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Abstract
In this paper we consider a phase space path integral for general time-dependent
quantum operations, not necessarily unitary. We obtain the path integral for a
completely positive quantum operation satisfied Lindblad equation (quantum
Markovian master equation). We consider the path integral for quantum
operation with a simple infinitesimal generator.

PACS numbers: 03.67.Lx, 03.67.−a, 03.65.−w

1. Introduction

Unitary evolution is not the most general type of state change possible for quantum systems.
The most general state change of a quantum system is a quantum operation [1–5]. One
can describe a quantum operation for a quantum system starting from a unitary evolution of
some closed system if the quantum system is a part of the closed system [6–14]. However,
situations can arise where it is difficult or impossible to find a closed system comprising
the given quantum system [15–19]. This would render the theory of quantum operations a
fundamental generalization of the unitary evolution of the closed quantum system.

The usual models of a quantum computer deal only with unitary quantum operations on
pure states. In these models it is difficult or impossible to deal formally with measurements,
dissipation, decoherence and noise. It turns out that the restriction to pure states and unitary
gates is unnecessary [20]. In [20], a model of quantum computations by quantum operations
with mixed states was constructed. The computations are realized by quantum operations,
not necessarily unitary. Mixed states subjected to general quantum operations could increase
efficiency. This increase is connected with the increasing number of computational basis
elements for the Hilbert space. A pure state of n two level quantum systems is an element of
the 2n-dimensional functional Hilbert space. A mixed state of the system is an element of the
4n-dimensional operator Hilbert space. Therefore, the increased efficiency can be formalized
in terms of a four-valued logic replacing the conventional two-valued logic. Unitary gates and
quantum operations for a quantum computer with pure states can be considered as quantum
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gates of a mixed state quantum computer. Quantum algorithms on a quantum computer with
mixed states are expected to run on a smaller network than with pure state implementation.

The path integral for quantum operations can be useful for the continuous-variable
generalization of quantum computations by quantum operations with mixed states. The usual
models of a quantum computer deal only with discrete variables. Many quantum variables
such as position and momentum are continuous. The use of continuous-variable quantum
computing [21–23] allows information to be encoded and processed much more compactly
and efficiently than with discrete variable computing. Quantum computation using continuous
variables is an alternative approach to quantum computations with discrete variables.

All processes occur in time. It is natural to consider time dependence for quantum
operations. In this paper we consider the path-integral approach to general time-dependent
quantum operations. We use the operator space [24–38] and superoperators on this space. The
path integral for unitary evolution from the operator (Liouville) space was derived in [33]. The
quantum operation is considered as a real completely positive trace-preserving superoperator
on the operator space. We derive a path integral for a completely positive quantum operation
satisfied Lindblad equation (quantum Markovian master equation) [38–42, 18]. For example,
we consider a path integral for a quantum operation with a simple infinitesimal generator.

In section 2, the requirements for a superoperator to be a generalized quantum operation
are discussed. In section 3, the general Liouville–von Neumann equation and quantum
Markovian (Lindblad) master equation are considered. In section 4, we derive a path integral
for quantum operation satisfied Liouville–von Neumann equation. In section 5, we obtain a
path integral for time-dependent quantum operation with an infinitesimal generator such that
the adjoint generator is completely dissipative. In section 6, the continuous-variable quantum
computation by quantum operations with mixed states is discussed. In the appendix, the
mathematical background (Liouville space, superoperators) is considered.

2. Quantum operations as superoperators

Unitary evolution is not the most general type of state change possible for quantum systems.
The most general state change of a quantum system is a positive trace-preserving map which
is called a quantum operation. For the concept of quantum operations, see [1–5].

A quantum operation is a superoperator Ê which maps the density matrix operator |ρ) to
the density matrix operator |ρ ′). For the concept of superoperators and operator space see the
appendix and [24–38].

If |ρ) is a density matrix operator, then Ê|ρ) should also be a density matrix operator.
Any density matrix operator ρ is a self-adjoint

(
ρ
†
t = ρt

)
, positive (ρt > 0) operator with

unit trace (Tr ρt = 1). Therefore, the requirements for a superoperator Ê to be the quantum
operation are as follows:

1. The superoperator Ê is a real superoperator, i.e. (Ê(A))† = Ê(A†) for all A. The
real superoperator Ê maps the self-adjoint operator ρ to the self-adjoint operator Ê(ρ):
(Ê(ρ))† = Ê(ρ).

2. The superoperator Ê is a positive superoperator, i.e. Ê maps positive operators to positive
operators: Ê(A2) > 0 for all A �= 0 or Ê(ρ) � 0.

3. The superoperator Ê is a trace-preserving map, i.e. (I |Ê|ρ) = (Ê †(I )|ρ) = 1 or Ê †(I ) = I .

We have to assume the superoperator Ê to be not merely positive but completely positive
[43]. The superoperator Ê is a completely positive map of the operator space, if
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n∑
k=1

n∑
l=1

B
†
k Ê

(
A

†
kAl

)
Bl � 0

for all operators Ak,Bk and all n.
Let the superoperator Ê be a convex linear map on the set of density matrix operators, i.e.

