consider Eq. (12) in the case α = 1, 1 < β < 2, f(x) = 0, 

and assume that condition (21) is satisfied, then solution 

(14) of Eq. (12) has the form
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For this solution to be admissible, it should be checked 

if the function given by Eq. (22) satisfies the conditions  

u(3)(0) = u(4)(0) = u(5)(0) = 0. To verify these conditions, we use 

Eq. (1.8.22) of [3] in the form

 

1
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n
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(23)

The conditions given by Eq. (21) are not satisfied 

for the function given by Eq. (22). Thus, the solution is 

not admissible for the fractional one-dimensional gra-

dient elasticity model considered herein. Therefore, we 

should take into account the effective force defined in 

Eq. (18) for the solution given by Eq. (14) to describe the 

fractional one-dimensional gradient elasticity model 

correctly.

3   Fractional gradient elasticity 
based on the Riesz derivative

An alternative fractional gradient elasticity model may be 

obtained using the Riesz fractional derivative. In this case, 

it turns out that a three-dimensional treatment is possible 

due to available results on the fractional Laplacian of the 

Riesz type. The corresponding fractional gradient elastic-

ity governing equation can then be considered in the form

 

/ 2 / 2(( - ) )( ) (( - ) )( ) ( ) ( ),c u c u fα β
α β

Δ Δ α β+ = >r r r
 

(24)

where r∈R3 and r = |r| are dimensionless and (-Δ)α/2 is 

the Riesz fractional Laplacian of order α [3]. The coeffi-

cients (c
α
, c

β
) are phenomenological constants, and the 

rest of the symbols have their usual meaning. For α > 0 

and suitable functions u(r), r∈R3, the Riesz fractional 

derivative can be defined [3] in terms of the Fourier 

transform F by

 
/ 2 -1(( - ) )( ) (| | ( )( )),u uα αΔ =r k kF F

 
(25)

where k denotes the wave vector. If α = 4 and β = 2, we have 

the well-known equation of the gradient elasticity [18]:
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(26)

where

 

2

2 4
, .c E c l E= =±

 
(27)

Eq. (24) is the fractional partial differential equation 

that has the particular solution (section 5.5.1 in [3]) of the 

form
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where the Green-type function
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is given (see lemma 25.1 of [1, 2]) by the following equation:
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Here, 
1/2

( ) 2 /( ) sin( )J z z zπ=  is the Bessel function 

of the first kind.

Let us consider, as an example, the W. Thomson (1848) 

problem [20] for the present model of fractional gradi-

ent elasticity. Determine the deformation of an infinite 

elastic continuum, when a concentrated force is applied 

to a small region of it. To solve this problem, we consider 

distances |r|, which are large in comparison with the size 

of the region (neighborhood) of load application. In other 

words, we can suppose that the force is applied at a point. 

In this case, we have

 
0 0

( ) ( ) ( ) ( ) ( ).f f f x y zδ δ δ δ= =r r
 

(31)

Then the displacement field u(r) of fractional gradi-

ent elasticity has a simple form given by the particular 

solution

 

3

0
( ) ( ),u f G

α
=r r

 
(32)

where 3( )G z
α

 is the Green’s function given by Eq. (30). 

Therefore, the displacement field for the force applied at a 

point, Eq. (31), has the form
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(33)

For this solution of the fractional gradient elasticity 

equation (24) with α > β, 0 < β < 2, and α≠2, with a point 

force f(r) of the form given by Eq. (31), the asymptotic 

behavior is

 

0

2 3-

(2- ) sin( / 2) 1
( ) (| | ).

2 | |

f
u

c β
β

Γ β πβ

π
≈ ⋅ →∞r r
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(34)

This asymptotic behavior |r|→∞ does not depend on 

parameter α, and the corresponding asymptotic behavior 

for |r|→0 does not depend on parameter β, where α > β. 

The displacement field at large distances from the point 

of load application is determined only by term (-Δ)β/2, 

where β < α. This can be interpreted as a fractional non-

local “deformation” counterpart of the classical result 

based on the local Hooke’s law. We note the existence of 

a maximum for the quantity u(r)·|r| in the case 0 < β < 2 < α.

From a mathematical point of view, there are two 

special cases: (i) fractional power law-weak non-locality 

with α = 2 and 0 < β < 2; (ii) fractional power law-weak non-

locality with α≠2, α > β, and 0 < β < 3. It is thus useful to dis-

tinguish between the following two particular cases:

 – Sub-gradient elasticity (α = 2 and 0 < β < 2).

 – Super-gradient elasticity (α > 2 and β = 2).

