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Abstract
We consider an invariant skew-symmetric phase-space metric for non-
Hamiltonian systems. We say that the metric is an invariant if the metric
tensor field is an integral of motion. We derive the time-dependent skew-
symmetric phase-space metric that satisfies the Jacobi identity. The example
of non-Hamiltonian systems with linear friction term is considered.

PACS numbers: 45.20.−d, 02.40.Yy, 05.20.−y

1. Introduction

The dynamics of Hamiltonian systems is characterized by conservation of phase-space volume
under time evolution. This conservation of the phase volume is a cornerstone of conventional
statistical mechanics of Hamiltonian systems. At a mathematical level, conservation of phase-
space volume is considered as a consequence of the existence of an invariant symplectic form
(skew-symmetric phase-space metric) in the phase-space of Hamiltonian systems [1–3].

The classical statistical mechanics of non-Hamiltonian systems is of strong theoretical
interest [4–17]. Non-Hamiltonian systems have been used in molecular dynamics simulation
to achieve the calculation of statistical averages in various ensemble [5, 6, 12, 18], and in
the treatment of nonequilibrium steady states [16, 17, 19, 20]. Non-Hamiltonian systems are
characterized by nonzero phase-space compressibility, and the usual phase-space volume is
no longer necessarily conserved.

Tuckerman et al have argued [5, 6] that there is a measure conservation law that involves
a nontrivial phase-space metric. This suggests that phase-space should be carefully treated
using the general rules of the geometry of manifolds [1, 2]. Tuckerman et al have applied the
concepts of Riemannian geometry to the classical statistical mechanics of non-Hamiltonian
systems [4–6]. Tuckerman et al have argued that, through introduction of metric determinant
factors

√
g(x, t), it is possible to define an invariant phase-space measure for non-Hamiltonian

systems. In their approach the metric determinant factor
√

g(x, t), where g(x, t) is the
determinant of the metric tensor, is defined by the compressibility of non-Hamiltonian systems.
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However Tuckerman et al consider only the determinant g(x, t) of the metric. The phase-
space metric is not considered in [4–6]. Note that Tuckerman et al suppose that the metric
determinant factor is connected with symmetric phase-space metric. It can be proved that the
proposal to use an invariant time-dependent metric determinant factor in the volume element
corresponds precisely to finding a skew-symmetric phase-space metric (symplectic form) that
is an integral of motion. Therefore we must consider the skew-symmetric phase-space metric.

Sergi [10, 11] has considered an antisymmetric phase-space tensor field, whose elements
are general function of phase-space coordinates. In [10, 11], the generalization of Poisson
brackets for the non-Hamiltonian systems was suggested. However the Jacobi identity is not
satisfied by the generalized brackets and skew-symmetric phase-space metric. As a result the
algebra of phase-space functions is not time translation invariant. The generalized brackets do
not define a Lie algebra in phase-space. Note that the generalized brackets of two constants
of motion is no longer a constant of motion.

In the present paper we consider an invariant skew-symmetric (antisymmetric) phase-
space metric for non-Hamiltonian systems. We say that the metric is an invariant, if the metric
tensor field is an integral of motion. We define the phase-space metric such that the Jacobi
identity is satisfied. The suggested skew-symmetric phase-space metric allows us to introduce
the generalization of the Poisson brackets for non-Hamiltonian systems such that the Jacobi
identity is satisfied by the generalized Poisson brackets. As a result the algebra of phase-space
functions is time translation invariant. The generalized Poisson brackets define a Lie algebra
in phase-space. The suggested Poisson brackets of two constants of motion is a constant of
motion.

In section 2, the definitions of the antisymmetric phase-space metric, and mathematical
background and notations are considered. In section 3, we define the non-Hamiltonian systems,
and consider the Helmholtz conditions. In section 4, we consider the time evolution of phase-
space metric. We derive the phase-space metric that is an integral of motion. In section 5,
the generalized Poisson brackets for non-Hamiltonian systems are defined. In section 6, the
example of phase-space metric for non-Hamiltonian system with the linear friction term is
considered. Finally, a short conclusion is given in section 7.