Ê
(∑

s

λsρs

)
=

∑
s

λs Ê(ρs)

where all λs are 0 < λs < 1 and
∑

s λs = 1. Any convex linear map of density matrix
operators can be uniquely extended to a linear map on Hermitian operators. Note that any
linear completely positive superoperator can be represented by

Ê =
m∑

k=1

L̂Ak
R̂

A
†
k

: Ê(ρ) =
m∑

k=1

AkρA
†
k.

If this superoperator is a trace-preserving superoperator, then
m∑

k=1

A
†
kAk = I.

The restriction to linear quantum operations is unnecessary. Let us consider a linear real
completely positive superoperator Ê which is not trace preserving. Let (I |Ê|ρ) = Tr(Ê(ρ)) be
the probability that the process represented by the superoperator Ê occurs. Since the probability
is non-negative and never exceeds 1, it follows that the superoperator Ê is a trace-decreasing
superoperator: 0 � (I |Ê|ρ) � 1 or Ê †(I ) � I . In general, any real linear completely positive
trace-decreasing superoperator is not a quantum operation, since it cannot be trace preserving.
The quantum operation can be defined as a nonlinear trace-preserving operation N̂ by

N̂ |ρ) = Ê|ρ)(I |Ê|ρ)−1 or N̂ (ρ) = Ê(ρ)

Tr(Ê(ρ))
(1)

where Ê is a real linear completely positive trace-decreasing superoperator.
All processes occur in time. It is natural to consider time dependence for quantum

operations Ê(t, t0). Let the linear superoperators Ê(t, t0) form a completely positive quantum
semigroup [42] such that

d

dt
Ê(t, t0) = �̂t Ê(t, t0) (2)

where �̂† is a completely dissipative superoperator [39, 42, 19]. We would like to consider
the path integral for quantum operations Ê(t, t0) with the infinitesimal generator �̂, where the
adjoint superoperator �̂† is completely dissipative, i.e.

�̂†(AkAl) − �̂†(Ak)Al − Ak�̂
†(Al) � 0.

3. Evolution equations

An important property of most open and dissipative quantum systems is the entropy variation.
Nevertheless the unitary quantum evolution of a mixed state �t described by the von Neumann
equation

∂�t

∂t
= − i

h̄
[H, �t ] (3)
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leaves the entropy 〈S〉 = − Tr(�t ln �t ) unchanged. Therefore, to describe general quantum
systems, one normally uses [47, 38] a generalization of (3).

To describe dissipative quantum systems one usually considers [47] the following
equation:

∂�t

∂t
= − i

h̄
[H, �t ] + D(�). (4)

3.1. Liouville–von Neumann equation

Let us consider a generalization of equation (3). The Liouville–von Neumann equation
[16, 38, 44] can be represented as the linear equation

d�t

dt
= �t(�t ). (5)

Using the superoperator formalism, this equation can be rewritten in the form

d

dt
|�t ) = �̂t |�t ). (6)

The superoperator language allows one to use the analogy with Dirac notation. This leads
quite simply to the derivation of the appropriate equations.

Here �̂t is a linear Liouville superoperator on the operator space H. For the Hamiltonian
(closed) quantum systems (3) this superoperator is defined by the Hamiltonian H:

�̂t = − i

h̄
(L̂H − R̂H ). (7)

For equation (4) the Liouville superoperator has the form

�̂t = − i

h̄
(L̂H − R̂H ) + D̂. (8)

In general, the operator |�t ) is an unnormalized density matrix operator, i.e. Tr �t = (I |�t ) �= 1.
Equation (6) has a formal solution

|�t ) = Ê(t, t0)|�t0) (9)

where Ê(t, t0) is a linear quantum operation defined by

Ê(t, t0) = T exp
∫ t

t0

dτ�̂τ . (10)

The symbol T is a Dyson’s time-ordering operator [45]. The quantum operation (10) satisfies
the Liouville–von Neumann equation (2). We can define a normalized density matrix operator
|ρt ) by

|ρt ) = |�t )(I |�t )
−1 or |ρt ) = Ê(t, t0)|�)

(I |Ê(t, t0)|�)

i.e. ρt = �t/Tr �t . The evolution equation for the normalized density matrix operator ρt can
be written in the form

d

dt
|ρt ) = �̂t |ρt ) − |ρt )(I |�̂t |ρt ). (11)

In general, this equation is a nonlinear equation [19]. A formal solution of equation (11) is
connected with the nonlinear quantum operation (1) by

|ρt ) = N̂ (t, t0)|ρt0).
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3.2. Quantum Markovian equation

Lindblad [39] has shown that there exists a one-to-one correspondence between the completely
positive norm continuous semigroup of superoperators Ê(t, t0) and superoperator �̂ such
that the adjoint superoperator �̂† is completely dissipative. The structural theorem of
Lindblad gives the most general form of the bounded adjoint completely dissipative Liouville
superoperator �̂. The Liouville–von Neumann equation (11) for a completely positive
evolution is a quantum Markovian master equation (Lindblad equation) [39–41]:

dρt

dt
= − i

h̄
[H, ρt ] +

1

2h̄

m∑
k=1

([
Vkρt , V

†
k

]
+

[
Vk, ρtV

†
k

])
. (12)

