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General forms of uncertainty relations for quantum observables of non-Hamiltonian
quantum systems are considered. Special cases of uncertainty relations are discussed.
The uncertainty relations for non-Hamiltonian quantum systems are considered in
the Schrödinger-Robertson form since it allows us to take into account Lie-Jordan
algebra of quantum observables. In uncertainty relations, the time dependence of
quantum observables and the properties of this dependence are discussed. We take into
account that a time evolution of observables of a non-Hamiltonian quantum system
is not an endomorphism with respect to Lie, Jordan, and associative multiplications.
C© 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4776653]

I. INTRODUCTION

The uncertainty relation states a fundamental limit on the standard deviation values of quantum
observables, such as position and momentum. The uncertainty relation is a basic inequality of
quantum mechanics. It was introduced by Heisenberg1 for the coordinate Q and momentum P in
the from of an approximate relation �Q�P ∼ �, where � is the Planck constant. This relation for
operators Q and P in the form of inequality was rigorously proved by Kennard,2

�Q �P ≥ �

2
, (1)

where �Q and �P are the standard deviations of the coordinate Q and momentum P, which are
defined by

�A =
√〈

(A − 〈A〉 I )2
〉 =

√〈
A2

〉 − 〈A〉2.

Inequality (1) is called the Heisenberg’s uncertainty relation. Robertson3 extended this inequality to
arbitrary pair of quantum observables X and Y,

�X �Y ≥ 1

2
| 〈XY − Y X〉 |. (2)

Schrödinger4 and Robertson5 prove the following more strong inequality, which is a generalization
of the Heisenberg-type uncertainty relation (2) for two quantum observables

(�X )2 (�Y )2 ≥ 1

4

(
〈XY − Y X〉2 + 〈XY + Y X〉2

)
. (3)

Generalized Heisenberg-type and Schrödinger-Robertson-type uncertainty relations are obtained
for two arbitrary operators both in the case of pure and of mixed states by several authors.6–10

Note that uncertainty relations for open quantum systems are considered by Ingarden,11 Sandulescu
and Scutaru12, 13 for an example of quantum harmonic oscillator with linear fraction. Note that
general properties of uncertainty relations for non-Hamiltonian quantum systems are not described
at present time (see Chap. 19 of Ref. 14). It is connected with the fact that dynamics of quantum
observables of non-Hamiltonian systems is not an endomorphism of Lie, Jordan, and associative
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operator algebras.14 In non-Hamiltonian dynamics, the time evolution cannot be considered as an
endomorphism of algebraic structures on a set of quantum observables.

II. MOTIVATION IN THE FORM OF AN EXAMPLE OF NON-HAMILTONIAN
QUANTUM SYSTEM

In this section, we give some motivation in the form of an example of a relevant non-Hamiltonian
quantum system before launching into the details of the derivation of uncertainty relations for
quantum observables of such type systems. As the example we consider a damped linear quantum
oscillator (see Refs. 12 and 20 and Sec. 15.10 in Ref. 14). The same consideration can be realized
for quantum systems that are described in Refs. 21–23. The basic assumption is that the general
form of equations for observables of quantum non-Hamiltonian systems given by the Lindblad
equation.18 Another simple condition imposed to the operators H, Vk is that they are functions of
the basic operators of the one-dimensional quantum system Q and P of such kind that the obtained
model is exactly solvable.12, 20 This condition implies that Vk = Vk(Q, P) are at most the first degree
polynomials in Q and P, and H = H(Q, P) is at most a second degree polynomial in Q and P. These
assumptions are of the same kind as those made in classical dynamics when one takes the friction
force proportional to the velocity.

The equation for quantum observables Q and P of this model are

d Q

dt
= 1

m
P + μQ − λQ,

d P

dt
= −mω2 Q − μP − λP. (4)

The solution of these equations has the form (for details, see Sec. 15.10 in Ref. 14),

Qt = e−λt
(

cosh(νt) + μ

ν
sinh(νt)

)
Q + 1

mν
e−λt sinh(νt)P,

Pt = −mω2

ν
e−λt sinh(νt)Q + e−λt

(
cosh(νt) − μ

ν
sinh(νt)

)
P. (5)

Here ν is a complex parameter such that ν2 = μ2 − ω2.
Let us consider commutator [Qt, Pt] for the operators Qt and Pt. Using Eq. (5), we get

[Qt , Pt ] = e−2λt
(

cosh2(νt) − μ2

ν2
sinh2(νt) + ω2

ν2
sinh2(νt)

)
[Q, P] = e−λt [Q, P].