2. Phase-space metric

The 2n-dimensional differentiable manifold is denoted by M. Coordinates are x =
(x1, . . . , x2n). We assume the existence of a time-dependent metric tensor field ωkl(x, t)

on the manifold M. We can define a differential 2-form

ω = ωkl(x, t) dxk ∧ dxl, (1)

where ωkl = ωkl(x, t) is a skew-symmetric tensor ωkl = −ωlk , and the tensor elements
ωkl(x, t) are explicit functions of time. Here and later we mean the sum on the repeated index
k and l from 1 to 2n.

We suppose that the differential 2-form ω is a closed nondegenerated form:

(1) If the metric determinant is not equal to zero

g(x, t) = det(ωkl(x, t)) �= 0 (2)

for all points x ∈ M , then the form ω is nondegenerated.
(2) If the Jacobi identity

∂kωlm + ∂lωmk + ∂mωkl = 0, ∂k = ∂/∂xk (3)

for the metric ωkl = ωkl(x, t) is satisfied, then the differential 2-form ω is closed (dω = 0).
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Phase space is therefore assumed to be a symplectic manifold.

Definition 1. A symplectic manifold is a differentiable manifold M with a closed
nondegenerated differential 2-form ω.

For symplectic manifold, we have the phase-space volume element

v = 1

n!
ωn = 1

n!
ω ∧ · · · ∧ ω.

This differentiable 2n-form can be represented by

v =
√

g(x, t) dx1 ∧ · · · ∧ dx2n,

where g(x, t) is defined by equation (2). The nondegenerated condition (g(x, t) �= 0) for the
metric ωkl(x, t) is equivalent to the condition ωn �= 0 or v �= 0.

It is known [2] that there exist the local coordinates (q, p) such that

ω = δij dqi ∧ dpj . (4)

Here and later we mean the sum on the repeated index i and j from 1 to n.

3. Non-Hamiltonian system

The dynamics is described by a smooth vector field X = X(x),

dx
dt

= X (5)

with components Xk in basis ∂k = ∂/∂xk . For simplicity, we consider the case where the
vector field X is time independent. In local coordinates {xk}, equation (5) has the form

dxk

dt
= Xk. (6)

Consider now the definition of the Hamiltonian systems, which is used in [1].

Definition 2. A classical system (5) on the symplectic manifold (M,ω) is called a Hamiltonian
system if the differential 1-form ω(X) is a closed form

dω(X) = 0,

where ω(X) = iXω is the contraction (interior product) of the 2-form ω with vector X, and d
is the exterior derivative.

A classical system (5) on the symplectic manifold (M,ω) is called a non-Hamiltonian
system if the differential 1-form ω(X) is nonclosed dω(X) �= 0.

Proposition 1. The classical system (5) is a Hamiltonian system if the conditions

Jkl(ω, x, t) ≡ ∂k(ωlmXm) − ∂l(ωkmXm) = 0 (7)

are satisfied.

Proof. In the local coordinates {xk}, we have

ω(X) = Xk dxk = ωklX
l dxk,

where Xk = ωklX
l . In this case, the exterior derivative of 1-form ω(X) is

dω(X) = d(Xk dxk) = ∂lXk dxl ∧ dxk.
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Using da ∧ db = −db ∧ da, we get

dω(X) = 1
2 (∂kXl − ∂lXk) dxk ∧ dxl.

As a result we have the differential 2-form

dω(X) = 1
2 (∂k(ωlmXm) − ∂l(ωkmXm)) dxk ∧ dxl. (8)

This differential 2-form is a symplectic form, which can be called ‘non-Hamiltonian symplectic
form’. If the Helmholtz conditions (7) are satisfied, then the differential 1-form ω(X) is closed
(dω(X) = 0), and the classical system (5) is a Hamiltonian system.