This equation in the Liouville space can be written as

d

dt
|ρt ) = �̂|ρt )

where the Liouville superoperator �̂ is given by

�̂ = − i

h̄
(L̂H − R̂H ) +

1

2h̄

m∑
k=1

(
2L̂Vk

R̂
V

†
k
− L̂Vk

L̂
V

†
k
− R̂

V
†
k
R̂Vk

)
. (13)

The basic assumption is that the general form of a bounded superoperator �̂, given by the
Lindblad theorem, is also valid for an unbounded superoperator [42, 46]. Another condition
imposed on the operators H,Vk, V

†
k is that they are functions of the observables P and Q (with

[Q,P ] = ih̄I ) of the one-dimensional quantum system. Let us consider Vk = akP + bkQ,
where k = 1, 2, and ak, bk are complex numbers, and the Hamiltonian operator H is

H = 1

2m
P 2 +

mω2

2
Q2 +

µ

2
(PQ + QP)

Then with the notation [46]:

dqq = h̄

2

∑
k=1,2

|ak|2 dpp = h̄

2

∑
k=1,2

|bk|2

dpq = −h̄

2
Re

( ∑
k=1,2

a∗
k bk

)
λ = −Im

( ∑
k=1,2

a∗
k bk

)

equation (12) in the Liouville space can be written as

d

dt
|ρt ) = 1

2m
L̂+

P L̂−
P +

mω2

2
L̂+

QL̂−
Q − (λ − µ)L̂−

P L̂+
Q|ρt ) + (λ + µ)L̂−

QL̂+
P |ρt )

+ dppL̂−
QL̂−

Q|ρt ) + dqqL̂
−
P L̂−

P |ρt ) − 2dpqL̂
−
P L̂−

Q|ρt ) (14)

where L± are the multiplication superoperators defined by

L̂−
A = 1

ih̄
(L̂A − R̂A) L̂+

A = 1

2
(L̂A + R̂A).

The properties of these superoperators are considered in the appendix. Equation (14) is a
superoperator form of the well-known phenomenological dissipative model [47, 46].
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4. Path integral in the general form

In the coordinate representation the kernel

�(q, q ′, t) = (q, q ′|�t )

of the density operator |�t ) evolves according to the equation

�(q, q ′, t) =
∫

dq0 dq ′
0 E(q, q ′, q0, q

′
0, t, t0)�(q0, q

′
0, t0).

The function

E(q, q ′, q0, q
′
0, t, t0) = (q, q ′|Ê(t, t0)|q0, q

′
0) (15)

is a kernel of the linear quantum operation Ê(t, t0). Let the Liouville superoperator �̂t be time
independent, i.e. the quantum operation Ê(t, t0) is given by

Ê(t, t0) = exp(t − t0)�̂. (16)

Proposition 1. Let {Ê(t, t0), t � t0} be a superoperator semigroup on the operator space H
Ê(t0, t0) = Î Ê(t, t0) = Ê(t, t1)Ê(t1, t0)

where t � t1 � t0 such that the infinitesimal generator �̂ of this semigroup is defined by (16).
Then the path integral for kernel (15) of the quantum operation Ê(t, t0) has the following form:

E(q, q ′, q0, q
′
0, t, t0) =

∫
DqDq ′DpDp′ exp

∫ t

t0

dt
( i

h̄
[q̇p − q̇ ′p′] + �S(q, q ′, p, p′)

)
.

(17)

This form is the integral over all trajectories in the double phase space with the constraints
that q(t0) = q0, q(t) = q, q ′(t0) = q ′

0, q
′(t) = q ′ and the measure

Dq =
∏

t

dq(t) Dp =
∏

t

dp(t)

2πh̄
.

The symbol �S(q, q ′, p, p′) of the Liouville superoperator �̂ is connected with the kernel
�(q, q ′, y, y ′) by

�S(q, q ′, p, p′) =
∫

dy dy ′�(q, q ′, y, y ′) exp − i

h̄
[(q − y)p − (q ′ − y ′)p′]

where �(q, q ′, y, y ′) = (q, q ′|�̂|y, y ′) and

�(q, q ′, y, y ′) = 1

(2πh̄)2n

∫
dp dp′�S(q, q ′, p, p′) exp

i

h̄
[(q − y)p − (q ′ − y ′)p′].

Proof. Let us derive the path integral form (17) for quantum operation (16).

1. Let time interval [t0, t] have n + 1 equal parts

τ = t − t0

n + 1
.

Using the superoperator semigroup composition rule

Ê(t, t0) = Ê(t, tn)Ê(tn, tn−1) · · · Ê(t1, t0)

where t � tn � tn−1 � · · · � t1 � t0, we obtain the following integral representation:

E(q, q ′, q0, q
′
0, t, t0)

=
∫

dqn dq ′
n · · · dq1 dq ′

1E(q, q ′, qn, q
′
n, t, tn) · · · E(q1, q

′
1, q0, q

′
0, t1, t0).
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This representation can be written in the form

E(q, q ′, q0, q
′
0, t, t0) =

∫ n∏
k=1

dqk dq ′
k

n+1∏
k=1

E(qk, q
′
k, qk−1, q

′
k−1, tk, tk−1).

Here qn+1 = q and q ′
n+1 = q ′.