As a result, we obtain

[Qt , Pt ] = e−2λt [Q, P] = i� e−2λt I,

and the uncertainty relation of the Heisenberg type (1) has the form

�Qt �Pt ≥ �

2
e−2λt , (6)

where �At =
√〈

(At )2
〉 − 〈At 〉2. We see that for t → ∞ the left hand side of the uncertainty relation

vanishes.
However Eq. (4) are non-Hamiltonian, and then the time evolution of operators is non-unitary.

Therefore, algebraic relations between operators are not preserved in general. It is connected with
the fact that dynamics of non-Hamiltonian quantum systems is not an endomorphism of operator
algebras of quantum observables.14 In general, the time evolution of non-Hamiltonian systems cannot
be considered as an endomorphism of algebraic structures on a set of quantum observables such as
Lie and Jordan algebras.
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III. PROPERTIES OF NON-HAMILTONIAN TIME EVOLUTION

On the set of quantum observables we can define mathematical structures such as linear operator
space, Lie-Jordan algebra, associative operator algebra. Let us give the definitions of the Lie, Jordan,
and Lie-Jordan algebras.14

A Lie algebra is a linear algebra M over some field F such that the multiplicative binary
operation ∗ satisfies the following axioms:

The skew-symmetry condition

A ∗ B = −B ∗ A,

the Jacobi identity

((A ∗ B) ∗ C) + ((B ∗ C) ∗ A) + ((C ∗ A) ∗ B) = 0,

and the bilinear condition

(a A + bB) ∗ C = a(A ∗ C) + b(B ∗ C)

for all A, B, C ∈ M and a, b ∈ F.
A Jordan algebra is a linear algebra M over some field F such that the multiplicative binary

operation ◦ satisfies the following axioms:
The symmetry condition

(A ◦ B) = (B ◦ A),

the Jordan identity

(((A ◦ A) ◦ B) ◦ A) − ((A ◦ A) ◦ (B ◦ A)) = 0,

and the bilinear condition

(a A + bB) ◦ C = a(A ◦ C) + b(B ◦ C)

for all A, B, C ∈ M and a, b ∈ F.
A Lie-Jordan algebra 〈M, ∗, ◦, �〉 is a linear space M together with two bilinear multiplicative

operations ∗ and ◦, such that the following conditions are satisfied:

1. 〈M, ∗〉 is a Lie algebra.
2. 〈M, ◦〉 is a Jordan algebra.
3. The operations 〈∗, ◦〉 are connected by the Leibnitz rule,

A ∗ (B ◦ C) = (A ∗ B) ◦ C + B ◦ (A ∗ C).

4. The associators of the operations 〈∗, ◦〉 are connected by the equation

(A ◦ B) ◦ C − A ◦ (B ◦ C) = �
2

4

(
(A ∗ B) ∗ C − A ∗ (B ∗ C)

)
, (7)

where � is a positive real number.
If � = 0, then 〈M, ◦〉 is an associative Jordan algebra and we have the algebra of classical

observables, where the operation ◦ can be represented by multiplication of functions.
For wide class of operator algebras, we can define14 the operations 〈∗, ◦〉 by

A ∗ B = 1

i�
(AB − B A), A ◦ B = 1

2
(AB + B A). (8)

The representation of operations 〈∗, ◦〉 by (8) are defined by the following relationship between the
associative algebra and Lie, Jordan algebras. The replacement of the operation of multiplication AB
in an associative algebra M by the operation of commutation [A, B] = AB − BA, makes it into a
Lie algebra M( − ). If M is an algebra over a commutative field F, then M( − ) is also an algebra over
the same field. For every Lie algebra L over an arbitrary commutative field F there exists an associative
M over the same field such that L can be isomorphically embedded in the algebra M( − ). This is the
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Poincare-Birkhoff-Witt theorem (see, for example, Ref. 24). The replacement of the operation of
multiplication AB in an associative algebra M by the operation [A, B]+ = (1/2)(AB + BA), makes
it into a Jordan algebra M( + ). If M is an algebra over a commutative field F, then M( + ) is also an
algebra over the same field. The algebra M( + ) is called the special algebra. The Jordan algebras that
are not special are called exceptional. The exceptional Jordan algebras are not considered in this
paper.

The imaginary unit “i” is used in order to Lie multiplications of self-adjoint operators A ∗ B be
self-adjoint. The existence of the parameter � in relation (7) it allows us to use the well-known form
of the Weyl quantization (see Sec. 5.1. in Ref. 19 and Chap. 17.2 in Ref. 14), and to consider the
classical limit.

