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Abstract
One-dimensional Ginzburg–Landau equations with derivatives of noninteger
order are considered. Using psi-series with fractional powers, the solution of
the fractional Ginzburg–Landau (FGL) equation is derived. The leading-order
behaviours of solutions about an arbitrary singularity, as well as their resonance
structures, have been obtained. It was proved that fractional equations of order
α with polynomial nonlinearity of order s have the noninteger power-like
behaviour of order α/(1 − s) near the singularity.

PACS numbers: 05.45.−a, 45.10.Hj

1. Introduction

Differential equations that contain derivatives of noninteger order [1, 2] are called fractional
equations [3, 4]. The interest to fractional equations has been growing continually during
the last few years because of numerous applications. In a fairly short period of time the
areas of applications of fractional calculus have become broad. For example, the derivatives
and integrals of fractional order are used in chaotic dynamics [5, 6], material sciences [7–9],
mechanics of fractal and complex media [10, 11], quantum mechanics [12, 13], physical
kinetics [5, 14–16], plasma physics [17, 18], astrophysics [19], long-range dissipation [20],
non-Hamiltonian mechanics [21, 22], long-range interaction [23–25], anomalous diffusion
and transport theory [5, 26, 27].

The fractional generalization of the Ginzburg–Landau equation was suggested in [28].
This equation can be used to describe the dynamical processes in continuums with fractal
dispersion and the media with fractal mass dimension [29–31]. In this paper, we generalize
the psi-series approach to the fractional differential equations. As an example, we consider a
solution of the fractional Ginzburg–Landau (FGL) equation. We derive the psi-series for the
one-dimensional FGL equation. The leading-order behaviours of solutions about an arbitrary
singularity, as well as their resonance structures, have been obtained.
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In section 2, we recall the appearance of the Ginzburg–Landau equation with fractional
derivatives. In section 3, the singular behaviour of the FGL equation is considered. In
section 4, we discuss the powers of series terms that have arbitrary coefficients that are
called the resonances or Kovalevskaya exponents. In section 5, we derive the psi-series and
recurrence relations for a one-dimensional FGL equation with rational order α (1 < α < 2).
In section 6, the example of an FGL equation with order α = 3/2 is suggested. In section 7,
the next to singular behaviour for arbitrary (rational or irrational) order is discussed. Finally,
a short conclusion is given in section 8.

2. Fractional Ginzburg–Landau (FGL) equation

Let us recall the appearance of the nonlinear parabolic equation [32–35], and the FGL equation
[28, 29, 31]. Consider wave propagation in some media and present the wave vector k in the
form

k = k0 + κ = k0 + κ‖ + κ⊥, (1)

where k0 is the unperturbed wave vector and subscripts (‖,⊥) are taken respectively to the
direction of k0. A symmetric dispersion law ω = ω(k) for κ � k0 can be written as

ω(k) = ω(|k|) ≈ ω(k0) + vg(|k| − k0) + 1
2v′

g(|k| − k0)
2, (2)

where

vg =
(

∂ω

∂k

)
k=k0

, v′
g =

(
∂2ω

∂k2

)
k=k0

, (3)

and

|k| = |k0 + κ| =
√

(k0 + κ‖)2 + κ2
⊥ ≈ k0 + κ‖ +

1

2k0
κ2

⊥. (4)

Substitution of (4) into (2) gives

ω(k) ≈ ω0 + vgκ‖ +
vg

2k0
κ2

⊥ +
v′

g

2
κ2

‖ , (5)

where ω0 = ω(k0). Expression (5) in the dual space (‘momentum representation’) corresponds
to the following equation in the coordinate space:

i
∂Z

∂t
= ω0Z − ivg

∂Z

∂x
− vg

2k0
�⊥Z − v′

g

2
�‖Z (6)

with respect to the field Z = Z(t, x, y, z), where x is along k0, and we use the operator
correspondence between the dual space and usual spacetime:

ω(k) ←→ i
∂

∂t
, κ‖ ←→ −i

∂

∂x
,

(κ⊥)2 ←→ −�⊥ = − ∂2

∂y2
− ∂2

∂z2
, (κ‖)

2 ←→ −�‖ = − ∂2

∂x2
.