2. Let us consider the kernel

E(qk, q
′
k, qk−1, q

′
k−1, tk, tk−1)

of the quantum operation Ê(tk, tk−1). If the time interval [tk−1, tk] is small, then in the
coordinate representation we have

�(qk, q
′
k, tk) =

∫
dqk−1 dq ′

k−1E(qk, q
′
k, qk−1, q

′
k−1, tk, tk−1)�(qk−1, q

′
k−1, tk−1)

and

�(qk, q
′
k, tk) = (

qk, q
′
k

∣∣�tk

) = (qk, q
′
k|Ê(tk, tk−1)

∣∣�tk−1

)
=

∞∑
n=0

τn

n!
(qk, q

′
k|�̂n

∣∣�tk−1

) = (
qk, q

′
k

∣∣�tk−1

)
+ (qk, q

′
k|�̂

∣∣�tk−1

)
τ + O(τ 2)

= �(qk, q
′
k, tk−1) + τ

∫
dqk−1 dq ′

k−1�(qk, q
′
k, qk−1, q

′
k−1)

× �(qk−1, q
′
k−1, tk−1) + O(τ 2)

=
∫

dqk−1 dq ′
k−1(δ(qk − qk−1)δ(q

′
k−1 − q ′

k)

+ τ�(qk, q
′
k, qk−1, q

′
k−1) + O(τ 2))�(qk−1, q

′
k−1, tk−1).

Therefore, we have

E(qk, q
′
k, qk−1, q

′
k−1, tk, tk−1)

= δ(qk − qk−1)δ(q
′
k−1 − q ′

k) + τ�(qk, q
′
k, qk−1, q

′
k−1) + O(τ 2).

3. Delta-functions can be written in the form

δ(qk − qk−1)δ(q
′
k−1 − q ′

k) =
∫

dpk dp′
k

(2πh̄)2n
exp

i

h̄
[(qk − qk−1)pk − (q ′

k − q ′
k−1)p

′
k].

Using the relations

(q, q ′|p, p′) = 〈q|p〉〈p′|q ′〉 = 1

(2πh̄)n
exp

i

h̄
(qp − q ′p′)

(p, p′|q, q ′) = 〈p|q〉〈q ′|p′〉 = 1

(2πh̄)n
exp − i

h̄
(qp − q ′p′)

we obtain the symbol �S(qk, q
′
k, pk, p

′
k) of the Liouville superoperator by

�(qk, q
′
k, qk−1, q

′
k−1) = (qk, q

′
k|�̂|qk−1, q

′
k−1)

=
∫

dpk dp′
k(qk, q

′
k|�̂|pk, p

′
k)(pk, p

′
k|qk−1, q

′
k−1)

=
∫

dpk dp′
k�S(qk, q

′
k, pk, p

′
k)(qk, q

′
k|pk, p

′
k)(pk, p

′
k|qk−1, q

′
k−1)

= 1

(2πh̄)2n

∫
dpk dp′

k�S(qk, q
′
k, pk, p

′
k)

× exp
i

h̄
[(qk − qk−1)pk − (q ′

k − q ′
k−1)p

′
k].
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4. The kernel of the quantum operation Ê(tk, tk−1) is

E(qk, q
′
k, qk−1, q

′
k−1, tk, tk−1) = 1

(2πh̄)2n

∫
dpk dp′

k(1 + τ�S(qk, q
′
k, pk, p

′
k) + O(τ 2))

× exp
i

h̄
((qk − qk−1)pk − (q ′

k − q ′
k−1)p

′
k).

5. The kernel of the quantum operation Ê(t, t0) is

E(q, q ′, q0, q
′
0, t, t0) =

∫ n∏
k=1

dqk dq ′
k

n+1∏
k=1

dpk dp′
k

(2πh̄)2n

× exp
i

h̄

n+1∑
k=1

[(qk − qk−1)pk − (q ′
k − q ′

k−1)p
′
k]

×
n+1∏
k=1

(1 − τ�S(qk, q
′
k, pk, p

′
k) + O(τ 2)).

6. Using

lim
n→∞

n∏
k=1

(
1 +

�k

n

)
= lim

n→∞

n∏
k=1

exp

(
�k

n

)

we obtain

E(q, q ′, q0, q
′
0, t, t0) =

∫ n∏
k=1

dqk dq ′
k

n+1∏
k=1

dpk dp′
k

(2πh̄)2n

× exp
n+1∑
k=1

τ

(
i

h̄

[
qk − qk−1

τ
pk − q ′

k − q ′
k−1

τ
p′

k

]
+ �S(qk, q

′
k, pk, p

′
k)

)
.

7. Let qk, q
′
k, pk, p

′
k be the values of the functions q(t), q ′(t), p(t), p′(t) and tk = t0 + kτ ,

i.e.

qk = q(tk) q ′
k = q ′(tk) pk = p(tk) p′

k = p′(tk)

where k = 0, 1, 2, . . . , n, n + 1. Using

lim
τ→0

qk − qk−1

τ
= q̇(tk−1) lim

n→∞

n+1∑
k=1

A(tk)τ =
∫ t

t0

dtA(t)

we obtain the kernel of the quantum operation Ê(t, t0) in the path integral form (17). �

Corollary. If the dissipative quantum evolution is defined by equation (4), then the path
integral for the quantum operation kernel has the form

E(q, q ′, q0, q
′
0, t, t0) =

∫
DqDpDq ′Dp′ exp

( i

h̄
(A(q, p) − A(p′, q ′)) + D(q, q ′, p, p′)

)
.