The Lie-Jordan algebra is an algebraic structure that gives a uniform description of classical and
quantum systems. The case � = 0 corresponds to transition from a nonassociative Jordan algebra
into associative. Common algebraic properties of classical and quantum systems are not depend
on relation (7). Note that uncertainty relations for quantum non-Hamiltonian systems should be
considered in the Schrödinger-Robertson form since it allows us to take into account Lie-Jordan
algebra of quantum observables.

Let us consider a time evolution of quantum observables of non-Hamiltonian quantum systems.
It can be described by the Heisenberg equation

d At

dt
= L(At ),

where L is an infinitesimal generator of the quantum dynamical map. If we consider a Cauchy
problem for this equation in which the initial condition is given by A at the time t = 0, then its
solution can be written in the form At = �t(A).

The quantum system is Hamiltonian if L is a differentiation on operator algebras with respect
to Lie, Jordan, and associative multiplication operations, i.e., the conditions

JL(A, B) = L(A ∗ B) − L(A) ∗ B − A ∗ L(B) = 0, (9)

KL(A, B) = L(A ◦ B) − L(A) ◦ B − A ◦ L(B) = 0, (10)

ZL(A, B) = L(AB) − L(A)B − AL(B) = 0 (11)

hold for all A, B ∈ D(L) ⊂ M. In the case (8), we have

ZL(A, B) = KL(A, B) + i�

2
JL(A, B).

and condition (11) is equivalent to (9) and (10). A quantum system is called a non-Hamiltonian
system, if there exist observables A and B, such that the inequality

JL(A, B) �= 0 (12)

is valid. As a result, we have

ZL(A, B) �= 0. (13)

If the time evolution, which is described by �t, is not an endomorphism with respect to multiplication
in operator algebra M, then there exist observables A and B such that

�t (A, B) = �t (AB) − �t (A)�t (B) �= 0. (14)

The total time derivative of (14) gives( d

dt
�t (A, B)

)
t=0

= L(AB) − L(A)B − AL(B).

It is easy to see that �t(A, B) = 0 for all t > 0 if condition (11) is satisfied. As a result, the infinitesimal
generator is a derivative on the operator algebra, and the quantum system is Hamiltonian.

In uncertainty relations (1)–(3) the time dependence of quantum observables is not considered.
In the general case, quantum observables depend on time. A time evolution �t of observables
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of a non-Hamiltonian quantum system is not an endomorphism with respect to Lie, Jordan, and
associative multiplications in general. In this case, there exist observables A, B ∈ M such that

�t (AB) �= �t (A)�t (B),

�t (A ∗ B) �= �t (A) ∗ �t (B),

�t (A ◦ B) �= �t (A) ◦ �t (B).

The map �t is an endomorphism M with respect to these multiplicative binary operations if and
only if the system is locally Hamiltonian.14

Therefore, we should define four types of variance (second moments) for non-Hamiltonian
dynamics.

(1) The average value of square deviation of the evolution of observable X,

D(1)
t (X ) =

〈(
�t (X − 〈Xt 〉)

)2
〉

=
〈(

Xt − 〈Xt 〉
)2

〉
. (15)

(2) The average value of square of the evolution of deviation of observable

D(2)
t (X ) =

〈(
�t (X − 〈X〉)

)2
〉
. (16)

(3) The average value of the evolution of square of deviation of observable

D(3)
t (X ) =

〈
�t

((
X − 〈X〉

)2)〉
. (17)

(4) The average (expected) value of the evolution of square of deviation of observable at different
time moments

D(4)
t (X ) =

〈
�t

((
X − 〈Xt 〉

)2)〉
, (18)

where Xt = �t(X).
In addition, we should consider the same types of standard deviations �

(k)
t X = D(k)

t (X )
and the covariance between two quantum observables with finite second moments Cov

(k)
t (X, Y ),

k = 1, 2, 3, 4.
In quantum non-Hamiltonian dynamics, there exists an effect of appearing noncommutativity.14

Let A, B be commutative observables ([A, B] = 0). In general, the evolution gives

[At , Bt ] = [�t (A),�t (B)] �= 0.

This is the “environment-induced noncommutativity”.
If the time evolution of the non-Hamiltonian system is an endomorphism of a linear operator

space, then

�t (a A + bB) = a�t (A) + b�t (B), �t (0) = 0 (19)

hold for all A, B ∈ M and a, b ∈ C. In general, the time evolution of non-Hamiltonian systems is
not an endomorphism of a linear space structure, since these exist strange attractors17 that cannot be
considered as the linear spaces.