(7)

A generalization to the nonlinear case can be carried out similarly to (5) through a nonlinear
dispersion law dependence on the wave amplitude:

ω = ω(k, |Z|2) ≈ ω(k, 0) + b|Z|2 = ω(|k|) + b|Z|2 (8)

with some constant b = ∂ω(k, |Z|2)/∂|Z|2 at |Z| = 0. In analogy to (6), we obtain from (5)
and (7):

i
∂Z

∂t
= ω(k0)Z − ivg

∂Z

∂x
− vg

2k0
�⊥Z − v′

g

2
�‖Z + b|Z|2Z. (9)
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This equation is known as the nonlinear parabolic equation [32–35]. The change of variables
from (t, x, y, z) to (t, x − vgt, y, z) gives

−i
∂Z

∂t
= vg

2k0
�⊥Z +

v′
g

2
�‖Z − ω(k0)Z − b|Z|2Z (10)

that is also known as the nonlinear Schrödinger (NLS) equation.
Wave propagation in media with fractal properties can be easily generalized by rewriting

the dispersion law (5), (8) in the following way [28]:

ω(k, |Z|2) = ω(k0, 0) + vgκ‖ + g1
(
κ2

⊥
)α/2

+ g2
(
κ2

‖
)β/2

+ b|Z|2, (1 < α, β < 2) (11)

with new constants g1, g2.
Using the connection between Riesz fractional derivative and its Fourier transform [1]

(−�⊥)α/2 ←→ (
κ2

⊥
)α/2

, (−�‖)β/2 ←→ (
κ2

‖
)β/2

, (12)

we obtain from (11)

i
∂Z

∂t
= −ivg

∂Z

∂x
+ g1(−�⊥)α/2Z + g2(−�‖)β/2Z + ω0Z + b|Z|2Z, (13)

where Z = Z(t, x, y, z). By changing the variables from (t, x, y, z) to (t, ξ, y, z), ξ = x−vgt ,
and using

(−�‖)β/2 = ∂β

∂|x|β = ∂β

∂|ξ |β , (14)

we obtain from (13) equation

i
∂Z

∂t
= g1(−�⊥)α/2Z + g2(−�‖)β/2Z + ω0Z + b|Z|2Z, (15)

that can be called the fractional nonlinear parabolic equation. For g2 = 0 we get the
nonstationary FGL equation (fractional NLS equation) suggested in [28]. Let us comment
on the physical structure of (15). The first term on the right-hand side is related to wave
propagation in media with fractal properties. The fractional derivative can also appear as a
result of long-range interaction [23–25]. Other terms on the right-hand-side of equations (13)
and (15) correspond to wave interaction due to the nonlinear properties of the media. Thus,
equation (15) can describe fractal processes of self-focusing and related issues.

We may consider one-dimensional simplifications of (15), i.e.,

i
∂Z

∂t
= g2

∂βZ

∂|ξ |β + ω0Z + b|Z|2Z, (16)

where Z = Z(t, ξ), ξ = x − vgt , or the equation

i
∂Z

∂t
= g1

∂αZ

∂|z|α + ω0Z + b|Z|2Z, (17)

where Z = Z(t, z). We can reduce (17) to the case of a propagating wave

Z = Z(z − vgt) ≡ Z(η). (18)

For the real field Z, equation (17) becomes

g1
dαZ

d|η|α + c
dZ

dη
+ ω0Z + bZ3 = 0, η = z − vgt, (19)

where c = ivg . This equation takes the form of the fractional generalization of the Ginzburg–
Landau equation, when vg = 0.

It is well known that the nonlinear term in equations of type (10) leads to a steepening
of the solution and its singularity. The steepening process may be stopped by a diffusional or
dispersional term, i.e. by a higher derivative term. A similar phenomenon may appear for the
fractional nonlinear equations (19).
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3. Singular behaviour of FGL equation

There is an approach to the question of integrability which is not concerned with the display
of explicit functions, but with the demonstration of a specific property. This is the existence
of Laurent series for each of the dependent variables. The series may not be summable
to an explicit form, but does represent an analytic function. The essential feature of this
Laurent series is that it is an expansion about a particular type of movable singularity, i.e.,
a pole. Consequently the existence of these Laurent series is intimately concerned with the
singularity analysis of differential equations initiated about a century ago by Painleve, Gambier
and Garnier [36] and continued since by many workers including Bureau [37] and Cosgrove
et al [38].

The connection of this type of singular behaviour and the solution of partial differential
equations by the method of the inverse scattering transform was noticed by Ablowitz et al
[39] who developed an algorithm, called the ARS algorithm, to test whether the solution of an
ordinary differential equation was expressible in terms of a Laurent expansion. If this was the
case, the ordinary differential equation was said to pass the Painleve test and was conjectured
to be integrable. Under more precise conditions Conte [40] has shown that the equation is
integrable. Psi-series solutions of differential equations are considered in [41–44].

