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Derivatives of fractional order with respect to time describe long-term memory
effects. Using nonlinear differential equation with Caputo fractional derivative of
arbitrary order >0, we obtain discrete maps with power-law memory. These
maps are generalizations of well-known universal map. The memory in these maps
means that their present state is determined by all past states with power-law forms
of weights. Discrete map equations are obtained by using the equivalence of the
Cauchy-type problem for fractional differential equation and the nonlinear Volterra
integral equation of the second kind. © 2009 American Institute of Physics.
[doi:10.1063/1.3272791]

I. INTRODUCTION

Discrete maps are used for the study of evolution problems, possibly as a substitute of differ-
ential equations.l_3 They lead to a much simpler formalism, which is particularly useful in nu-
merical simulations. The universal discrete map is one of the most widely studied maps. It is a
very important step in understanding the qualitative behavior of a wide class of systems described
by differential equations. The derivatives of noninteger orders*® are a natural generalization of the
ordinary differentiation of integer order. Fractional differentiation with respect to time is charac-
terized by power-law memory effects. The discrete maps with memory are considered in Refs.
7-13. It is important to connect fractional differential equations and discrete maps with memory.
In Ref. 13, we prove that the discrete maps with memory can be derived from differential equa-
tions with fractional derivatives. The fractional generalization of the universal map was derived"
from a differential equation with Riemann-Liouville fractional derivatives. The Riemann—
Liouville derivative has some notable disadvantages in physical applications such as the hypers-
ingular improper integral, where the order of singularity is higher than the dimension, and nonzero
of the fractional derivative of constants, which would entail that dissipation does not vanish for a
system in equilibrium. The desire to formulate initial value problems for physical systems leads to
the use of Caputo fractional derivatives rather than Riemann-Liouville fractional derivative. In
this paper, we obtain a discrete map with memory from differential equations with Caputo frac-
tional derivative of arbitrary order @>0. The universal map with power-law memory is obtained
by using the equivalence of the fractional differential equation and the Volterra integral equation.
We reduce the Cauchy-type problem for the differential equations with the Caputo fractional
derivative to a nonlinear Volterra integral equation of the second kind. The equivalence of this
Cauchy-type problem and the correspondent Volterra equation was proved by Kilbas and Marzan
in Refs. 14 and 15.

In Sec. II, differential equations with integer derivative and universal maps without memory
are considered to fix notations and provide convenient references. In Sec. I, fractional differential
equations with Caputo derivative and correspondent discrete maps with memory are considered. A
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fractional generalization of the universal map is obtained from kicked differential equations with
the Caputo fractional derivative of arbitrary order «>0. Finally, a short conclusion is given in
Sec. IV.

Il. UNIVERSAL MAP WITHOUT MEMORY

In this section, differential equations with derivative of second order and the universal map
without memory are considered to fix notations and provide convenient references.
Let us consider the equation of motion,

D*x(1) + KG[x(1]>, 5(% - k) =0, (1)

k=1

in which perturbation is a periodic sequence of delta-function-type pulses (kicks) following with
period T=2m/v, K is an amplitude of the pulses, D,2=d2/dt2, and G[x] is some real-valued
function. It is well known that this differential equation can be represented in the form of the
discrete map,

Xn+1 _xn=p11+1T’ P+l _pn=_KTG[xn]' (2)

Equations (2) are called the universal map. For details, see, for example, Refs. 1-3.

Traditional method of derivation of the universal map equations from the differential equa-
tions is considered in Sec. 5.1 of Ref. 2. We use another method of derivation of these equations
to fix notations and provide convenient references. It is easy to obtain the universal map by using
the equivalence of the differential equation and the Volterra integral equation. The Cauchy-type
problem for the differential equations,

D}x(1) =p(), (3)
D)p(1) =-KG[x(1]> 5(5 - k) : 4)
k=1 T
with the initial conditions
x(0) =xp, p(0)=py (5)

is equivalent to the universal map equations of the form

Xpe1 =Xo+ po(n+ 1)T—KT22 GlxJ(n+1-k), (6)
k=1

n

Pus1 =Po— KT, GLx,]. (7)
k=1

To prove this statement we consider the nonlinear differential equation (1) on a finite interval
[0, 7] of the real axis, with the initial conditions (5). The Cauchy-type problem of the form (1) and
(5) is equivalent to the Volterra integral equation,

