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A review of different approaches to describe anisotropic fractal media is proposed.
In this paper, differentiation and integration non-integer dimensional and multi-
fractional spaces are considered as tools to describe anisotropic fractal materials and
media. We suggest a generalization of vector calculus for non-integer dimensional
space by using a product measure method. The product of fractional and non-integer
dimensional spaces allows us to take into account the anisotropy of the fractal media
in the framework of continuum models. The integration over non-integer-dimensional
spaces is considered. In this paper differential operators of first and second orders for
fractional space and non-integer dimensional space are suggested. The differential
operators are defined as inverse operations to integration in spaces with non-integer
dimensions. Non-integer dimensional space that is product of spaces with different
dimensions allows us to give continuum models for anisotropic type of the media.
The Poisson’s equation for fractal medium, the Euler-Bernoulli fractal beam, and the
Timoshenko beam equations for fractal material are considered as examples of appli-
cation of suggested generalization of vector calculus for anisotropic fractal materials
and media. C© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4892155]

I. INTRODUCTION

Fractals are measurable metric sets with non-integer dimensions.1, 2 The basic property of the
fractal is non-integer Hausdorff dimension that should be observed at all scales. The definition of
the Hausdorff dimension requires the diameter of the covering sets to vanish. The fractal structure of
real materials cannot be observed on all scales. This structure exists only for scales R > R0, where
R0 is the characteristic size of atoms or molecules of fractal media. Isotropic fractal materials can
be characterized by the relation between the mass MD(WB) of a ball region WB of fractal medium,
and the radius R of this ball in the form

MD(WB) = M0

(
R

R0

)D

, R/R0 � 1. (1)

The parameter D is called the mass dimension of fractal medium. The parameter D, does not depend
on the shape of the region WB , or on whether the packing of sphere of radius R0 is close packing,
a random packing or a porous packing with a uniform distribution of holes. Anisotropic fractal
materials can be characterized by the power-law relation for the mass of the parallelepiped region
WP in the form

MD(WP ) = M0

(
Lx

R0

)α1
(

L y

R0

)α2
(

Lz

R0

)α3

, min{Lx , L y, Lz} � R0, (2)

where the parameter αk is non-integer dimension along Xk-axis, k = 1, 2, 3, and Lx, Ly, Lz represent
three edges that meet at one vertex. The parameter αk describes how to increase the medium mass
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in the case of increasing the size of the parallelepiped along one axis, when the parallelepiped sizes
along other axes do not change. The sum D = α1 + α2 + α3 is called the fractal mass dimension
of the anisotropic fractal medium.

Using (1) and (2), we can define a fractal material as a medium with non-integer mass dimension.
The non-integer dimension does not reflect completely all specific properties of the fractal media, but
it is an main characteristic of fractal media and materials. For this reason, we assume that continuum
models with non-integer dimensional spaces allow us to derive important conclusions about the
behavior of the fractal media.

The main ways of describing of fractal media can be conventionally divided into the following
five approaches.

(1) Analysis on fractal approach: The first approach is based on the use of methods of “Analysis
on fractals.”3–8 Unfortunately, a possibility of application of the “Analysis on fractals” to solve
differential equations on fractals4 for real problems of fractal materials is very limited due to weak
development of this area of mathematics to the present time.

(2) Fractional-differential continuum model approach: The second approach is based on the use
of the fractional derivatives of non-integer orders with respect to space coordinates to describe some
properties of fractal materials.9 Therefore, the correspondent models can be called the fractional-
differential models. It has been suggested by Carpinteri and co-workers in Refs. 10,11, and 12, where
so-called local fractional derivatives are used, and then developed in Refs. 13–19. Unfortunately,
there are not enough differential equations with these fractional derivatives that are solved for
various problems of fractal materials. It should be noted that the usual Leibniz rule does not hold20

for derivatives of non-integer orders (and integer orders n �= 1). It is a characteristic property of
fractional derivatives.

(3) Fractional-integral continuum model approach: The third approach has been suggested in
Refs. 21–27 and it is based on application of continuum models of fractal media. These models
can be called fractional-integral continuum model because the integrations of non-integer orders are
used. The kernels of fractional integrals are defined by power-law density of states.27 The orders of
fractional integrals are equal to the mass (charge or other physical) dimensions of media. In these
models, the density of states is applied in addition to the notion of distribution functions such as
density of mass, density of charge. There are a lot of applications of these continuum models in
different fields of mechanics and physics (see Refs. 27 and references cited therein). These models
have been applied by Ostoja-Starzewski in Refs. 28–32. A generalization of fractional-integral
continuum models for anisotropic fractal media has been suggested by Ostoja-Starzewski and co-
workers in Refs. 33–39. In these models, the differential operators are modified by the density of
states. However, these operators have integer-order differential operators.

(4) Fractional space approach: The fourth approach uses the concept of a fractional space, which
is characterized by non-integer (fractional) powers of coordinates. The fractional space approach
has been suggested in Refs. 40–42 and then it is used for applications in different areas27, 43–46

(see also Refs. 47–50). This approach has been developed by Calcagni in Refs. 51–54 (see also
Refs. 55 and 56), and then it was generalized for anisotropic case by using a multi-fractional
space (“multi-scale space”) in Refs. 57–59. The first interpretation of the fractional phase space is
connected with fractional dimension space. The fractional dimension interpretation follows from
the formulas for dimensional regularizations and it was suggested in Ref. 40. In Refs. 41 and 42 the
second interpretation of the fractional phase space is considered. This interpretation follows from
the fractional measure40 of phase space that is used in the fractional integrals, i.e., the integrals of
non-integer orders. In the third interpretation, the fractional phase space is considered as a phase
space that is described by the fractional powers of coordinates and momenta. In addition, almost
all Hamiltonian systems with fractional phase space are non-Hamiltonian dissipative systems in the
usual phase space. It allows us to have the fourth interpretation of the fractional phase space as a
phase space of power-law type of non-Hamiltonian systems. Using fractional space approach we can
consider wide class of non-Hamiltonian systems as generalized Hamiltonian systems. Differentiation
in fractional space approach can be used in two forms: (a) the usual derivatives with respect to
fractional powers of coordinates;40–42 (b) the fractional derivatives of non-integer orders (fractional
derivatives) with respect to coordinates.51–54 The term “fractional space” is sometimes used for
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non-integer-dimensional space. This leads to confusion and misunderstanding. We use the term
“fractional space” for effective space Rn with coordinates that are non-integer powers of coordinates
of physical space. In the fractional space approach, the integer-dimensional spacesRn , the integration
and differentiation of integer-orders for these spaces are used. The coordinates of fractional space are
considered as effective coordinates that are fractional powers of real space coordinates of physical
system. Note that we also can use effective spaces for non-integer-dimensional physical spaces.
Expressions for the effective coordinates for fractional and non-integer-dimensional spaces differ
by factors in the density of states.