Here A(q, p) and A(p′, q ′) are action functionals defined by

A(q, p) =
∫ t

t0

dt (q̇p − H(q, p)) A(p′, q ′) =
∫ t

t0

dt (q̇ ′p′ − H(p′, q ′)). (18)

The functional D(q, q ′, p, p′) is a time integral of the symbol DS of the superoperator D̂.

The functional D(q, q ′, p, p′) describes the dissipative part of evolution.
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Corollary. If the quantum system has no dissipation, i.e. the quantum system is a closed
Hamiltonian system, then D(q, q ′, p, p′) = 0 and the path integral for the quantum operation
can be separated

E(q, q ′, q0, q
′
0, t, t0) = U ∗(q, q0, t, t0)U(q ′, q ′

0, t, t0)

where

U(q ′, q ′
0, t, t0) =

∫
Dq ′Dp′ exp − i

h̄
A(p′, q ′)

U ∗(q, q0, t, t0) =
∫

DqDp exp
i

h̄
A(p, q).

The path integral for the dissipative quantum systems and the corresponding quantum
operations cannot be separated, i.e. this path integral is defined in the double phase space.

5. Path integral for completely positive quantum operation

Let us consider the Liouville superoperator (13) for the Lindblad equation.

Proposition 2. Let {Ê(t, t0), t � t0} be a completely positive semigroup of linear real trace-
preserving superoperators such that the infinitesimal generators �̂ of this semigroup is defined
by (13). Then the path integral for the kernel of the completely positive quantum operation
Ê(t, t0) has the form

E(q, q ′, q0, q
′
0, t, t0) =

∫
DqDpDq ′Dp′ F(q, q ′, p, p′) exp

i

h̄
(A(q, p) − A(p′, q ′)) (19)

where A(q, p) and A(p′, q ′) are action functionals (18) and the functional F(q, q ′, p, p′) is
defined as

F(q, q ′, p, p′) = exp − 1

2h̄

∫ t

t0

dt

m∑
k=1

((
V

†
k Vk

)
(q, p)

+
(
V

†
k Vk

)
(p′, q ′) − 2Vk(q, p)V

†
k (p′, q ′)

)
. (20)

Proof. The kernel of superoperator (13) is

�(q, q ′, y, y ′) = (q, q ′
k|�̂|y, y ′) = − i

h̄
(〈y ′|q ′〉〈q|H |y〉 − 〈q|y〉〈y ′|H |q ′〉)

+
1

h̄

m∑
k=1

〈q|Vk|y〉〈y ′|V †
k |q ′〉 − 1

2h̄

m∑
k=1

(〈y ′|q ′〉〈q|V †
k Vk|y〉 − 〈q|y〉〈y ′|V †

k Vk|q ′〉).

The symbol �S(q, q ′, p, p′) of the Liouville superoperator �̂ can be derived by

�(q, q ′, y, y ′) =
∫

dp dp′
(

− i

h̄
(〈y ′|p′〉〈p′|q ′〉〈q|H1|p〉〈p|y〉

− 〈q|p〉〈p|y〉〈y ′|p′〉〈p′|H2|q ′〉) +
1

h̄

m∑
k=1

〈q|Vk|p〉〈p|y〉〈y ′|p′〉〈p′|V †
k |q ′〉

)

where the operators H1 and H2 are defined by the relations

H1 ≡ H − i

2

m∑
k=1

V
†
k Vk H2 ≡ H +

i

2

m∑
k=1

V
†
k Vk.
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Then the symbol �S(q, q ′, p, p′) of the Liouville superoperator (13) can be written in the
form

�S(q, q ′, p, p′) = − i

h̄

(
H1(q, p) − H2(p

′, q ′) + i
m∑

k=1

Vk(q, p)V
†
k (p′, q ′)

)

or

�S(q, q ′, p, p′) = − i

h̄
[H(q, p) − H(p′, q ′)]

− 1

2h̄

m∑
k=1

((
V

†
k Vk

)
(q, p) +

(
V

†
k Vk

)
(p′, q ′) − 2Vk(q, p)V

†
k (p′, q ′)

)
where H(q, p) is a qp-symbol of the Hamiltonian operator H and H(p, q) is a pq-symbol of
the operator H.

In the Hamiltonian case (Vk = 0) the symbol is given by

�S(q, q ′, p, p′) = − i

h̄
[H(q, p) − H(p′, q ′)].

The path integral for a completely positive quantum operation kernel has the form

E(q, q ′, q0, q
′
0, t, t0) =

∫
DqDpDq ′Dp′ F(q, q ′, p, p′) exp

i

h̄
(A(q, p) − A(p′, q ′)).

Here A(q, p) and A(p′, q ′) are action functionals (18), and the functional F(q, q ′, p, p′) is
defined by (20). �

The functional F(q, q ′, p, p′) describes the dissipative part of the evolution and can be
called a (double) phase space influence functional. The completely positive quantum operation
is described by the functional (20).