0

(D) =xg+ pyi — K> dTG[x(t)]J(% - k)(; _ 9. 8)
0

k=1

For nT<t<(n+1)T, we obtain
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n

x(t) = xo + pot = KT, G[x(kT)](t = kT). 9)
k=1
Equations (9) and (3) give
p(t) = po— KT, GLx(kT)]. (10)

k=1

The solution of the left side of the (n+ 1)th kick,

Xpp1 = x(t,01—0) = lim x(T(n+ 1) —¢), (11)
e—0+

Pus1 =Pty —0) = lirg p(T(n+1)-g), (12)
e—0+

where #,.,=(n+1)T gives the map equations (6) and (7). This ends the proof. Note that Egs. (6)
and (7) can be rewritten in the form (2). Using Egs. (6) and (7), the differences x,.,;—x, and
Pus1—Pn give Egs. (2) of the universal map.

We note that Egs. (2) with G[x]=-x give the Anosov-type system,

Xn+1 _-xnzanT’ Pn+1 _pnzKTxn' (13)
If G[x]=sin(x), then Egs. (2) are

xn+l_xn=pn+lT’ pn+l_pn=_KT Sin(xn)- (14)

This map is known as the standard or Chirikov map.1

Ill. FRACTIONAL EQUATION AND UNIVERSAL MAP WITH MEMORY

In Ref. 13 we consider nonlinear differential equations with Riemann—Liouville fractional
derivatives. The discrete maps with memory are obtained from these equations. The Riemann—
Liouville fractional derivative has some notable disadvantages in physical applications such as the
hypersingular improper integral, where the order of singularity is higher than the dimension, and
nonzero of the fractional derivative of constants, which would entail that dissipation does not
vanish for a system in equilibrium. The desire to formulate initial value problems for physical
systems leads to the use of Caputo fractional derivatives*” rather than Riemann—Liouville frac-
tional derivative.

The left-sided Caputo fractional derivative®™'®'®

of order >0 is defined by

1 " dD"
Fm-a)l, (¢ j 7')7"‘f‘(’21 = ol DI, (15)

SDf(1) =

where m—1<a<m and (I} is the left-sided Riemann—Liouville fractional integral of order «
>0, that is, defined by

Oltaf(t) = L r M

M) e (t>0). (16)
a))y (-1

The Caputo fractional derivative first computes an ordinary derivative followed by a fractional
integral to achieve the desire order of fractional derivative. The Riemann—Liouville fractional
derivative Dy is computed in the reverse order. Integration by part of (15) gives
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m-1 tk—uz
@ I (.9}
DI =070+ 3 0, (17)

The second term in Eq. (17) regularizes the Caputo fractional derivative to avoid the potentially
divergence from singular integration at r=0. In addition, the Caputo fractional differentiation of a
constant results in zero §D*C=0. The Riemann-Liouville fractional derivative of a constant need
not be zero."

If the Caputo fractional derivative is used instead of the Riemann-Liouville fractional deriva-
tive, then the initial conditions for fractional dynamical systems are the same as those for the usual
dynamical systems. The Caputo fractional derivatives can be more applicable to dynamical sys-
tems than the Riemann-Liouville derivatives. Note that the Caputo fractional derivatives can be
used to formulate a self-consisted fractional vector calculus.'

We consider the nonlinear differential equation of order a, where 0=m—1<a=m,

§Dx() =Glex(n)], (0=t=ty), (18)

involving the Caputo fractional derivative gD,“ on a finite interval [O,tf] of the real axis, with the
initial conditions

(D) (0)=¢, k=0, ...,m—1. (19)

Kilbas and Marzan'*" proved the equivalence of the Cauchy-type problem of the form (18) and

(19) and the Volterra integral equation of second kind,

S k 1 t a-1
x(t) = kE o T fo drG1,x(0)](r - D, (20)
in the space C"'[0,#/].

The basic theorem regarding the nonlinear differential equation involving the Caputo frac-
tional derivative states that the Cauchy-type problem (18) and (19) and the nonlinear Volterra
integral equation (20) are equivalent in the sense that, if x(¢) € C[0,#/] satisfies one of these
relations, then it also satisfies the other. In Refs. 14 and 15 (see also Ref. 4, Theorem 3.24.) this
theorem is proven by assuming that a function G[z,x] for any x e WCR belong to C,(0,#,) with
0=y<I1, y<a. Here C,(0,7) is the weighted space of functions f[¢] given on (0,7], such that
t'f[t] € C(0,1y).