(5) Non-integer-dimensional space approach: The fifth approach is based on application of
integration and differentiation for non-integer-dimensional spaces. The integration in non-integer
dimensional space is well developed,60–62 and it has a wide application in quantum field theory.
The axioms for integrals in D-dimensional space is suggested in Ref. 60. This properties are natural
and necessary in applications.62 Integration in D-dimensional spaces with non-integer D is used for
dimensional regularization in quantum field theory62–64 and in physical kinetics.65, 66 Dimensional
regularization is a way to get infinities that occur when one evaluates Feynman diagrams in quantum
theory. Differentiation in non-integer dimensional space is considered in Refs. 61, 67, and 68. In
Refs. 61 and 67 it was offered only a scalar Laplacian for non-integer dimensional space. Unfortu-
nately, the gradient, divergence, curl operator, and the vector Laplacian104 are not considered in Refs.
61 and 67. The scalar Laplace operators, which are suggested by Stillinger in Ref. 61 and Palmer,
Stavrinou in Ref. 67 for non-integer dimensional spaces, have successfully been used for effective
descriptions in different areas of physics and mechanics such as quantum mechanics (see Refs. 61,
67, 70–91), the diffusion processes,92 the general relativity,93, 94 and the electrodynamics.95–101 All
these applications are based only on two generalization of the scalar Laplacian that are suggested in
Refs. 61 and 67. To expand the range of possible applications of models with non-integer dimen-
sional spaces it is important to have generalization of differential operators of first orders (gradient,
divergence, curl operators) and the vector Laplacian. The continuation in dimension is recently sug-
gested in Refs. 68 and 69 to define the gradient, divergence, curl operator, and the vector Laplacian
for non-integer dimensional space. It allows us to describe isotropic fractal media in the framework
of continuum models with non-integer dimensional spaces. To generalize non-integer dimensional
space approach for anisotropic fractal media we can suggest to use the product measure approach
suggested in Refs. 40–42 and 67. Generalizations of the gradient, divergence, curl operators, and the
vector Laplace operator for non-integer dimensional and fractional spaces to describe anisotropic
fractal media are not considered by the product measure approach in Refs. 61 and 67 and other
papers. These generalizations are suggested in this paper as an extension of approach proposed in
Refs. 68 and 69.

To present more clearly some of the differences between these five approaches to describe
fractal media distributed in the space Rn , we present the following table.

Approach Set/space Integration Differentiation
Analysis on fractal Fractal set Integration for

fractal set
Differentiation for

fractal set

Fractional-differential
continuum model

Integer-dimensional
space Rn

Integrals for Rn Fractional-order
derivatives for Rn

Fractional-integral
continuum model

Integer-dimensional
space Rn

Fractional-order
integrals for Rn

Integer-order
derivatives for Rn

Fractional space Integer-dimensional
(effective) space Rn

Integer-order integrals
for Rn

Integer-order
derivatives for Rn

Non-integer-
dimensional
space

Non-integer-
dimensional space

Integrals for non-integer-
dimensional space

Derivatives for non-
integer-dimensional

space
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Let us note some advantages and disadvantages of the third, fourth, and fifth approaches. The
forms of the functions that define the density of states in the third and fourth approaches have
arbitrariness due to the existence of different types of fractional integrals. In the fifth approach, the
form of density of states is uniquely fixed by the expression of volume of the region in the non-integer-
dimensional space. In the third approach practically all properties of fractal media are reduced to
coordinate transformations and to space curvature of power type. The transition by transformations
to an effective Euclidean space cannot be considered as a consistent approach to describe fractal
media. These transformations can be considered only as a part of mathematical method to solve
some equations in the framework of continuum models with non-integer-dimensional space, i.e., in
the fifth approach. Connections between the effective coordinates and physical coordinates for the
non-integer-dimensional space approach are uniquely defined. In addition, the fifth approach allows
us to use fractional derivatives and integrals to describe nonlocal type of fractal media that cannot
be described by other approaches.

In this paper, we consider the two last approaches based on the fractional space and the
non-integer dimensional space to describe anisotropic fractal materials and media. We suggest a
generalization of vector calculus for non-integer dimensional space that is product of spaces with
different dimensions. In Sec. II, we discuss the product measure method to describe anisotropic
fractal media. In Sec. III, the integration for fractional and non-integer-dimensional spaces are
considered. In Sec. IV, differential operations of first and second orders for fractional space and
non-integer-dimensional space are suggested. In Sec. V, we give some examples of application of
suggested generalization of vector calculus for anisotropic fractal materials and media.

II. PRODUCT MEASURE METHOD

A. Product measure for fractional and non-integer-dimensional spaces

The product measure method can be applied to the non-integer dimensional spaces and to the
fractional spaces:

(I) Product measure for the fractional spaces: The product measure approach for the fractional
spaces has been suggested in Refs. 41 and 42, where fractional phase space is considered with its
interpretation as a non-integer (fractional) dimensional space. In Refs. 41 and 42, the following
measure is used for generalized coordinates and momenta

dμα(xk) = c(α) |xk |α−1 dxk, (3)

where the numerical factor c(α) is

c(α) = 1/�(α). (4)

We use the factor c(α) in the form (4) to get a relation with the Riemann-Liouville fractional
integrations of non-integer order α. In Refs. 40–42, it has been shown that the integration for
the suggested fractional space is directly connected with integration for non-integer dimensional
space up to numerical factor. Therefore, the fractional space has been interpreted as a non-
integer dimensional space. The suggested fractional space approach has been used in Refs. 43–46
and 27 for configuration and phase spaces, and then it has been applied by Calcagni in
Refs. 51–54 for space-time. The differentiation and integration in fractional space are considered as
differentiation and integration with respect to non-integer (fractional) powers of coordinates. The
differential operator of the first order is defined40–45 by