Corollary. For the phenomenological dissipative model (14) the double phase space path
integral has the form (19) with the functional

F(q, q ′, p, p′) = exp
1

h̄2

∫ t

t0

dt (2dqp(q − q ′)(p − p′) − dqq(p − p′)2

− dpp(q − q ′)2 + ih̄λ(pq ′ − qp′) + ih̄µ(q ′p′ − qp)). (21)

Using the well-known connection between the phase space (Hamiltonian) path integral
and the configuration space (Lagrangian) path integral [51, 52], we can derive the following
proposition.

Proposition 3. If the symbol �s(q, q ′, p, p′) of the Liouville superoperator can be represented
in the form

�S(q, q ′, p, p′) = − ı

h̄
[H(q, p) − H(p′, q ′)] + DS(q, q ′, p, p′) (22)

where

H(q, p) = 1
2a−1

kl (q)pkpl − bk(q)pk + c(q) (23)

DS(q, q ′, p, p′) = −dk(q, q ′)pk + d ′
k(q, q ′)p′

k + e(q, q ′) (24)

then the double phase space path integral (17) can be represented as a double configuration
phase space path integral

E(q, q ′, q0, q
′
0, t, t0) =

∫
DqDq ′ F(q, q ′) exp

i

h̄
(A(q) − A(q ′)) (25)
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where

A(q) =
∫ t

t0

dt L(q, q̇)

L(q, q̇) = 1

2
akl(q)q̇kq̇l + akl(q)bk(q)q̇l +

1

2
akl(q)bk(q)bl(q) − c(q).

(26)

This Lagrangian L(q, q̇) is related to the Hamiltonian (23) by the usual relations

L(q, q̇) = q̇kpk − H(q, p) pk = ∂L
∂q̇

.

Proof. Substituting (22) into (17), we obtain the kernel of the corresponding quantum
operation. Integrating (17) in p and p′, we obtain relation (25) with the functional

F(q, q ′) = exp
−1

h2

∫ t

t0

dt

(
dk(q, q ′)akl(q)(bl(q) − i

2h̄
dl(q, q ′)) + d ′

k(q, q ′)akl(q
′)(bl(q

′)

− i

2h̄
d ′

l (q, q ′)) + e(q, q ′) + δ(0)
(q, q ′)
)

where


(q, q ′) = −h̄2

2
(ln(det(akl(q))) + ln(det(akl(q

′)))). �

In equation (25) the functional F(q, q ′) can be considered as the Feynman–Vernon
influence functional. It is known that this functional can be derived by eliminating the
bath degrees of freedom, for example by taking a partial trace or by integrating them out. The
Feynman–Vernon influence functional describes the dissipative dynamics of open systems
when we assume the von Hove limit for a system–reservoir coupling. One can describe a
quantum system starting from a unitary evolution of some closed system ‘system–reservoir’
if the quantum system is a part of this closed system. However, situations can arise where it is
difficult or impossible to find a closed system comprising the given quantum system [6–14].

The Feynman path integral is defined for the configuration space. The most general form of
quantum mechanical path integral is defined for the phase space. The Feynman path integral
can be derived from the phase space path integral for the special form of the Hamiltonian
[51–55]. It is known that the path integral for the configuration space is correct [51, 52]
only for the Hamiltonian (23). The Feynman–Vernon path integral [6] is defined in
the double configuration space. Therefore, this path integral is a special form of the
double phase space path integral (17). The Feynman–Vernon path integral is correct only
for the Liouville superoperator (22)–(24). Note that the symbol �s(q, q ′, p, p′) for most of
the dissipative and non-Hamiltonian systems (with completely positive quantum operations)
cannot be represented in the form (22).

Corollary. In the general case, the completely positive quantum operation cannot be
represented as the double configuration space path integral (25).

For example, the double phase space path integral (21) for the phenomenological
dissipative model (14) has the term pp′. Therefore this model and the Liouville symbol
�s(q, q ′, p, p′) for this model cannot be represented in the form (22)–(24).
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6. On the continuous-variable quantum computation by quantum operations
with mixed states

The usual models of a quantum computer deal only with the discrete variables, unitary
quantum operations (gates) and pure states. Many quantum variables such as position and
momentum are continuous. The use of continuous-variable quantum computing [21–23]
allows information to be encoded and processed much more compactly and efficiently than
with discrete variable computing. Quantum computation using continuous variables is an
alternative approach to quantum computations with discrete variables.

In the models with unitary quantum operations on pure states it is difficult or impossible
to deal formally with measurements, dissipation, decoherence and noise. It turns out that the
restriction to pure states and unitary gates is unnecessary [20]. In [20], a model of quantum
computations by quantum operations with mixed states was constructed. It is known that the
measurement is described by quantum operations. The measurement quantum operations are
the special case of quantum operations on mixed states. The von Neumann measurement
quantum operation as a nonlinear quantum gate is realized in [20]. The continuous quantum
measurement is described by the path integrals [56–59]. Therefore, the path integral for
quantum operations can be useful for continuous-variable quantum operations on mixed states.
Quantum computation by quantum operations with mixed states is considered [20] for discrete
variables only. Some points of the model of the continuous-variable quantum computations
with mixed states are considered in this section. The double phase space path integral can be
useful for the continuous-variable quantum gates on mixed states.

The main steps of the continuous-variable generalization of quantum computations by
quantum operations with mixed states are the following.