Note that it is possible to generalize Lie and Jordan operations such that it will be “invariant”
with respect to time evolution. This generalization is realized as one-parameter operations by t-
deformation of the underlying algebraic structure (see Secs. 19.1.–19.7. in Ref. 14).
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IV. DERIVATION OF UNCERTAINTY RELATIONS

Let us consider the uncertainty relation for quantum observables X and Y. In general, the quantum
observables depend on time Xt = �t(X) and Yt = �t(Y) for t > 0. Then, we define

A = Xt − 〈Xt 〉 I, B = Yt − 〈Yt 〉 I, (20)

where I is an identity operator. The symbol 〈 〉 denotes the average value by

〈Xt 〉 = T r [ρXt ],

where ρ is a matrix density operator (statistical operator), which describes a quantum state. If X and
Y are self-adjoint operators, then A† = A, B† = B. Note that A = Xt − 〈Xt〉I cannot be considered
as �t(X − 〈X〉I) since

�t (X − 〈X〉 I ) = �t (X ) − 〈X〉 �t (I ) = Xt − 〈X〉 I �= Xt − 〈Xt 〉 I. (21)

Moreover to use equalities (21), we should assume that �t is an endomorphism of a linear space struc-
ture on a set of quantum observables. In this section, we will not assume that �t is an endomorphism
of a linear space.

Let us consider the operator C = zA + iB, where z is a complex number. Using the non-negativity
property of average values in the form 〈C†C〉 ≥ 0, we get the inequality〈

(z∗ A − i B)(z A + i B)
〉 ≥ 0

for all z ∈ C. Using the linear property for the average values

〈a A + bB〉 = a 〈A〉 + b 〈B〉
for a, b ∈ C, we obtain

z∗z
〈
A2

〉 + i z∗ 〈AB〉 − i z 〈B A〉 + 〈
B2

〉 ≥ 0.

This inequality can be rewritten in the form

(z2
1 + z2

2)
〈
A2

〉 + i z1 〈AB − B A〉 + z2 〈AB + B A〉 + 〈
B2

〉 ≥ 0, (22)

where z1 and z2 are real and imagine parts of z = z1 + iz2.
Using the Lie and Jordan operations (8) on the operator algebras of quantum observables, we

rewrite inequality (22) in the form

(z2
1 + z2

2)
〈
A2

〉 − �z1 〈A ∗ B〉 + 2z2 〈A ◦ B〉 + 〈
B2

〉 ≥ 0.

Using the Euler formula, we can represent z1 and z2 by the relations z1 = x cos ϕ, z2 = x sin ϕ. Then
〈
A2

〉
x2 +

(
2 〈A ◦ B〉 sin ϕ − � 〈A ∗ B〉 cos ϕ

)
x + 〈

B2
〉 ≥ 0.

This inequality should be satisfied for all ϕ ∈ R and all x ≥ 0. It is easy to see that the inequality
ax2 + bx + x ≥ 0 holds for all x ≥ 0 for two cases: (1) the discriminant D = b2 − 4ac is negative;
(2) the conditions D ≥ 0, b ≥ 0, c ≥ 0 hold. Using the phase shift method for linear combination of
a cosine and a sine of equal angles, it is easy to prove that the condition

b = 2 〈A ◦ B〉 sin ϕ − � 〈A ∗ B〉 cos ϕ ≥ 0

cannot be realized for all ϕ ∈ R. Then the discriminant of this quadratic polynomial should be
negative

D =
(

2 〈A ◦ B〉 sin ϕ − � 〈A ∗ B〉 cos ϕ
)2

− 4
〈
A2

〉 〈
B2

〉 ≤ 0 (23)

for all ϕ ∈ R. We can be rewritten (23) in the form

〈
A2

〉 〈
B2

〉 ≥ 1

4

(
2 〈A ◦ B〉 sin ϕ − � 〈A ∗ B〉 cos ϕ

)2
. (24)
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This inequality should satisfied for all ϕ ∈ R. Using the relation of the phase shift method

a sin ϕ − b cos ϕ =
√

a2 + b2 sin(ϕ − α),

where sin α = b/
√

a2 + b2, we obtain

〈
A2〉 〈

B2〉 ≥
(

�
2

4
〈A ∗ B〉2 + 〈A ◦ B〉2

)
sin2(ϕ − α) (25)

for all ϕ ∈ R, where

sin α = � 〈A ∗ B〉√
�2 〈A ∗ B〉2 + 4 〈A ◦ B〉2

.