Dα,k = ∂

∂ Qk
= 1

α |xk |α−1

∂

∂xk
, (5)

where Qk = sgn(x) |x |α . The product measure approach also used in Refs. 33–36, and 39 to describe
fractal media, but the fractional space as space with non-integer powers of coordinates has not been
considered. Instead of the Riemann-Liouville fractional integration, which is used in Refs. 40–46, the
product measure approach is used in Refs. 33–36, and 39 for so-called modified Riemann-Liouville
integrations in the integer dimensional spaces.
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(II) Product measure for the non-integer dimensional spaces: The product measure approach
has been suggested by Palmer and Stavrinou in Ref. 67 for non-integer dimensional spaces, where
each orthogonal coordinates has own dimension. The methods of this paper can be considered
as a modification of Stillinger’s61 and Svozils’s103 methods for the product measure approach. In
Ref. 67, the product of the following single-variable measures is used

dμαk (xk) = c(αk) |xk |αk−1 dxk (6)

with the numerical factor

c(α) = 2 πα/2

�(α/2)
. (7)

Note that c(α) is equal to the surface area Sα(R) of α-sphere with the radius R = 1, where

Sα(R) = 2 πα/2

�(α/2)
Rα. (8)

The integration for non-integer dimensional space by product measure approach is described in
Ref. 67. The scalar Laplacian operator for non-integer dimensional spaces is also suggested in
Ref. 67 in the form

S�(α) =
3∑

k=1

( ∂2

∂x2
k

+ αk − 1

xk

∂

∂xk

)
, (9)

where (α) = (α1, α2, α3) is the multi-index. Unfortunately, definitions of the gradient, divergence,
curl operations, and the vector Laplacian are not considered in Ref. 67.

B. Type of anisotropic fractal media described by non-integer dimensional spaces

In this section, we describe a type of anisotropic fractal media that can be considered by approach
based on non-integer dimensional spaces.

Let us defined the parameter αk (k = 1; 2; 3) that describes the scaling property along Xk-axis
by

α1 = αx = D − dyz, (10)

where D is a non-integer mass dimension of the material. Here dyz is the non-integer dimension (for
example, the box-counting dimension) of the YZ-cross-section, which is perpendicular to the X-axis.
We should assume that non-integer dimension dyz of the YZ-cross-sections is the same for all points
along the X-axis (dyz(x) = dyz = const). If this condition is not satisfied, then we have a variable
order α1(x) that depends on the coordinates.

In general, the parameters dxy, dxz, dyz cannot be considered as dimensions of the boundaries
of fractal media. The boundary of fractal medium can be fractal surface with dimension Ds. In the
general case, Ds can be greater than two. The non-integer dimensions of the cross-section are always
less than two

0 < dxy < 2, 0 < dxz < 2, 0 < dyz < 2. (11)

Similarly (10), we can define other two parameters α2 = αy and α3 = αz.
Let L1, L2, and L3 be the basis vectors that define a three-dimensional parallelepiped in R3.

The parallelepiped region is the convex hull for these vectors

WP :=
{

n=3∑
k=1

ak Lk : 0 ≤ ak ≤ 1

}
. (12)

For simplification we will consider the rectangular parallelepiped only. Anisotropic fractal material
can be characterized by the power-law relation for the mass MD(WP ) of the parallelepiped region
(12) in the form

MD(WP ) = M0

(
Lx

R0

)α1
(

L y

R0

)α2
(

Lz

R0

)α3

, (13)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

92.38.190.109 On: Thu, 07 Aug 2014 13:39:58



083510-6 Vasily E. Tarasov J. Math. Phys. 55, 083510 (2014)

where the parameter αk is non-integer dimension along Xk-axis, k = 1, 2, 3, and Lk = |Lk| are the
magnitudes of vectors Lk, k = 1, 2, 3. The values Lk can be considered as three edges that meet at
one vertex, and R0 is a characteristic size of particles (atoms or molecules) of fractal medium. The
parameter αk describes how to increase the mass medium in the case of increasing the size of the
parallelepiped region along one axis, when the parallelepiped sizes along other axes do not change.
The sum D = α1 + α2 + α3 is called the dimension of the anisotropic fractal medium.

In general, the parameters αk > 0 (k = 1, 2, 3) can be either less than unity or greater than unity.
In all cases, the following conditions should be satisfied

0 < α1 + α2 + α3 = D ≤ 3. (14)

For example, the conditions 0 < αk < 1 for all k ∈ {1, 2, 3} hold for fractal media similar to 3D
Cantor dust. We assume that the parameter αk > 1 describes a fractal flow and motion of medium
in Xk-direction. This possibility is based on an assumption that trajectories of the medium particles
in the Xk-direction are fractal curve with the dimension αk > 1. For example, the Koch curve has αk

= ln (4)/ln (3) ≈ 1.262. We also assume that αk > 1 can be used for materials consisting of fractal
molecular curves or fractal chains.27

C. Single-variable measure

For the fractional space approach and the non-integer dimensional space approach, we can use
the single-variable measure

dμ(α, x) = c(α) |x |α−1 dx, (15)

where α > 0 is a parameter that will be considered as a non-integer (fractional) dimension of the
line, and c(α) is a function of α. Here, we take the absolute value of x in |x|α − 1 to consider positive
and negative values of x. For α = 1, the numerical factor c(α) must be equal to 1 in order to have

dμ(1, x) = dx .

Using the product measure approach for R3 with point coordinates x1, x2, x3, the single-variable
measures are

dμ(αk, xk) = c(αk) |xk |αk−1 dxk . (16)

In the product measure method we can use the following two ways to define a numerical factor c(αk).
In the first way of description, the factor is defined by a connection with integrals of non-integer
orders αk in the integer dimensional space. In the first way, the factor is defined by a connection with
integrals in spaces with non-integer dimensions αk along the Xk-axis.