(1) The state |ρ(t)) of the discrete-variable quantum computation with mixed states [20] is a
superposition of basis elements

|ρ(t)) =
N−1∑
µ=0

|µ)ρµ(t) (27)

where ρµ(t) = (µ|ρ(t)) are real numbers (functions). The basis |µ) of the discrete-

variable Liouville space H(n)
is defined [20] by

|µ) = |µ1 . . . µn) = 1√
2n

|σµ) = 1√
2n

∣∣σµ1 ⊗ · · · ⊗ σµn

)
(28)

where σµ are Pauli matrices, N = 4n, each µi ∈ {0, 1, 2, 3} and

(µ|µ′) = δµµ′

N−1∑
µ=0

|µ)(µ| = Î (29)

is the discrete-variable computational basis.
The state |ρ(t)) of the continuous-variable quantum computation at any point of time

can be considered as a superposition of basis elements

|ρ(t)) =
∫

dx

∫
dx ′|x, x ′)ρ(x, x ′, t) (30)

where ρ(x, x ′, t) = (x, x ′|ρ(t)) are the density matrix elements. The basis |x, x ′) of the
continuous-variable operator space H is defined by |x, x ′) = ‖x〉〈x ′|), where

(x, x ′|y, y ′) = δ(x − x ′)δ(y − y ′)
∫

dx

∫
dx ′|x, x ′)(x, x ′| = Î (31)

can be considered as a continuous-variable computational basis.
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(2) In the discrete-variable computational basis |µ) any linear quantum operation Ê acting on
n-qubits mixed (or pure) states can be represented as a quantum four-valued logic gate
[20]: Ê on n-ququats can be given by

Ê =
N−1∑
µ=0

N−1∑
ν=0

Eµν |µ)(ν| (32)

where N = 4n

Eµν = 1

2n
Tr(σµÊ(σν)) (33)

and σµ = σµ1 ⊗ · · · ⊗ σµn
.

In the continuous-variable computational basis |x, x ′) any linear quantum operation
Ê acting on mixed (or pure) states can be represented as a continuous-variable quantum
gate:

Ê(t2, t1) =
∫

dx dx ′dy dy ′E(x, x ′, y, y ′, t2, t1)|x, x ′)(y, y ′| (34)

where E(x, x ′, y, y ′, t2, t1) = (x, x ′|Ê(t2, t1)|y, y ′) is a kernel of the real trace-preserving
positive (or completely positive) superoperator Ê(t2, t1). This quantum operation can be
considered as a continuous-variable quantum gate.

The continuous quantum measurement which is described by the path integrals
[56–59] is the special case of the continuous-variable quantum gate. The path integral for
the quantum operations can be useful for all continuous-variable quantum operations on
mixed states.

(3) Many quantum variables such as position and momentum are continuous. The use of
continuous-variable quantum computing [21–23] allows information to be encoded and
processed much more compactly and efficiently than with discrete variable computing.

Mixed states subjected to the general quantum operations could increase efficiency.
This increase is connected with the increasing number of computational basis elements
for the operator Hilbert space. A pure state of the quantum system is an element of the
functional Hilbert space H. A mixed state of the system is an element |ρ) of the operator
Hilbert space H. A mixed state of the system can be considered as an element ρ(x, x ′, t)
of the double functional Hilbert space H ⊗ H.

The use of continuous-variable quantum computation by quantum operations with
mixed states can increase efficiency compared with discrete variable computing.

7. Conclusion

The usual quantum computer model deals only with discrete variables, unitary quantum
operations and pure states. It is known that many quantum variables such as position and
momentum are continuous. The use of continuous-variable quantum computing [21–23]
allows information to be encoded and processed much more efficiently than in discrete-
variable quantum computer. Quantum computation using continuous variables is an alternative
approach to quantum computations with discrete variables.

The quantum computation by quantum operations with mixed states is considered in [20].
It is known that the measurement is described by quantum operations. The measurement
quantum operations are the special case of quantum operations on mixed states. The
von Neumann measurement quantum operation as a nonlinear quantum gate is realized in
[20]. The continuous quantum measurement is described by the path integrals [56–59].
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Therefore, the path integral for quantum operations can be useful for continuous-variable
quantum operations on mixed states. Quantum computation by quantum operations with
mixed states is considered [20] only for discrete variables. The model of continuous-variable
quantum computations with mixed states will be suggested in the next publication. The double
phase space path integral can be useful for continuous-variable quantum gates on mixed states.

Let us note the second application of double phase space path integral. The path integral
formulation of the quantum statistical mechanics leads to the powerful simulation scheme
[60] for the molecular dynamics. In the past few years the statistical mechanics of non-
Hamiltonian systems was developed for the molecular dynamical simulation purpose [61–65].
The suggested path integral can be useful for the application in the non-Hamiltonian statistical
mechanics of quantum [66, 67] and quantum–classical systems [68, 69].
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Appendix

For the concept of Liouville space and superoperators see [24–38].

A.1. Operator space

The space of linear operators acting on a Hilbert space H is a complex linear space H. We
denote an element A of H by a ket-vector |A). The inner product of two elements |A) and
|B) of H is defined as (A|B) = Tr(A†B). The norm ‖A‖ = √

(A|A) is the Hilbert–Schmidt
norm of operator A. A new Hilbert space H with the inner product is called Liouville space
attached to H or the associated Hilbert space, or Hilbert–Schmidt space [24–38].