In the sub-gradient elasticity model, the order of the frac-

tional derivative is less than the order of the term related to 

the usual Hooke’s law. The order of the fractional deriva-

tive in the super-gradient elasticity equation is larger than 

the order of the term related to the Hooke’s law. The terms 

“sub-gradient” and “super-gradient” elasticity are used in 

analogy to the terms commonly used for anomalous diffu-

sion [6–8]: sub-diffusion and super-diffusion.

3.1  Sub-gradient elasticity model

The fractional model of sub-gradient elasticity is described 

by Eq. (24) with α = 2 and 0 < β < 2, i.e.,

 

/ 2

2
( )- (( - ) )( ) ( ) 0, (0 2).c u c u fβ

β
Δ Δ β+ = < <r r r

 
(35)

The order of the fractional Laplacian (-Δ)β/2 is less than 

the order of the first term related to the usual Hooke’s law. 

As a simple example, we can consider the square of the 

Laplacian, i.e., β = 1. In general, parameter β defines the 

order of the power law non-locality that characterizes the 

elastic continuum. The particular solution of Eq. (35) for 

the point force problem at hand reads

 

0

2 20
2

sin( | |)1
( ) (0 2).

| |2
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c c β

β

λ λ
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∞
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(36)
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The following asymptotic behavior for Eq. (36) can be 

derived using section 2.3.1 in [21] of the form
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where
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As a result, the displacement field generated by the 

force that is applied at a point in the elastic continuum 

with the fractional non-locality described by the frac-

tional Laplacian (-Δ)β/2 with 0 < β < 2 is given by

 

0

3-

( )
( ) (0 2),

| |

Cu
β

β
β≈ < <r

r
 

(40)

for large distances |r|�  1.

3.2  Super-gradient elasticity model

The fractional model of super-gradient elasticity is 

described by Eq. (24), with α > 2 and β = 2. In this case, we 

have

 
/ 2

2
( )- (( - ) )( ) ( )=0, ( 2).c u c u fα

α
Δ Δ α+ >r r r

 
(41)

The order of the fractional Laplacian (-Δ)α/2 is greater 

than the order of the first term related to the usual Hooke’s 

law. Parameter α > 2 defines the order of the power law 

non-locality of the elastic continuum. If α = 4, Eq. (41) 

reduced to Eq. (26). The case 3 < α < 5 can be considered to 

correspond as closely as possible (α≈4) to the usual gradi-

ent elasticity model of Eq. (26).

The asymptotic behavior of the displacement field 

u(|r|) for |r|→0 in the case of super-gradient elasticity is 

given by

 

0

3-2

((3- ) / 2) 1
( ) , (2 3),

| |2 ( / 2)

f
u

c αα
α

Γ α
α

π π Γ α
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(42)

 

0

1- 3/ 3/
( ) , ( 3).

2 sin(3 / )

fu
c cα α

β α

α
πα π α
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(43)

Note that the above asymptotic behavior does not 

depend on parameter β and that the corresponding rela-

tion (42) does not depend on c
β
. The displacement field 

u(r) for short distances away from the point of load appli-

cation is determined only by the term with (-Δ)α/2 (α > β), 

which can be considered as a fractional counterpart of the 

usual extra non-Hookean term of gradient elasticity.

A generalization of the phenomenological theory of 

gradient elasticity accomplished by including the Caputo 

and Riesz spatial derivatives of non-integer order is sug-

gested in this article. Related lattice models with spatial 

dispersion of power law type as microscopic models of the 

fractional elastic continuum described by Eq. (24) were 

proposed in [22]. Using the approach suggested in [23, 

24], Eq. (24) has been derived from the equations of lattice 

dynamics with power law spatial dispersion. We can point 

out that a phenomenological fractional gradient elastic-

ity model can be obtained from different microscopic or 

lattice models. In addition, we note that the model of frac-

tional gradient elastic continuum has an analogue in the 

plasma-like dielectric material with power law spatial dis-

persion [25]. It can be considered as a common or univer-

sal behavior of plasma-like and elastic materials in space 

by analogy with the universal behavior of low-loss dielec-

trics in time [26–28].
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Article note: This article was first submitted to the J. of Elasticity in 

July 2013. It was returned for revisions in early February 2014. Since 

the authors did not agree with some of the reviewers’ comments, 

it was decided to follow the present path, partly due to the long 

time elapsed between actual completion and potential publication. 

It is noted, in this connection, that other articles on the topic (e.g. 

Ref. [22]) were directly motivated by the present work which, partly 

due to the aforementioned circumstances, may not have been 

properly quoted, even though it was the first article where the 

authors (upon the invitation of the first one/VET by the second one/

ECA) attempted to address the extension of gradient elasticity to 

the fractional case (see also arXiv:1307.6999). This may have also 

occurred for other related articles that may have appeared or been 

submitted before the publication of the present one.
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