Let us consider the canonical coordinates x = (x1, . . . , xn, xn+1, . . . , x2n) = (q1, . . . , qn,

p1, . . . , pn). Equation (6) can be written as

dqi

dt
= Gi(q, p),

dpi

dt
= F i(q, p). (9)

�

Corollary. If the right-hand sides of equations (9) satisfy the Helmholtz conditions [21, 22]
for the phase-space with (4), which have the following form:

∂Gi

∂pj
− ∂Gj

∂pi
= 0, (10)

∂Gj

∂qi
+

∂F i

∂pj
= 0, (11)

∂F i

∂qj
− ∂F j

∂qi
= 0, (12)

then classical system (9) is a Hamiltonian system.

Proof. In the canonical coordinates (q, p), the vector field X has the components (Gi, F i),
which are used in equation (9). The 1-form ω(X) is defined by the following equation:

ω(X) = 1
2 (Gi dpi − Fi dqi),

where Gi = δijG
j and Fi = δijF

j . The exterior derivative for this form can now be written
by the relation

dω(X) = 1
2 (d(Gidp

i) − d(Fi dqi)).

It now follows that

dω(X) = 1

2

(
∂Gi

∂qj
dqj ∧ dpi +

∂Gi

∂pj
dpj ∧ dpi − ∂Fi

∂qj
dqj ∧ dqi − ∂Fi

∂pj
dpj ∧ dqi

)
.

This equation can be rewritten in an equivalent form

dω(X) = 1

2

(
∂Gj

∂qi
+

∂Fi

∂pj

)
dqi ∧ dpj +

1

4

(
∂Gj

∂pi
− ∂Gi

∂pj

)
dpi ∧ dpj

+
1

4

(
∂Fi

∂qj
− ∂Fj

∂qi

)
dqi ∧ dqj .

Here we use the skew symmetry of dqi ∧ dqj and dpi ∧ dpj with respect to index i and j . It
is obvious that conditions (10)–(12) lead to the equation dω(X) = 0. �
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4. Time evolution of phase-space metric

Let us find a time-dependent symplectic 2-form ω that satisfies the equation dω/dt = 0.
It is known [2, 3] as the following proposition.

Proposition 2. If the system ẋ = X on the symplectic manifold (M,ω) with time-independent
symplectic form (∂ωkl/∂t = 0) is a Hamiltonian system, then differential 2-form ω is
conserved, i.e., dω/dt = 0.

Proof. The proof of this theorem is considered in [2, 3]. �

Let us consider a generalization of this proposition.

Proposition 3. If the time-dependent metric ωkl = ωkl(x, t) is a skew-symmetric metric
(ωkl = −ωlk) that is satisfied by the Jacobi identity (3), and the system is defined by
equation (6), then the total time derivative of the differential 2-form (1) is given by

dω

dt
=

(
∂ωkl

∂t
− ∂k(ωlmXm) + ∂l(ωkmXm)

)
dxk ∧ dxl. (13)

Proof. The time-derivative of the time-dependent symplectic form ω is given by

dω

dt
= d

dt
(ωkl(x, t) dxk ∧ dxl) = dωkl

dt
dxk ∧ dxl + ωkl d

(
dxk

dt

)
∧ dxl + ωkl dxk ∧ d

(
dxl

dt

)
.

Then, using the equation

dωkl

dt
= ∂ωkl

∂t
+

∂ωkl

∂xm

dxm

dt
= ∂ωkl

∂t
+ Xm∂mωkl,

and equation (6), we find that

dω

dt
=

(
∂ωkl

∂t
+ Xm∂mωkl

)
dxk ∧ dxl + ωkl dXk ∧ dxl + ωkl dxk ∧ dXl.

Using dXk = ∂mXk dxm, we have

dω

dt
=

(
∂ωkl

∂t
+ Xm∂mωkl

)
dxk ∧ dxl + ωkl∂mXk dxm ∧ dxl + ωkl∂mXl dxk ∧ dxm.

This expression can be rewritten in an equivalent form

dω

dt
=

(
∂ωkl

∂t
+ Xm∂mωkl + ωml∂kX

m + ωkm∂lX
m

)
dxk ∧ dxl.