Let us give the effective coordinates for these two cases.
(1) The fractional space approach is based on the use of the following new (effective) coordinates

Qk = Qk(αk, xk) = 1

�(αk + 1)
sgn(xk) |xk |α, (17)

that is connected with the single-variable measure of the form

dμ(αk, xk) = d Qk = 1

�(αk)
|xk |αk−1 dxk, (18)

where the numerical factor in the density of states is

c(α) = 1

�(α)
. (19)

This form of c(αk) is based on the connection of the Riemann-Liouville integrals of non-integer
orders αk.

(2) For non-integer dimensional space approach, we can use the effective coordinates

Xk = Xk(αk, xk) = παk/2

2 �(αk/2 + 1)
sgn(xk) |xk |αk , (20)
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that is connected with the single-variable measure61, 67 of the form

dμ(αk, xk) = d Xk = παk/2

�(αk/2)
|xk |αk−1 dxk . (21)

Here we take the density of states in the form

c(α) = πα/2

�(α/2)
, (22)

such that the area of the sphere with radius r is equal to

Sα−1(r ) = 2 πα/2

�(α/2)
rα−1. (23)

The absolute values |xk| can be interpreted as radii rk = |xk| of sphere with non-integer dimension
αk. The presence of a factor of 2 for Sα − 1 in (23) is due to the fact that for α = 1, the variable r is
integrated from − R to R, and when the limits are taken as 0 and R, one gets a factor of 2.

The space with coordinates (20) and the product of single-variable measures (21) can be
considered as a non-integer dimensional space. The parameter D = α1 + α2 + α3 can be interpreted
as a dimension of the space. For α1 = α2 = α3 = 1, we get D = 3, i.e., the dimension of space
is the usual integer dimension. If α1 = α2 = α3 = α, where 0 < α ≤ 1, we have a non-integer
dimensional space for isotropic fractal materials. Regardless of the isotropic or the anisotropic case,
the dimension of the space is given by

D = α1 + α2 + α3.

We have a non-integer dimensional space if at least one of the parameters αk is not equal to 1.

D. Density of states

A connection between the single-variable measure dμ(αk, xk) of non-integer dimensional space
and the measure dμ(1, xk) of integer dimensional space is

dμ(αk, xk) = c1(αk, xk) dμ(1, xk). (24)

The functions c1(αk, xk) should be considered as a density of states of fractal material27 along the
Xk-axis. We can define the density of states along the Xk-axis by the equation

c1(αx , x) = c3(D, x, y, z)

c2(dyz, y, z)
, (25)

where c3(D, x, y, z) is the density of state in the volume of material, and c2(dxy, x, y), c2(dxz, x, z),
c2(dyz, y, z) are density of states of the XY, XZ, YZ-cross-sections, respectively.

The interpretation of the functions c3(D, x, y, z),c2(dxy, x, y), c2(dxz, x, z), c2(dyz, y, z), and
c1(αk, xk), (k = 1, 2, 3), as densities of states has been suggested in Ref. 27. The density of states
cn describes how closely packed permitted states of particles in the space Rn . In Ref. 27 the density
of states is defined by integrations of non-integer orders that is also called the fractional integration.
For xk ∈ [ak; bk] the function c1(αk, xk) is defined in Ref. 27 as

c1(αk, xk) = 1

�(αk)
|xk − ak |αk−1. (26)

This form is connected with the Riemann-Liouville fractional integral. In Ref. 33, an expression for
c1(αk, xk) has been suggested in the form

c1(αk, xk) = αk |bk − xk |αk−1 (27)

that does not contain the gamma function. This form is connected with the modified Riemann-
Liouville fractional integral.
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In this paper, we use integration in non-integer dimensional space instead of fractional integra-
tion. Then we should use the density of states in the form

c1(αk, xk) = παk/2

�(αk/2)
|xk |αk−1 (28)

that is defined by the measure for integration in non-integer dimensional space. An application of
density of states in the form (28) allows us to get the expression for lengths∫ R

−R
dμ(α, x) = 2

∫ R

0
dμ(α, x) = 2πα/2

α�(α/2)
Rα = πα/2

�(α/2 + 1)
Rα = Vα(R) (29)

that coincides with the well-known value for non-integer dimensional volume.

III. INTEGRATION IN FRACTIONAL AND NON-INTEGER DIMENSIONAL SPACES

A. Product spaces and product measures

The integral for non-integer dimensional space is defined for a single-variable in Ref. 103. It is
useful for integrating spherically symmetric functions only. We can consider multiple variables by
using the product spaces and product measures.67

Using a collection of n = 3 measurable sets (Wk, μk, D) with k = 1, 2, 3, we form a Cartesian
product W = W1 × W2 × W3 of the sets Wk . The definition of product measures and an application
of Fubini’s theorem gives a measure for the product set W = W1 × W2 × W3 as

μB(W ) = (μα1 × μα2 × μα3 )(W ) =
n=3∏
k=1

μ(αk, Wk). (30)

Then integration over a function f on W is

∫
W

f (x1, x2, x3) dμB =
∫

W1

∫
W2

∫
W3

f (x1, x2, x3)
n=3∏
k=1

dμ(αk, xk). (31)

In this form, the single-variable measure may be used for each coordinate xk, which has an associated
non-integer dimension αk, by the equation

dμ(αk, xk) = c1(αk, xk) dxk, (k = 1, 2, 3), (32)

where c1(αk, xk) is the density of states of the form

c1(αk, xk) = παk/2

�(αk/2)
|xk |αk−1. (33)

Note that we use c1(αk, xk) without the factor 2.
Then the total dimension of W = W1 × W2 × W3 is D = α1 + α2 + α3.