Then, we use sin 2(ϕ + α) ≤ 1. As a result, we have the uncertainty relation

〈
A2

〉 〈
B2

〉 ≥ �
2

4
〈A ∗ B〉2 + 〈A ◦ B〉2 . (26)

Using the definitions (20) of A and B, we get

(�Xt )
2 (�Yt )

2 ≥ �
2

4
〈Xt ∗ Yt 〉2 +

(
〈Xt ◦ Yt 〉 − 〈Xt 〉 〈Yt 〉

)2
, (27)

which holds for all t ≥ 0. This is the uncertainty relation of Schrödinger-Robertson-type for quantum
observables Xt and Yt. The Poincare-Birkhoff-Witt theorem and the assumption that we consider
only special Jordan algebras allows us to use the representation of operations 〈∗, ◦〉 in the form (8).
Note that relation (27) for non-Hamiltonian systems can be represented in the form (3) only if 〈Xt〉
= 〈Yt〉 = 0 for all t ≥ 0.

For non-Hamiltonian system (4) uncertainty relation (27) has the form

D(1)
t (Q) D(1)

t (P) ≥ �
2

4
e−4λt +

(
K (1)

qq

〈
Q2

〉 + K (1)
pp

〈
P2

〉 + K (1)
qp 〈Q ◦ P〉 −

−L (1)
qq 〈Q〉2 − L (1)

pp 〈P〉2 − L (1)
qp 〈Q〉 〈P〉

)2
, (28)

where

K (1)
qq = L (1)

qq = e−2λt
(
−mω2

ν

)
sinh(νt)

(
cosh(νt) + μ

ν
sinh(νt)

)
, (29)

K (1)
pp = L (1)

pp = e−2λt + 1

mν
sinh(νt)

(
cosh(νt) − μ

ν
sinh(νt)

)
, (30)

K (1)
qp = L (1)

qp = e−2λt
(

1 − 2
ω2

ν2
sinh2(νt)

)
. (31)

V. SPECIAL CASES OF UNCERTAINTY RELATION

(1) If Xt and Yt are commutative operators, then Xt ∗ Yt = 0 for all t > 0 and inequality (27)
gives

(�Xt )
2 (�Yt )

2 ≥
(
〈Xt ◦ Yt 〉 − 〈Xt 〉 〈Yt 〉

)2
. (32)

For example, X ∗ Y = 0 if X = Qk and Y = Ql or X = Qk and Y = Pl, where k �= l. Foe
quantum non-Hamiltonian systems there exists an effect of appearing (“environment-induced”)
noncommutativity:14 The Lie multiplication of quantum observables ([Qk

0, Ql
0] = 0) can evolve to

the operator, which is not equal to Lie multiplication of the evolved observables ([Qk
t , Ql

t ] �= 0).
Only if 〈Xt ◦ Yt〉 = 〈Xt〉 〈Yt〉, then we can have (�Xt)2 (�Yt)2 = 0.
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In classical statistical mechanics, we have the same relation

(�Xt )
2 (�Yt )

2 ≥
(
〈Xt ◦ Yt 〉c − 〈Xt 〉c 〈Yt 〉c

)2
,

where X ◦ Y = X(t, q, p)Y(t, q, p), and

〈X〉c =
∫

dqdp ρ(t, q, p)X (t, q, p).

Note that relation (32) can be obtained from (24) for ϕ = π /2.
(2) If Xt and Yt are anticommutative operators, then Xt ◦ Yt = 0 for all t > 0, and inequality (27)

gives

(�Xt )
2 (�Yt )

2 ≥ �
2

4
〈Xt ∗ Yt 〉2 + 〈Xt 〉2 〈Yt 〉2 . (33)

Note that this relation can be derived from (24) for ϕ = 0.
(3) It is easy to see that we have the usual form of the Heisenberg uncertainty relation

〈
(Xt − 〈Xt 〉 I )2〉 〈(Yt − 〈Yt 〉 I )2〉 ≥ �

2

4
〈Xt ∗ Yt 〉2 (34)

only for the case

〈Xt Yt + Yt Xt 〉 − 2 〈Xt 〉 〈Yt 〉 = 0. (35)

Note the condition 〈XtYt + YtXt〉 = 0,9 cannot give the Heisenberg’s uncertainty relation, since the
average values can be nonzero, and

〈
(Xt − 〈Xt 〉 I )2

〉 〈
(Yt − 〈Yt 〉 I )2

〉 ≥ �
2

4
〈Xt ∗ Yt 〉2 + 〈Xt 〉2 〈Yt 〉2 . (36)

In general, condition (35) is not held and uncertainty relation (27) should be used instead of relation
(34) of the Heisenberg-type.