Using the rule of term-by-term differentiation in the form

ωml∂kX
m = ∂k(ωmlX

m) − Xm∂kωml, ωkm∂lX
m = ∂l(ωkmXm) − Xm∂lωkm,

we get the following equation:

dω

dt
=

(
∂ωkl

∂t
+ Xm(∂mωkl − ∂kωml − ∂lωkm) + ∂k(ωmlX

m) + ∂l(ωkmXm)

)
dxk ∧ dxl.

Using the Jacobi identity (3), and skew symmetry ωml = −ωlm, ωkm = −ωmk , we have

dω

dt
=

(
∂ωkl

∂t
− ∂k(ωlmXm) + ∂l(ωkmXm)

)
dxk ∧ dxl.

As a result, we obtain equation (13) for the total time derivative of symplectic form. �
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The total time derivative of the symplectic form is defined by equation (13). If the total
derivative is zero, than we have the integral of motion or invariant. It is easy to see that
the differentiable 2-form ω is invariant if the phase-space metric ωkl(x, t) is satisfied by the
equation

∂ωkl

∂t
= ∂k(ωlmXm) − ∂l(ωkmXm). (14)

This equation can be rewritten in an equivalent form

∂ωkl

∂t
= Ĵ ms

kl ωms,

where the operator Ĵ is defined by the equation

Ĵ ms
kl = 1

2

((
δm
l ∂k − δm

k ∂l

)
Xs − (

δs
l ∂k − δs

k∂l

)
Xm

)
. (15)

Proposition 4. The differentiable 2-form ω is invariant (is an integral of motion for non-
Hamiltonian system (6)) if the phase-space metric ωkl(x, t) is defined by the equation

ωkl(x, t) = (exp(t Ĵ ))ms
kl ωms(x, 0). (16)

Here Ĵ is an operator that is defined by equation (15).

Proof. Let us consider the formal solution of equation (14) in the form

ωkl(x, t) =
∞∑

n=1

tn

n!
ω

(n)
kl (x),

where ω
(n)
kl = −ω

(n)
lk . In this case, the time-independent tensor fields ω

(n)
kl (x) are defined by

the recursion relation

ω
(n+1)
kl = ∂k

(
ω

(n)
lm Xm

) − ∂l

(
ω

(n)
kmXm

)
.

This equation can be rewritten in an equivalent form

ω
(n+1)
kl = (

δm
l ∂k − δm

k ∂l

) (
Xsω(n)

ms

)
.

Using the skew symmetry of the ω(n)
ns , we have

ω
(n+1)
kl = 1

2

((
δm
l ∂k − δm

k ∂l

)
Xs − (

δs
l ∂k − δs

k∂l

)
Xm

)
ω(n)

ms .

This relation can be represented in the form

ω
(n+1)
kl = Ĵ ms

kl ω(n)
ms ,

where the operator Ĵ is defined by equation (15). Therefore the invariant phase-space metric
is defined by the following equation:

ωkl(x, t) =
∞∑

n=0

tn

n!
(Ĵ

n
)ms
kl ωms(x, 0) = (exp(t Ĵ ))ms

kl ωms(x, 0).

As a result we have equation (16). �

Comments. We prove that equation (14) for the elements of phase-space metric can be
expressed in terms of an operator Ĵ such that

∂ωkl

∂t
= Ĵ ms

kl ωms, (17)
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where Ĵ ab
kl is defined by equation (15). In this case, the time evolution of the phase-space

metric from initial condition ωkl(x0, 0) to a value ωkl(x, t) at the time t can be written by the
equation

ωkl(x, t) = (exp(t Ĵ ))ms
kl ωms(x, 0). (18)

Here the matrix exponential operator, exp(t Ĵ ) can be called the metric propagator. The
operator Ĵ can be considered as a metric analogue of the Liouville operator. Note that we can
use the canonical coordinates (q, p) for t = 0 and the coordinate-independent initial metric:
ωkl(x, 0) = ω

(0)
kl = const, ∂mωkl(x, 0) = 0. Introducing time step �t = t/N , we get

ωkl(x, t) = (exp(t Ĵ ))ms
kl ωms(x, 0) = ([exp(�tĴ )]N)ms

kl ωms(x, 0).