B. Reproduce the single-variable integration

Let us reproduce the result for the single-variable integration in the form∫
W

f (x1, x2, x3) dμB = 2π D/2

�(D/2)

∫ ∞

0
f (r ) r D−1 dr (34)

for spherically symmetric function f(x1, x2, x3) = f(r) in W1 × W2 × W3, where r2 = (x1)2 + (x2)2

+ (x3)2. For this function, we can perform the integration in spherical coordinates (r, φ, θ ). The
Cartesian coordinates (x1, x2, x3) can be expressed by the spherical coordinates (r, ϕ, θ ), where r ∈
[0, ∞), ϕ ∈ [0, 2π ), θ ∈ [0, π ], by:

x1 = r sin θ cos ϕ, (35)
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x2 = r sin θ sin ϕ, (36)

x3 = r cos θ. (37)

In this case, Eq. (31) becomes ∫
W

dμB f (x1, x2, x3) =

= A(α1, α2, α3)
∫

W1

dx1

∫
W2

dx2

∫
W3

dx3 |x1|α1−1|x2|α2−1|x3|α3−1 f (x1, x2, x3) =

= A(α1, α2, α3)
∫ ∞

0
dr

∫ 2π

0
dϕ

∫ π

0
dθ J (r, θ ) rα1+α2+α3−3 ·

· | cos ϕ|α1−1 | sin ϕ|α2−1| sin θ |α1+α2−1| cos θ |α3−1 f (r ),

where

A(α1, α2, α3) = πα1/2

�(α1/2)

πα2/2

�(α2/2)

πα3/2

�(α3/2)
, (38)

and J(r, φ) = r2 sin θ is the Jacobian of the coordinate change.
Since the function is only dependent on the radial variable and not the angular variables, we get

the product of three integrals∫
W

dμB f (x1, x2, x3) = A(α1, α2, α3)
∫ ∞

0
f (r ) rα1+α2+α3−1 ·

·
∫ 2π

0
dϕ | cos ϕ|α1−1 | sin ϕ|α2−1

∫ π

0
dθ | sin θ |α1+α2−1 | cos θ |α3−1. (39)

Using Eq. (26) from Section 2.5.12 of Ref. 105, in the form∫ π/2

0
(sin x)μ−1 (cos x)ν−1 dx = �(μ/2) �(ν/2)

2 �((μ + ν)/2)
, (40)

where μ > 0, ν > 0, we have ∫ 2π

0
dϕ | cos ϕ|α1−1 | sin ϕ|α2−1 =

= 4
∫ π/4

0
dϕ (cos ϕ)α1−1 (sin ϕ)α2−1 = 2 �(α1/2) �(α2/2)

�((α1 + α2)/2)
, (41)

∫ π

0
dθ | sin θ |α1+α2−1 | cos θ |α3−1 =

= 2
∫ π/2

0
dθ (sin θ )α1+α2−1 (cos θ )α3−1 = �((α1 + α2)/2) �(α3/2)

�((α1 + α2 + α3)/2)
. (42)

Using D = α1 + α2 + α3, we obtain for f(x1, x2, x3) = f(r) the ralation∫
W

f (x1, x2, x3) dμ1(x1)dμ2(x2)dμ3(x3) = 2 π D/2

�(D/2)

∫ ∞

0
f (r ) r D−1 dr. (43)

This equation describes the D-dimensional integration of a spherically symmetric function, and
reproduces the result (34).

It is important to note that relation (43) holds only for density of states c(αk, xk) that corresponds
to the non-integer dimensional space (33). Equation (43) cannot hold only for density of states c1(αk,
xk) suggested in Refs. 22 and 33.
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IV. DIFFERENTIAL OPERATORS FOR FRACTIONAL AND NON-INTEGER
DIMENSIONAL SPACES

A. Laplace operator for non-integer dimensional and fractional spaces

Let us consider possible definitions of the scalar Laplace operators for non-integer dimensional
and fractional spaces.

(I) Scalar Laplace operators for non-integer dimensional space: The Laplacian operator for
non-integer dimensional space has been suggested in Ref. 67 in the form

S�(α) =
3∑

k=1

( ∂2

∂x2
k

+ αk − 1

xk

∂

∂xk

)
, (44)

where (α) = (α1, α2, α3). Unfortunately, definitions of differential operators of first order such as
gradient, divergence, curl operations are not considered in Ref. 67. The Laplacian operator (44) is
used in Refs. 98–102. In Ref. 102, the gradient, divergence, and curl operators are suggested only
as approximations of the square of the Laplace operator (9). The first order differential operator
proposed in Ref. 102 is considered as an approximation of (44) in the form

Dαk ,k ≈
( ∂

∂xk
+ αk − 1

2 xk

)
. (45)

For example, the gradient is

gradD ϕ ≈
3∑

k=1

( ∂ϕ

∂xk
+ αk − 1

2 xk
ϕ
)

ek, (46)

and the divergence for vector field u = uk ek is defined by

divD u ≈
3∑

k=1

(∂uk

∂xk
+ αk − 1

2 xk
uk

)
. (47)

Obviously, the corresponding scalar Laplacian

divD gradD ϕ ≈
3∑

k=1

(
∂2ϕ

∂x2
k

+ αk − 1

xk

∂ϕ

∂xk
+ (αk − 1)(αx − 3)

4 x2
k

ϕ

)
(48)

does not coincide with the operator (44).
(II) Scalar Laplace operators for fractional space: The scalar Laplace operators have been

suggested by Calcagni and Nardelli54 for fractional space-time. We can represent the suggested
equations for fractional space in the following forms

K1ϕ =
3∑

k=1

1

v(α, x)

∂

∂xk

(
v(α, x)

∂ϕ

∂xk

)
, (49)

K2ϕ =
3∑

k=1

1√
v(α, x)

∂2

∂x2
k

(√
v(α, x) ϕ

)
, (50)

and

Kα,lϕ =
3∑

k=1

(xk)l−1/2

√
v(α, x)

∂

∂xk

(
(xk)l−1/2 ∂

∂xk

(
(xk)l−1/2

√
v(α, x) ϕ

))
, (51)

where xk > 0, and v(α, x) is the isotropic measure weight

v(α, x) =
3∏

k=1

c1(α, xk) =
3∏

k=1

(xk)α−1

�(α)
, (xk ≥ 0). (52)
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Here c1(α, xk) is the density of states for fractional space.27 We should note that Calcagni and
Nardelli54 consider the Laplace operators for Minkowski space-time R4

1,3. Equations (49)–(51) are
given for the Euclidean space R3 to describe fractal material. Note that the expression (51) contains
(49) and (50) as particular cases. The operators (49) and (50) can be represented as

K1 = Kα,l=1−α/2, K2 = Kα,l=1/2. (53)

Substitution of (52) into (49)–(51) gives the Laplace operators in the forms

K1ϕ =
3∑

k=1

(
∂2ϕ

∂x2
k

+ α − 1

xk

∂ϕ

∂xk

)
, (54)

K2ϕ =
3∑

k=1

(
∂2ϕ

∂x2
k

+ α − 1

xk

∂ϕ

∂xk
+ (α − 1)(α − 3)