(4) If the average values of Xt and Yt are equal to zero (〈Xt〉 = 〈Yt〉 = 0) for all t > 0, then the
uncertainty relation

〈
(�t (X ))2

〉 〈
(�t (Y ))2

〉 ≥ �
2

4
〈�t (X ) ∗ �t (Y )〉2 + 〈�t (X ) ◦ �t (Y )〉2 (37)

should be held for all time moments t > 0.

VI. UNCERTAINTY RELATION FOR COORDINATE AND MOMENTUM

In order to consider an uncertainty relation for operators of coordinate Qk and momenta Pk, we
should use the Heisenberg canonical commutation relations

[Qk, Pl ] = i�δkl I, [Qk, Ql] = [Pk, Pl ] = 0, k, l = 1..n. (38)

To consider uncertainty relation for Qk
t = �t (Qk) and Pl

t = �t (Pk), we should use the canonical
commutation relations in the form

[Qk
t , Pl

t ] = i�δkl I, [Qk
t , Ql

t ] = [Pk
t , Pl

t ] = 0, k, l = 1..n, (39)

for all t ≥ 0.
There is the following statement.14 If the rule of term-by-term differentiation (Leibnitz rule)

with respect to time and the canonical commutation relations (39) are valid for all t > 0, then the
conditions

JL(Qk
t , Pl

t ) = JL(Qk
t , Ql

t ) = JL(Pk
t , Pl

t ) = 0

are satisfied for all t > 0, where JL(A, B) is defined by (9). As a result, the quantum system
is Hamiltonian id KL(A, B) = 0. To prove this statement, we consider differentiation of the first
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relation in (39) with respect to time t,

d

dt
[Qk

t , Pl
t ] = 0.

The rule of term-by-term differentiation for the commutator [Qk
t , Pl

t ] has the form

d

dt
[Qk

t , Pl
t ] = [

d

dt
Qk

t , Pl
t ] + [Qk

t ,
d

dt
Pl

t ].

Consequently, we have

[
d

dt
Qk

t , Pl
t ] + [Qk

t ,
d

dt
Pl

t ] = 0.

Using the equations of motion

d Qk
t

dt
= L(Qk

t ),
d Pk

t

dt
= L(Pk

t ),

we obtain

[L(Qk
t ), Pl

t ] + [Qk
t ,L(Pl

t )] = 0.

Using the usual condition L(I ) = 0,14 we get

L([Qk
t , Pl

t ]) − [L(Qk
t ), Pl

t ] − [Qk
t ,L(Pl

t )] = 0.

As a result, we have

JL(Qk
t , Pl

t ) = 0

for Lie multiplication. Similarly, considering other canonical commutation relations (39), we obtain
all of the identities

JL(Xk
t , Xl

t ) = 0,

where Xk
t = Qk

t , Pk
t . Then, the quantum system is Hamiltonian if KL(Xk

t , Xl
t ) = 0.

As a result, if the rule of term-by-term differentiations and the canonical commutation relations
are valid for all t ≥ 0, then the quantum system is Hamiltonian for the case KL(Xk

t , Xl
t ) = 0. For

quantum non-Hamiltonian systems, either the canonical commutation relations or Leibnitz rule for
multiplication is not valid. Note that a generalization [ , ]t (t-invariant commutator) of the commutator
[ , ], such that the commutation relations

[Qk
t , Ql

t ]t = 0, [Pk
t , Pl

t ]t = 0, [Qk
t , Pl

t ]t = i�δkl ,

are satisfied for all t ≥ 0 for quantum non-Hamiltonian system are discussed in Ref. 14.
It was proved that we cannot use the commutation relations

Qt ∗ Pt = I, Qt ∗ I = Pt ∗ I = 0

for operators of coordinate and momentum (X = Q and Y = P) of non-Hamiltonian quantum system.
As a result, inequality (25) cannot be represented in the form