It is natural to approximate the short-time propagator exp(t Ĵ ) using the Trotter theorem
[23–25]. The vector field X = X(x) can be represented in the form

X = X1 + X2,

where X1 is a Hamiltonian term such that

Xk
1 = ωkl ∂H

∂xl
,

and X2 is a friction (non-Hamiltonian) term. As the result we have

(Ĵ 1;2)ms
kl = 1

2

((
δm
l ∂k − δm

k ∂l

)
Xs

1;2 − (
δs
l ∂k − δs

k∂l

)
Xm

1;2
)
. (19)

An important consequence would be the ability to formulate rigorous numerical integration
algorithms based on Trotter-type splittings [23–25] of the classical propagator exp(�tĴ ). The
metric propagator for the small time step is

exp[�t(Ĵ 1 + Ĵ 2)] = exp
[

1
2�tĴ 2

]
exp[�tĴ 1] exp

[
1
2�tĴ 2

]
+ O(�t3).

Finally, we obtain

exp[t Ĵ ] = exp[t (Ĵ 1 + Ĵ 2)] = (
exp

[
1
2�tĴ 2

]
exp[�tĴ 1] exp

[
1
2�tĴ 2

])N
+ O(�t3).

5. Poisson brackets for non-Hamiltonian systems

Let us consider the skew-symmetric tensor field ωkl = ωkl(x, t) that is defined by the equations

ωkl(x, t)ωlm(x, t) = ωlk(x, t)ωml(x, t) = δk
l .

As the result this tensor field satisfies the Jacobi identity

ωkl∂lω
ms + ωml∂lω

sk + ωsl∂lω
km = 0.

It follows from the Jacobi identity for ωkl .
In proposition 3, we suggest the time-dependent phase-space metric ωkl(x, t), which

satisfies the Jacobi identity. As the result we have Lie algebra that is defined by the following
brackets:

{A,B} = ωkl(x, t)∂kA∂lB. (20)

It is easy to prove that these brackets are Poisson brackets.
In the general case, the rule of term-by-term differentiation with respect to time that has

the form
d

dt
{A,B} = {Ȧ, B} + {A, Ḃ} (21)

where Ȧ = dA/dt is not valid for non-Hamiltonian systems. In the general case, we have

d

dt
{A,B} = {Ȧ, B} + {A, Ḃ} + J (A,B)
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where

J (A,B) = ωkl
(1)(x, t)∂kA∂lB, ωkl

(1)(x, t) = ωkmωls(∂sXm − ∂mXs).

Note that time evolution of the Poisson brackets (20) for non-Hamiltonian systems can be
considered as t-deformation [28] of the Lie algebra in phase-space.

If we use the invariant phase-space metric, then rule (21) is valid. As the result the
suggested Poisson brackets (20) of two constants of motion is a constant of motion and rule
(21) is satisfied.

6. Example: system with linear friction

Let us consider the non-Hamiltonian system that is described by the equations

dqi

dt
= ∂H

∂pi
,

dpi

dt
= −∂H

∂qi
− Ki

j (t)p
j , (22)

where H = T (p) + U(q) and i; j = 1, . . . , n. Here T (p) is a kinetic energy, U(q) is a
potential energy. The term −Ki

j (t)p
j is a friction term. Usually, this system is described by

the phase-space metric ωkl that has the form

‖ωkl‖ =
(

0 G

−GT 0

)
, (23)

where the matrix G = ‖gij‖ is equal to identity matrix E = ‖δij‖. Here GT is the transpose
matrix for the matrix G. The symplectic form is defined by equation (4) in the form

ω = 2gij dqi ∧ dpj = δij dqi ∧ dpj ,

where gij = (1/2)δij . The phase-space compressibility

κ =
n∑

i=1

(
∂q̇i

∂qi
+

∂ṗi

∂pi

)
(24)

of system (22) is defined by the spur of the matrix K = ‖Ki
j‖ in the form

κ = −Sp‖Ki
j‖.