4 x2
k

ϕ

)
, (55)

Kα,lϕ =
3∑

k=1

(
∂2ϕ

∂x2
k

+ α − 1

xk

∂ϕ

∂xk
+ (α − 2)2 − 4 l2

4 x2
k

ϕ

)
. (56)

The Laplace operator (54) coincides with the expression (9) suggested in Ref. 67 The Laplace
operator (55) coincides with the operator (48) that can be derived from the first order operators (46)
and (46) suggested in Ref. 102. It was proved54 that the case l = 1/2 is unique because it is only one,
where the Laplace operator of the type (51) can be represented as the square of first order differential
operator. This first order operator (see Eq. (3.43) in Ref. 54) is

Dα,kϕ = 1√
v(α, x)

∂

∂xk

(√
v(α, x) ϕ

)
, (57)

such that

K2ϕ =
3∑

k=1

(
Dα,k

)2
ϕ. (58)

Substitution of (52) into (57) gives

Dα,kϕ = ∂ϕ

∂xk
+ α − 1

2 xk
ϕ. (59)

We can see that operator (59) can be considered as (45) with αk = α for all k = 1, 2, 3.
To anisotropic fractal media and materials in the framework of the non-integer dimensional

space approach we should generalize the isotropic measure weight v(α, x) by using

v(α, x) =
3∏

k=1

παk/2

�(αk/2 + 1)
|xk |αk−1 (60)

instead of the expression (52) for fractional space. The derivative of the first order (59) should also
be generalized for anisotropic fractal media as

Dα,kϕ = ∂ϕ

∂xk
+ αk − 1

2 xk
ϕ, (61)

where we take into account different values of dimensions along the Xk-axis. Using the first order
differential operator (61), it is easy to define the del operator, gradient, divergence, curl operators,
and the vector Laplacian in order to describe fractal media in the framework of the non-integer
dimensional space approach.

B. Approaches to formulation of the vector calculus in non-integer dimensional space

In the Stillinger’s paper,61 the scalar Laplace operator for non-integer dimensional space is
suggested only. Generalizations of gradient, divergence, curl operators, and the vector Laplacian
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are not considered in Ref. 61. A generalization of the gradient, divergence, curl operators, the
scalar and vector Laplace operators for non-integer dimensional space can be defined by the method
of continuation in dimension Refs. 68 and 69. For simplification, only radial case is consider in
Ref. 68, where the scalar and vector fields are independent of the angles, and the vector fields are
directed along the radius vector. This simplification is analogous to consideration of the integration
in non-integer dimensional space in Sec. 4 of Ref. 62.

The main advantage of the product measure approach to define the vector calculus for non-
integer dimensional space is a possibility to describe anisotropic fractal materials. In this paper, we
suggest differential vector operators for non-integer dimensional space by product measure method to
describe anisotropic fractal media in the framework of continuum models. The differential operators
are defined as an inverse operation to integration in non-integer dimensional space.

We can state that it is possible to reduce non-integer dimensional space to a power-law curved
space by considering the density of states c1(αk, xk) as the Lame coefficients

Hk = c1(αk, xk). (62)

We consider Euclidean space for the effective coordinates Xk(xk), which are defined by (20),
such that

d2sX =
3∑

k=1

(d Xk)2 =
3∑

k=1

c2
1(αk, xk) (dxk)2, (63)

where c1(αk, xk) are the density of states of the form

c1(αk, xk) = παk/2

�(αk/2)
|xk |αk−1. (64)

Using (63), we can see that the densities of states (64) are the Lame coefficients

Hk =
√√√√n=3∑

k=1

(
∂ Xi

∂xk

)2

. (65)

It allows us to use the following well-known equations and definitions. The metric tensors of the
Euclidean space in curvilinear coordinates xk are

gkl(x) = H 2
k δkl, gkl(x) = 1

H 2
k

δkl, (66)

and indices can be raised and lowered by this metric

uk = gkl(x) ul , uk = gkl ul . (67)

For an orthogonal basis, we have

g = det(gkl) =
n=3∏
k=1

gkk =
n=3∏
k=1

H 2
k , (68)

and

J =
√

|g(x)| =
n=3∏
k=1

Hk = H1 H2 H3. (69)

Then the volume differential 3-form is given by

volα =
√

|g(x)| dx1 ∧ dx2 ∧ dx3. (70)

The correspondent volume for arbitrary set W in local coordinates is

volα(W ) =
∫

W

√
|g(x)| dx1 dx2 dx3. (71)
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Using the metric tensor (66), the gradient of scalar function ϕ is the vector field

grad(α) ϕ =
n=3∑

k,l=1

ek gkl(x)
∂ϕ

∂xl
, (72)

and the divergence of vector field u = uk ek is defined as the scalar function by

div(α) u =
n=3∑
k=1

1√|g(x)|
∂(

√|g(x)| uk)

∂xk
. (73)

T the Laplace-Beltrami operator is defined as the divergence of the gradient. Using the definitions
of the gradient and divergence, the Laplace-Beltrami operator applied to a scalar function ϕ is given
in local coordinates by

�(α)ϕ = div(α) grad(α) ϕ =
n=3∑
k=1

1√|g|
∂

∂xk

(√
|g(x)| gkl(x)

∂ϕ

∂xl

)
. (74)

Using the effective coordinates Xk = Xk(αk, xk), which are defined in (20), we can define the nabla
operator (the del operator) by

∇(α) =
3∑

k=1

ek
∂

∂ Xk
=

3∑
k=1

ek
1

c1(αk, xk)

∂

∂xk
, (75)

where (α) = (α1, α2, α3) is the multi-index, and c1(αk, xk) is defined by (64). We can use the
well-known relations for the gradient, divergence, the curl operator, the scalar and vector Laplace
operators through the Lame coefficients. The gradient for scalar field

grad(α) ϕ =
3∑

k=1

1

H 2
k

∂ϕ

∂xk
ek . (76)

The divergence for vector field

div(α) u =
3∑

k=1

1

H1 H2 H3

∂

∂xk

(
H1 H2 H3

Hk
uk

)
. (77)

The curl operator for vector field

curl(α) u =
3∑

k,i, j=1

1

H1 H2 H3
eiεi jk Hi

∂(Hk uk)