The X-representation uses eigenfunctions |x〉 of the operator X. In general, the operator
X can be an unbounded operator. This operator can have a continuous spectrum. This leads
us to consider the rigged Hilbert space [48, 49, 19, 38] (Gelfand triplet) B ⊂ H = H∗ ⊂ B∗

and the associated operator space. The rigged operator Hilbert space can be considered as the
usual rigged Hilbert space for the operator kernels.

Let the set {|x〉} satisfy the following conditions:

〈x|x ′〉 = δ(x − x ′)
∫

dx|x〉〈x| = I.

Then |x, x ′) = ‖x〉〈x ′|) satisfies

(x, x ′|y, y ′) = δ(x − x ′)δ(y − y ′)
∫

dx

∫
dx ′|x, x ′)(x, x ′| = Î .

For an arbitrary element |A) of H we have

|A) =
∫

dx

∫
dx ′|x, x ′)(x, x ′|A) (35)

where (x, x ′|A) is a kernel of the operator A such that

(x, x ′|A) = Tr((|x〉〈x ′|)†A) = Tr(|x ′〉〈x|A) = 〈x|A|x ′〉 = A(x, x ′).

An operator ρ of density matrix can be considered as an element |ρ) of the Liouville (Hilbert–
Schmidt) space H. Using equation (35), we obtain

|ρ) =
∫

dx

∫
dx ′|x, x ′)(x, x ′|ρ) (36)
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where the trace is represented by

Tr ρ = (I |ρ) =
∫

dx(x, x|ρ) = 1.

A.2. Superoperators

Operators, which act on H, are called superoperators and we denote them in general by the
hat. A superoperator is a map which maps operator to operator.

For an arbitrary superoperator �̂ on H, which is defined by �̂|A) = |�̂(A)), we have

(x, x ′|�̂|A) =
∫

dy

∫
dy ′(x, x ′|�̂|y, y ′)(y, y ′|A) =

∫
dy

∫
dy ′�(x, x ′, y, y ′)A(y, y ′)

where �(x, x ′, y, y ′) = (x, x ′|�̂|y, y ′) is a kernel of the superoperator �̂.
Let A be a linear operator in the Hilbert space H. We can define the multiplication

superoperators L̂A and R̂A by the following equations:

L̂A|B) = |AB) R̂A|B) = |BA).

The superoperator kernels can be easily derived. For example, in the basis |x, x ′) we have

(x, x ′|L̂A|B) =
∫

dy

∫
dy ′(x, x ′|L̂A|y, y ′)(y, y ′|B) =

∫
dy

∫
dy ′LA(x, x ′, y, y ′)B(y, y ′).

Using

(x, x ′|AB) = 〈x|AB|x ′〉 =
∫

dy

∫
dy ′〈x|A|y〉〈y|B|y ′〉〈y ′|x ′〉

we obtain the kernel of the left multiplication superoperator

LA(x, x ′, y, y ′) = 〈x|A|y〉〈x ′|y ′〉 = A(x, y)δ(x ′ − y ′).
A superoperator Ê † is called the adjoint superoperator for Ê if (Ê †(A)|B) = (A|Ê(B)) for

all |A) and |B) from H. For example, if Ê = L̂AR̂B , then Ê † = L̂A†R̂B† . If Ê = L̂A, then
Ê † = L̂A† .

Left superoperators L̂±
A are defined as Lie and Jordan multiplication by the relations

L̂−
AB = 1

ih̄
(AB − BA) L̂+

AB = 1

2
(AB + BA).

The left superoperator L̂±
A and the right superoperator R̂±

A are connected by L̂−
A = −R̂−

A ,
L̂+

A = R̂+
A. An algebra of the superoperators L̂±

A is defined [50] by

(1) the Lie relations

L̂−
A·B = L̂−

AL̂−
B − L̂−

BL̂−
A

(2) the Jordan relations

L̂+
(A◦B)◦C + L̂+

BL̂+
CL̂+

A + L̂+
AL̂+

CL̂+
B = L̂+

A◦BL̂+
C + L̂+

B◦CL̂+
A + L̂+

A◦CL̂+
B

L̂+
(A◦B)◦C + L̂+

BL̂+
CL̂+

A + L̂+
AL̂+

CL̂+
B = L̂+

CL̂+
A◦B + L̂+

BL̂+
A◦C + L̂+

AL̂+
B◦C

L̂+
CL̂+

A◦B + L̂+
BL̂+

A◦C + L̂+
AL̂+

B◦C = L̂+
A◦BL̂+

C + L̂+
B◦CL̂+

A + L̂+
A◦CL̂+

B

(3) the mixed relations

L̂+
A·B = L̂−

AL̂+
B − L̂+

BL̂−
A L̂−

A◦B = L̂+
AL̂−

B + L̂+
BL̂−

A

L̂+
A◦B = L̂+

AL̂+
B − h̄2

4
L̂−

BL̂−
A L̂+

BL̂+
A − L̂+

AL̂+
B = −h̄2

4
L̂−

A·B.

Here we use the notation

A · B = 1

ih̄
(AB − BA) A ◦ B = 1

2
(AB + BA).
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