Proposition 5. The invariant phase-space metric for the classical system (22) has the form

‖ωkl(t)‖ =
(

0 G(t)

−GT(t) 0

)
, (25)

where the matrix G is defined by

G(t) = G(t0) exp
∫ t

t0

∥∥Ki
j (τ )

∥∥ dτ. (26)

Proof. Suppose that phase-space metric depends on time t. Therefore the matrix G and
elements gkl are the functions of the variable t: G = G(t), gij = gij (t). Let us consider the
total time derivative of the symplectic form

ω = 2gij (t) dqi ∧ dpj .

As the result, we have

dω

dt
= 2

(
dgij

dt
− gimKm

j

)
dqi ∧ dpj .
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In order to have the invariant phase-space metric (dω/dt = 0), we use the following equation:

dgij

dt
= gimKm

j .

The matrix G = ‖gij‖ is satisfied by the matrix equation

dG(t)

dt
= G(t)K(t), (27)

where K(t) = ‖Ki
j (t)‖ is a matrix of friction coefficients. Suppose that G(t0) = E, where E

is the identity matrix. The solution of equation (27) has the form

G(t) = G(t0) exp
∫ t

t0

K(τ) dτ = exp
∫ t

t0

K(τ) dτ. (28)

If the matrix K is diagonal matrix with elements Ki
j (t) = Kj(t)δ

i
j , then we have the matrix

elements

gij (t) = δij exp
∫ t

t0

Kj(τ) dτ.

As the result, the invariant phase-space metric for system (22) is defined by equations (25)
and (26). �

The metric determinant factor [4–6]√
g(x, t) =

√
det‖ωkl(x, t)‖

for the phase-space metric (23) is defined by the relation
√

g =
√

det(GGT). Using
det AB = det A det B and det AT = det A, we have the metric determinant factor in the form√

g = |det G|. If the matrix G has the form (28), then

√
g(t) =

∣∣∣∣det exp
∫ t

t0

K(τ) dτ

∣∣∣∣ .
Using det exp A = exp Sp A, we get that the invariant phase-space metric has the determinant
that is connected with the phase-space compressibility [4–6] by the equation√

g(t) = exp
∫ t

t0

Sp K(τ) dτ = exp −
∫ t

t0

κ(τ) dτ, (29)

where κ is the phase-space compressibility (24).
For example, the system

dq1

dt
= p1

m
,

dp1

dt
= −∂U(q)

∂q1
− K1p1,

dq2

dt
= p2

m
,

dp2

dt
= −∂U(q)

∂q2
− K2p2,

has the invariant phase-space metric ωkl(t) in the form

‖ωkl(t)‖ =




0 0 eK1t 0
0 0 0 eK2t

−eK1t 0 0 0
0 −eK2t 0 0


 . (30)

In this case, the metric determinant factor is equal to√
g(t) =

√
det‖ωkl‖ = e(K1+K2)t .
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7. Conclusion

Tuckerman et al [4–6] suggest a formulation of non-Hamiltonian statistical mechanics which
uses the invariant phase-space measure. The invariant measure is connected with phase-space
metric. Tuckerman et al consider the properties of only the determinant g(x, t) of the metric.
The phase-space metric is not considered in [4–6]. We consider the invariant phase-space
metric for non-Hamiltonian systems. The proposal to use an invariant time-dependent metric
determinant factor in the volume element corresponds precisely to finding a skew-symmetric
phase-space metric (symplectic form) that is an integral of motion. Therefore we consider the
skew-symmetric metric.

Sergi [10, 11] uses the skew-symmetric phase-space metric that is not satisfied by the
Jacobi identity. As the result the generalization of the Poisson brackets for non-Hamiltonian
systems leads one to non-Lie algebra. Note that non-Lie algebra for non-Hamiltonian systems
is considered in [29]. In this paper we consider an invariant antisymmetric phase-space metric
that satisfies the Jacobi identity, and defines the Lie algebra in phase-space. We call the
metric is invariant if the metric tensor field is an integral of motion (dω/dt = 0). This
invariant phase-space metric ωkl(x, t) defines the invariant phase-space measure v by the
equation v = (1/n!)ωn = √

g(x, t) dx1 ∧ · · · ∧ dx2n, where g(x, t) is the metric determinant
g(x, t) = det(ωkl(x, t)) and dv/dt = 0. The suggested time-dependent skew-symmetric
phase-space metric leads to a constant value of the entropy density, so that the associated
distribution function obeys an evolution equation associated with incompressible dynamical
flow.