∂x j
, (78)

where εijk is the Levi-Civita symbol. The scalar Laplacian

�(α)ϕ =
3∑

k=1

1

H1 H2 H3

∂

∂xk

(
H1 H2 H3

H 2
k

∂ϕ

∂xk

)
. (79)

Using that Hk = c1(αk, xk), we get ∂Hk/∂xl = 0 for k �= l, and the divergence

div(α) u =
3∑

k=1

1

Hk

∂uk

∂xk
. (80)

The curl operator for vector field

curl(α) u =
3∑

k,i, j=1

1

Hj
eiεi jk

∂uk

∂x j
, (81)
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where εijk is the Levi-Civita symbol. The scalar Laplacian

�(α)ϕ =
3∑

k=1

1

Hk

∂

∂xk

(
1

Hk

∂ϕ

∂xk

)
. (82)

We can define a differential operator that takes into account the density of states c1(αk, xk) by

∂xk ,αk = ∂

∂ Xk
= 1

c1(αk, xk)

∂

∂xk
, (83)

where c1(αk, xk) corresponds to the non-integer dimensionality along the Xk-axis and it is defined by
(64). These derivatives cannot be considered as derivatives of non-integer orders (as fractional deriva-
tives) or as fractal derivatives (derivatives on fractal set). The operators ∂xk ,αk are usual differential
operators of the first order that is defined for differentiable functions on R3.

The form of derivatives (83) is analogous to differential operator suggested in Ref. 39. The
main difference is that we define the operators (83) for the non-integer dimensional spaces in the
framework of the measure product approach that is described by Palmer and Stavrinou67 (see also
Refs. 27, 48, and 49). The differential operators suggested in Ref. 39 are defined for modified
Riemann-Liouville fractional integral of orders αk in the integer dimensional space.

Using the operators (83), we can introduce generalized vector differential operations. The
gradient

grad(α) ϕ(r) =
3∑

k=1

ek ∂xk ,αk ϕ(r), (84)

where ek are unit base vector of the Cartesian coordinate system. The divergence of the vector field
u(r) = ek uk(r) is

div(α) u(r) =
3∑

k=1

∂xk ,αk uk(r). (85)

The curl for the vector field u(r) = ek uk(r) is

curl(α) u(r) =
3∑

k,i,l=1

ei εikl ∂xk ,αk ul(r), (86)

where εikl is the Levi-Civita symbol (or alternating symbol).
Using (84) and (85) we can define the second order differential operators such as the scalar

Laplacian and vector Laplacian. The scalar Laplacian has the from

S�(α)ϕ(r) = div(α) grad(α) ϕ(r). (87)

The vector Laplacian104 has the from

V �(α)u(r) = grad(α) div(α) u(r) − curl(α) curl(α) u(r). (88)

The scalar Laplacian (87) can be represented by using the usual partial derivatives

S�(α)ϕ(r) =
3∑

k=1

1

c2
1(αk, xk)

(
∂2ϕ

∂x2
k

− αk − 1

xk

∂ϕ

∂xk

)
, (89)

where c1(αk, xk) is density of states (64) along the Xk-axis for model with the non-integer dimensional
space. It is easy to see that this operator does not coincide with the Laplace operators proposed by
Palmer and Stavrinou,67 Stillinger,61 and Calcagni.54 The main advantage of the suggested Laplace
operator (89) is that first, it is obtained as the action of the gradient and divergence, and second, it
is adapted for models with non-integer spatial dimensions.

The differential operators of the first order such as the gradient (76), the divergence (77), the
curl operator (78), and the second order differential operators such as the scalar Laplacian (87),
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and the vector Laplacian (88), allow us to describe anisotropic fractal media and materials in the
framework of continuum models with non-integer spatial dimensions.

V. EXAMPLES OF APPLICATION

A. Poisson’s equation

Let us consider the Poisson’s equation for a fractal medium that is distributed along the positive
half-X-axis

S�(α)ϕ(x) = f (x). (90)

Here we use the Laplace operator suggested in this paper. Equation (90) for single-variable case can
be written as

1

c2
1(α, x)

(
∂2ϕ(x)

∂x2
− α − 1

x
ϕ(x)

)
= f (x) (x > 0). (91)

The general solution of this equation is

ϕ(x) = C1 + C2 xα − πα

α(�(α/2))2

(∫
f (x) x2α−1 dx − xα

∫
f (x) xα−1 dx

)
. (92)

Let us compare this result with the solution of Poisson’s equation Laplace operatorK2. The Poisson’s
equation of the form

K2ϕ(x) = f (x) (93)

has the general solution

ϕ(x) = C1 x (3−α)/2 + C2 x (1−α)/2 + x (3−α)/2
∫

f (x) x (1−α)/2 dx − x (1−α)/2
∫

f (x) x (1+α)/2 dx .

(94)
In Eq. (93), we use the Laplace operator (89) for single-variable case.

B. Timoshenko beam equations for fractal material

The Euler-Bernoulli beam theory gives a simplification of the linear theory of elasticity, which
provides a means of calculating the load-carrying and deflection characteristics of beams and it
covers the case for small deflections of a beam, which is subjected to lateral loads only. Note that
the Timoshenko beam equation for fractal materials is discussed in Refs. 34 and 39.

In the Timoshenko beam theory without axial effects, the displacement vector u(x, y, z, t) of the
beam are assumed to be given by

ux (x, y, z, t) = −z ϕ(x, t) uy(x, y, z, t) = 0, uz(x, y, t) = w(x, t), (95)

where (x, y, z) are the coordinates of a point in the beam, ux, uy, uz are the components of the
displacement vector u , ϕ = ϕ(x, t) is the angle of rotation of the normal to the mid-surface of the
beam, and w = w(x, t) is the displacement of the mid-surface in the z-direction.