〈
(Qt − 〈Qt 〉 I )2

〉 〈
(Pt − 〈Pt 〉 I )2

〉 ≥ �
2

4
(40)

or
〈
(Qt − 〈Qt 〉 I )2

〉 〈
(Pt − 〈Pt 〉 I )2

〉 ≥ �
2

4
+ (〈Qt ◦ Pt 〉 − 〈Qt 〉 〈Pt 〉)2 (41)

for non-Hamiltonian quantum systems. In general, we should use the inequality

〈
(Qt − 〈Qt 〉 I )2〉 〈(Pt − 〈Pt 〉 I )2〉 ≥ �

2

4
〈Qt ∗ Pt 〉2 + (〈Qt ◦ Pt 〉 − 〈Qt 〉 〈Pt 〉)2 (42)

for coordinate and momentum of non-Hamiltonian system.
If the time evolution �t of a non-Hamiltonian quantum system is an endomorphism of a linear

operator space, then we have additional uncertainty relations that will be considered in Sec. VII.
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VII. FEATURES OF THE UNCERTAINTY RELATION FOR NON-HAMILTONIAN SYSTEMS

The linear property for �t is not used to derive inequalities (27). If the time evolution of the
non-Hamiltonian system is an endomorphism of a linear operator space, then

�t (a A + bB) = a�t (A) + b�t (B), �t (0) = 0, �t (I ) = I (43)

hold for all A, B ∈ M and a, b ∈ C. In general, �t is not an endomorphism of the linear space.
It is well-known that strange attractors of classical non-Hamiltonian systems are not linear spaces.
In quantum theory, there are analogous situations for quantum analogs of (regular or strange)
attractors. If linear condition (43) holds, then we have additional uncertainty relations. To derive
these inequalities, we define

A0 = X − 〈X〉 I, B0 = Y − 〈Y 〉 I.

We can consider the operator C0 = zA0 + iB0, where z is a complex number, and we can use the
non-negativity property of average values in two following different forms.

(1) Using the non-negativity property of average values in the form〈
(�t (C0))†�t (C0)

〉 ≥ 0,

we get that the inequality

〈
(�t (A0))2

〉 〈
(�t (B0))2

〉 ≥ �
2

4
〈�t (A0) ∗ �t (B0)〉2 + 〈�t (A0) ◦ �t (B0)〉2 (44)

holds for all t > 0. Here
〈
(�t (A0))2

〉 = D(2)
t (X ) and

〈
(�t (B0))2

〉 = D(2)
t (Y ). Note that

�t (A0) = Xt − 〈X〉 I �= Xt − 〈Xt 〉 I.

As a result, (44) is not equivalent to (27).
For non-Hamiltonian quantum system (4) uncertainty relation (27) has the form

D(2)
t (Q) D(2)

t (P) ≥ �
2

4
e−4λt +

(
K (2)

qq

〈
Q2

〉 + K (2)
pp

〈
P2

〉 + K (2)
qp 〈Q ◦ P〉 −

− L (2)
qq 〈Q〉2 − L (2)

pp 〈P〉2 − L (2)
qp 〈Q〉 〈P〉

)2
, (45)

where the coefficients are

K (2)
qq = K (1)

qq , K (2)
pp = K (1)

pp , K (2)
qp = K (1)

qp , (46)

L (2)
qq = −mω2

ν
e−λt sinh(νt), (47)

L (2)
pp = 1

mν
e−λt sinh(νt), (48)

L (2)
qp = e−λt

(
cosh(νt) + μ

ν
sinh(νt)

)
+ e−λt

(
cosh(νt) − μ

ν
sinh(νt)

)
− 1. (49)

(2) The quantum dynamical map �t satisfies the condition �t(A) ≥ 0 if A ≥ 0 for all t ≥ 0.14 Using
the non-negativity property of average values in the form〈

�t (C
†
0C0)

〉
≥ 0,

we get the uncertainty relation

〈
�t (A2

0)
〉 〈

�t (B2
0 )

〉 ≥ �
2

4
〈�t (A0 ∗ B0)〉2 + 〈�t (A0 ◦ B0)〉2 . (50)
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Here
〈
�t (A2

0)
〉 = D(3)

t (X ) and
〈
�t (B2

0 )
〉 = D(3)

t (Y ). Note that there is no the factor e− 4λt in relation
(51) since 〈�t(A0 ∗ B0)〉 = 1.