Let us consider a generalization of Eq. (1) in the form of the fractional differential equation,

“x(1) + KG[x(z)]Z ) 0 (m-1<a<m), (21)
where SD is the Caputo fractional derivative, with the initial conditions

Dix(0)=x§ (s=0,1,...,m—1). (22)

Using x(f)(t)=Dfx(t), s=0,1,...,m—1, Eq. (21) can be rewritten in the Hamilton form.
Theorem: The Cauchy-type problem for the fractional differential equations,

DXW()=x""V(r) (s=0,1,...,m=2), (23)
Epa 1 xm=D(4) = - KG[x(1) ]2, % - k) m-1<a<m), (24)
k=1

with the initial conditions
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£9(0) =x8v) (s=0,1,...,m—1) (25)

is equivalent to the discrete map equations,

m=s=1(jts) KT

(s) _ X0 ke _ S n — k=G
ah= 2 S DT r<a_s)§( +1-0)1Gly, (26)

Proof: Using the Kilbas—Marzan result for Eq. (18) with the function

Glr.x(0] = - KGlx()]S, ; - k) ,
k=1

we obtain that the Cauchy-type problem (21) and (22) is equivalent to the Volterra integral
equation of second kind,

(k)

x() = 20);—, —F(ag drlt— - 'G[x(r)]a( ) 27)

in the space of continuously differentiable functions x(z) € C’"‘I[O,tf].
If nT<t<(n+1)T, then Eq. (27) gives

m—1 (k)
x(f) = % i )g(t—kT =1 G[x(kT)]. (28)

Using the variables (23), Eq. (28) gives

m—1-s x(kﬂ) KT n
W= X k- > (1= k1) ' GLx(kT)], (29)
=0 k! a-s)i5
where s=0,1,...,m—-1, n”T<t<(n+1)T, m—1<a<m, and we use I'(z)=(z—1)I'(z=1). The
solution of the left side of the (n+ 1)th kick (11) and (12) can be represented by Egs. (26), where
we use the condition of continuity x*(¢,+0)=x%(z,-0), s=0,1,...,m=2.
This ends the proof. |
Equations (26) define a generalization of the universal map. This map is derived from a
fractional differential equation with Caputo derivatives without any approximations. The main
property of the suggested map is a long-term memory that means that their present state depends
on all past states with a power-law form of weights.
If G[x]=sin(x), then Egs. (26) define a generalization of standard map. For G[x]=-x, we have
Anosov-type system with memory.
In the case of 1 <a <2, m=2, we have the following universal map with memory:

n

Ko = Xo+ poln + DT = F(Z)E (n+1-0""Glx], (30)
k=1
T <y e ] 31)
Ma-1)2

where x,1=xflo) and p,,=x£ll). If a=m=2, then Egs. (26) give the universal map of the form (6) and
(7) that is equivalent to Egs. (2). As a result, the usual universal map is a special case of this
universal map with memory.
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IV. CONCLUSION

Equations for discrete maps with memory are suggested. The maps with power-law memory
describe fractional dynamics of complex physical systems. The suggested map with memory is
generalizations of well-known universal map. These maps are equivalent to the correspondent
fractional kicked differential equations. To derive the map equations an approximation for frac-
tional derivatives is not used. We obtain a discrete map with memory from fractional differential
equation by using the equivalence of the Cauchy-type problem and the nonlinear Volterra integral
equation of the second kind.

Fractional differentiation with respect to time is characterized by power-law memory effects
that correspond to intrinsic dissipative processes in the physical systems. Therefore, the universal
maps with memory have regular and strange attractors for some values of parameters K and «. The
suggested universal maps with memory demonstrate a chaotic behavior with a new type of attrac-
tors. Numerical simulations of the universal map with memory prove that the nonlinear dynamical
systems, which are described by the equations with fractional derivatives, exhibit a new type of
chaotic motion. For some regions of parameters K and « these universal maps with memory
demonstrate a new type of regular and strange attractors. The universal maps with power-law
memory can be used to describe properties of regular and strange attractors of the fractional
differential equations with kicks.
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