Using a model with non-integer dimensional space for fractal media, we can use the derivatives

∂x,α = c−1
1 (αx , x) D1

x , ∂n
x,α = (∂x,α)n (n ∈ N), (96)

where c1(αx, x) is defined for non-integer dimensional space by

c1(αx , x) = παx /2

�(αx/2)
|x |αx −1 (97)

instead of the usual derivatives D1
x and Dn

x for fractal materials. If we use the derivatives (96),
then the Timoshenko equation for fractal beam can be derived from the force and moment balance
equations

ρ A D2
t w = ∂x,α Q, ρ I (d) D2

t ϕ = Q − ∂x,α M, (98)
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with the bending moment

M = − E I (d) ∂x,αϕ, (99)

and the shear force

Q = k G A
(
∂x,αw − ϕ

)
. (100)

Here I(d) is the second moment of the fractal beam’s cross-section.
The Timoshenko equations for homogeneous fractal beam has the form

ρ A D2
t w = k G A ∂x,α(∂x,αw − ϕ), (101)

ρ I (d) D2
t ϕ = k G A (∂x,αw − ϕ) + E I (d) ∂2

x,αϕ. (102)

The Timoshenko fractal beam equations (101) and (102) can also be derived from the variational
principle. The Lagrangian of the Timoshenko fractal beam has the form

LGT F B = 1

2
ρ I (d)

(
D1

t ϕ(x, t)
)2 + 1

2
ρ A

(
D1

t w(x, t)
)2 −

−1

2
(kG A)

(
∂x,αw(x, t) − ϕ(x, t)

)2 − 1

2
(E I (d))

(
∂x,αϕ(x, t)

)2
. (103)

The stationary action principle gives the equations

∂L
∂w

− D1
t

(
∂L

∂ D1
t w

)
− D1

x

(
∂L

∂ D1
xw

)
= 0, (104)

∂L
∂ϕ

− D1
t

(
∂L

∂ D1
t ϕ

)
− D1

x

(
∂L

∂ D1
xϕ

)
= 0. (105)

Equations (104) and (105) are the Euler-Lagrange equation for the model of fractal material described
by the Lagrangian (103). Substitution of (103) into Eqs. (104) and (105) gives the Timoshenko fractal
beam equations (101) and (102) that can be presented as

ρ A D2
t w = k G A ∂x,α

(
∂x,αw − ϕ

)
, (106)

ρ I (d) D2
t ϕ = k G A

(
∂x,αw − ϕ

)
+ E I (d) ∂2

x,αϕ. (107)

If α = 1 then Eqs. (106) and (107) are the Timoshenko equations for beam with homogeneous
non-fractal material.

For models with non-integer dimensional spaces, solutions of equations for fractal materials
can be obtained from solutions of equations for non-fractal materials. Let wc(x, t) and ϕc(x, t) be
solutions of (106) and (107) with α = 1 and x > 0, i.e., the Timoshenko equations for homogeneous
non-fractal beam. Then solutions wF (x, t) and ϕF(x, t) of equations (106) and (107) for fractal beam
with 0 < α < 1 can be represented by

wF (x, t) = wc

(
παx /2

�(αx/2)
|x |αx −1, t

)
, ϕF (x, t) = ϕc

(
παx /2

�(αx/2)
|x |αx −1, t

)
. (108)

C. Euler-Bernoulli fractal beam

As an example, we consider the equation for the Euler-Bernoulli homogeneous fractal beam in
the absence of a transverse load (q(x) = 0),

ρ A D2
t w(x, t) + E I (d) ∂4

x,αw(x, t) = 0. (109)

This equation can be solved using the Fourier decomposition of the displacement into the sum
of harmonic vibrations of the form w(x, t) = Re[w(x) exp(−iωt)], where ω is the frequency of
vibration. Then, Eq. (109) gives the ordinary differential equation

−ρ A ω2w(x) + E I (d) ∂4
x,αw(x) = 0. (110)
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The boundary conditions for fractal beam of length L fixed at x = 0 are

w(0) = 0, (∂1
x,αw)(0) = 0, (111)

(∂2
x,αw)(L) = 0, (∂3

x,αw)(L) = 0. (112)

The solution for the Euler-Bernoulli homogeneous fractal beam is defined by

wF,n(x) = w0

(
cosh(kn xα) − cos(kn xα) + Cn(α)

(
sin(kn xα) − sinh(kn xα)

))
, x ∈ [0; L],

(113)
where w0 is a constant, and

Cn(α) = cos(kn Lα) + cosh(kn Lα)

sin(kn Lα) + sinh(kn Lα)
, kn = πα/2

�(α/2)

(
ρ A ω2

n

E I (d)

)1/4

. (114)

For boundary conditions (111) and (112), the solution (113) exist only if kn are defined by

cosh(kn L) cos(kn L) + 1 = 0. (115)

This trigonometric equation is solved numerically. The corresponding natural frequencies of vi-
bration are ωn = k2

n

√
(E I (d))/ρ A. For a non-trivial value of the displacement, w0 has to remain

arbitrary, and the magnitude of the displacement is unknown for free vibrations. Usually w0 = 1 is
used when plotting mode shapes.

VI. CONCLUSION

We give a review of possible approaches to describe anisotropic fractal media. We focused on two
approaches based on the fractional space and the non-integer dimensional space. There approaches
allow us to describe anisotropic fractal media and materials in the framework of continuum models
by using the concept of density of states27 and the product measure method. Fractal medium is
considered as a medium with non-integer mass dimension. The non-integer dimensionality is a main
characteristic property of fractal materials. Therefore we suggest an application of differentiation
and integration over non-integer dimensional spaces as natural way to describe fractal media.68, 69

Although, the non-integer dimension does not reflect all specific properties of real fractal materials,
it allows us to formulate continuum models to derive important conclusions about the behavior
of the media. In this paper a generalization of the vector calculus for multi-fractional and non-
integer dimensional spaces is proposed as tools to describe anisotropic fractal media and materials
in the framework of continuum models. We suggest a generalization of vector calculus for non-
integer dimensional space that is product of spaces with different dimensions. The product measure
method allows us to describe anisotropic fractal materials by taking into account various non-integer
dimensions in different directions. The differential operators of the first order such as the gradient
(76), the divergence (77), the curl operator (78), and the second order differential operators such as
the scalar Laplacian (87), and the vector Laplacian (88), are suggested to describe anisotropic fractal
media and materials by continuum models with non-integer dimensional spaces. To demonstrate
some simple applications of proposed approach to the description of fractal materials, we consider
the Poisson’s equation for fractal medium, the Euler-Bernoulli fractal beam and the Timoshenko
beam equations for fractal material.
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