For non-Hamiltonian system (4) uncertainty relation (27) has the form

D(3)
t (Q) D(3)

t (P) ≥ �
2

4
+

(
K (3)

qq

〈
Q2

〉 + K (3)
pp

〈
P2

〉 + K (3)
qp 〈Q ◦ P〉 −

− L (3)
qq 〈Q〉2 − L (3)

pp 〈P〉2 − L (3)
qp 〈Q〉 〈P〉

)2
, (51)

where the coefficients K(3) and L(3) are expressed in terms of the coefficients that are defined by
Eqs. (3.77) and (3.78) in the paper.12

It is well-known that the relations

�t (AB) = �t (A)�t (B), �t (A2) = (�t (A))2, (52)

�t (A ∗ B) = �t (A) ∗ �t (B), �t (A ◦ B) = �t (A) ◦ �t (B) (53)

hold for Hamiltonian quantum systems. As a result, inequalities (44) and (50) are equivalent. In
general, relations (52) and (53) are not realized for non-Hamiltonian quantum systems, and the
systems have the following unusual properties:

(1) A time evolution �t of observables of a quantum non-Hamiltonian system is not an
endomorphism14 with respect to Lie, Jordan, and associative multiplications. The multipli-
cation of quantum observables evolves to the operator, which is not equal to multiplication of
the evolved observables

�t (AB) �= �t (A)�t (B), �t (A2) �= (�t (A))2. (54)

As a result, inequalities (44) and (50) are not equivalent.
(2) In non-Hamiltonian quantum dynamics, there exists an effect of appearing noncommutativity.

In general, the commutative observables A and B (A ∗ B = 0) can evolve into noncommutative
observables At = �t(A) and Bt = �t(B),

[At , Bt ] = [�t (A),�t (B)] �= 0

for t > 0, i.e., At ∗ Bt �= 0.
(3) In general, the same effect can exist for Jordan’s multiplication of quantum observables.

The anticommutative observables A and B (A ◦ B = 0) can evolve into non-anticommutative
observables At = �t(A) and Bt = �t(B): At ◦ Bt �= 0 for t > 0.

All these effects and properties affect on the right hand side of inequalities (44) and (50). As a
result, it is necessary to use both uncertainty relations (44) and (50) in addition to relation (27).

VIII. CONCLUSION

In well-known uncertainty relations (1)–(3), the time dependence of quantum observables is
not considered. In the general case, quantum observables depend on time. A time evolution �t of
observables of a non-Hamiltonian quantum system is not an endomorphism with respect to Lie,
Jordan, and associative multiplications in general. The evolution �t is an endomorphism M with
respect to these multiplicative binary operations if and only if the system is locally Hamiltonian.14

We consider the uncertainty relations for non-Hamiltonian quantum systems in the Schrödinger-
Robertson form by using the Lie-Jordan algebra for a set of quantum observables. We take into
account that a time evolution of observables of a non-Hamiltonian quantum system is not an
endomorphism with respect to Lie, Jordan, and associative multiplications. Therefore, we define
four types of variance (second moments) for non-Hamiltonian dynamics: (1) The average value
(15) of square deviation of the evolution of observable; (2) The average value (16) of square of
the evolution of deviation of observable; (3) The average value (17) of the evolution of square of
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deviation of observable. In addition, it is possible to consider the average value (18) of the evolution
of square of deviation of observable at different time moments. The same types of standard deviations
and the covariance between two quantum observables with finite second moments.

Note that it is possible to generalize a kinematical structure such that it will be “invariant”
with respect to time evolution. This generalization should be connected with a notion of one-
parameter operations and t-deformation of the underlying algebraic structure (see Secs. 19.1.– 19.7. in
Ref. 14).

In general, we have the following unusual properties for non-Hamiltonian quantum systems: (1)
A time evolution �t of observables of a quantum non-Hamiltonian system is not an endomorphism14

with respect to Lie, Jordan, and associative multiplications. The multiplication of quantum observ-
ables evolves to the operator, which is not equal to multiplication of the evolved observables. This is
so called the “environment-induced noncommutativity”; (2) In non-Hamiltonian quantum dynamics,
there exists an effect of appearing noncommutativity. In general, the commutative observables A and
B (A ∗ B = 0) can evolve into noncommutative observables (At ∗ Bt = 0); (3) The anticommutative
observables A and B (A ◦ B = 0) can evolve into non-anticommutative observables (At ◦ Bt = 0).

All these effects and properties affect on the right hand side of uncertainty relations (44) and
(50). As a result, it is necessary to use both inequalities (44) and (50) in addition to relation (27) in
non-Hamiltonian quantum dynamics.

In general, the time evolution of non-Hamiltonian systems is not an endomorphism of a linear
space structure, since these exist strange attractors17 that cannot be considered as the linear spaces.
In quantum theory, there are analogous situations for quantum analogs of (regular or strange)
attractors.15, 16 The linear property for time evolution �t is not used to derive inequalities (27). We
have additional uncertainty relations (44) and (50) only if linear property (43) holds.
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