Note that the invariant phase-space metric of some non-Hamiltonian systems can lead us
to the lack of smoothness of the metric. In this case, the phase-space probability distribution
can be collapsed onto a fractal set of dimensionality lower than in the Hamiltonian case
[26, 27]. Unfortunately the description of lack of smoothness in [26, 27] is considered without
using the curved phase-space approach [4–6]. Note that classical systems that are Hamiltonian
systems in the usual phase-space are non-Hamiltonian systems in the fractional phase-space
[13, 32].

In the papers [30, 31], the quantization of the evolution equations for non-Hamiltonian
and dissipative systems was suggested. Using this quantization it is easy to derive the
quantum analogue of the invariant Poisson brackets, which satisfy the rule of term-by-term
differentiation with respect to time.

References

[1] Godbillon G 1969 Geometrie Differentielle et Mecanique Analytique (Paris: Hermann) section VII. 3
[2] Dubrovin B A, Fomenko A N and Novikov S P 1992 Modern Geometry—Methods and Applications: Part I

(New York: Springer) section 34
[3] Fomenko A N 1988 Symplectic Geometry: Methods and Applications (Moscow: Moscow State University)

section 2.1
[4] Tuckerman M E, Mundy C J and Martyna G J 1999 Europhys. Lett. 45 149
[5] Tuckerman M E, Liu Y, Ciccotti G and Martyna G J 2001 J. Chem. Phys. 115 1678
[6] Minary P, Martyna G J and Tuckerman M E 2003 J. Chem. Phys. 118 2510
[7] Ramshaw J D 2002 Europhys. Lett. 59 319
[8] Ramshaw J D 1986 Phys. Lett. A 116 110
[9] Sergi A and Ferrario M 2001 Phys. Rev. E 64 056125

[10] Sergi A 2003 Phys. Rev. E 67 021101
[11] Sergi A 2004 Phys. Rev. E 69 021109
[12] Tarasov V E 2003 Mod. Phys. Lett. B 17 1219
[13] Tarasov V E 2004 Chaos 14 123



Phase-space metric for non-Hamiltonian systems 2155

[14] Ezra G S 2002 J. Math. Chem. 32 339
[15] Ezra G S 2004 J. Math. Chem. 35 29
[16] Tarasov V E 2002 Phys. Rev. E 66 056116
[17] Tarasov V E 2002 Phys. Lett. A 299 173
[18] Nose S 1991 Prog. Theor. Phys. Suppl. 103 1
[19] Evans D J and Morriss G P 1990 Statistical Mechanics of Nonequilibrium Liquids (New York: Academic)
[20] Hoover W G 1991 Computational Statistical Mechanics (New York: Elsevier)
[21] Helmholtz H 1886 J. Reine Angew. Math. 100 137
[22] Tarasov V E 1997 Theor. Math. Phys. 110 53
[23] Trotter H F 1959 Proc. Am. Math. Soc. 10 545
[24] Suzuki M 1985 J. Math. Phys. 26 601
[25] Tuckerman M E, Martyna G J and Berne B J 1992 J. Chem. Phys. 97 1990
[26] Dorfman J R 1999 An Introduction to Chaos in Nonequilibrium Statistical Mechanics (Cambridge: Cambridge

University Press)
[27] Hoover W G, Posch H A, Aoki K and Kusnezov D 2002 Europhys. Lett. 60 337 (Preprint nlin.CD/0205040)
[28] Gerstenhaber M 1964 Ann. Math. 79 59
[29] Tarasov V E 1997 Theor. Math. Phys. 110 168
[30] Tarasov V E 2001 Phys. Lett. A 288 173
[31] Tarasov V E 2001 Moscow Univ. Phys. Bull. 56 (6) 5
[32] Tarasov V E 2005 Phys. Rev. E 71 011102