In this paper, we consider the fractional equation

gDα
x Z(x) + cD1

xZ(x) + aZ(x) + bZ3(x) = 0, (20)

where 1 < α < 2, and Dα
x is the fractional Riemann–Liouville derivative:

Dα
x Z(x) = 1

	(m − α)

dm

dxm

∫ x

x0

dy
Z(y)

(x − y)α−m+1
. (21)

Here, m is the first whole number greater than or equal to α. In our case m = 2. We
detect possible singular behaviour in the solution of a differential equation by means of the
leading-order analysis.

To determine the leading-order behaviour, we set

Z(x) = f (x − x0)
p, (22)

where x0 is an arbitrary constant (the location of the singularity). Then, we substitute (22)
into the fractional differential equation (20) and look for two or more dominant terms. The
detection of which terms are dominant is identical to the determination of which terms in an
equation are self-similar.

Substituting (22) into equation (20), and using the relation

Dα
x xp = 	(p + 1)

	(p + 1 − α)
xp−α, (p > −1), (23)

we get

gf
	(p + 1)

	(p + 1 − α)
(x − x0)

p−α + cpf (x − x0)
p−1 + af (x − x0)

p + bf 3(x − x0)
3p = 0. (24)

If 1 < α < 2, then p − α < p − 1. For the dominant terms,

gf
	(p + 1)

	(p + 1 − α)
(x − x0)

p−α + bf 3(x − x0)
3p = 0. (25)

As a result, we obtain

p − α = 3p, (26)

g
	(p + 1)

	(p + 1 − α)
+ bf 2 = 0. (27)
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Equation (26) gives

p = −α

2
. (28)

If 1 < α < 2, then −1 < p < −1/2. Therefore the leading-order singular behaviour is found:

Z(x) = f (x − x0)
−α/2, f 2 +

g	(1 − α/2)

b	(1 − 3α/2)
= 0, (29)

and the singularity is a pole of order α/2. Evidently our psi-series starts at (x − x0)
−α/2. The

resonance conditions and psi-series is considered in the next sections.
As a result, we get that fractional dinnerential equations of order α with polynomial

nonlinearity of order s have the noninteger power behaviour of order α/(1 − s) near the
singularity.

4. Resonance terms of FGL equation

The powers of (x − x0) that have arbitrary coefficients are called the resonances or
Kovalevskaya’s exponents. To find resonance, we consider the substitution

Z(x) = f (x − x0)
p + l(x − x0)

p+r , (30)

and find the values of r. In equation (30) parameters p and f are defined by

p = −α

2
, f =

√
− g	(1 − α/2)

b	(1 − 3α/2)
. (31)

Substitution of equation (30) into (20) gives

gf
	(p + 1)

	(p + 1 − α)
(x − x0)

p−α + cpf (x − x0)
p−1 + af (x − x0)

p + bf 3(x − x0)
3p

+ gl
	(p + r + 1)

	(p + r + 1 − α)
(x − x0)

p+r−α + cpl(x − x0)
p+r−1 + al(x − x0)

p+r

+ bl3(x − x0)
3p+3r + 3bl2f (x − x0)

2p+3r + 3blf 2(x − x0)
p+3r = 0. (32)

Using equation (31), and considering the linear with respect to l terms of (32), we have

	(1 + r − α/2)

	(1 + r − 3α/2)
− 3

	(1 − α/2)

	(1 − 3α/2)
= 0. (33)

This relation allows us to derive the values of r. Equation (33) can be directly derived by
using the recurrence relations. In the general case, the values of r can be irrational or complex
numbers. The solution of the FGL equation with 1 < α � 2 have two arbitrary parameters.
Therefore, we must have two values of r that are the solutions of equation (33). It is interesting
to note that (33) gives two real values of r only for

α > α0, (34)

where

α0 ≈ 1.300 588 8986. (35)

The order α0 is an universal value that does not depend on values of parameters g, a, b, c of
the FGL equation (20).

The plots of the function

y(r) = 	(1 + r − α/2)

	(1 + r − 3α/2)
− 3

	(1 − α/2)

	(1 − 3α/2)
(36)
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Figure 1. Plot for the order α = 1.30.
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Figure 2. Plot for the order α = 1.31.

are shown in figures 1 and 2. The solutions of equation (33) correspond to the points of
intersection with the horizontal axis.

As a result, the nature of the resonances is summarized as follows:

(1) For α such that 1 < α < α0 the values of r are complex or r < −α/2.
(2) For α such that α0 < α < 2, we have two the real values of r. Note that for

α0 < α < 1.999 999 9995, the values r satisfy the inequality r < 6.426.

5. Psi-series for FGL equation of rational order

Let us consider the psi-series and recurrence relations for the one-dimensional FGL
equation (20), where the order α is a rational number such that
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α = m

n
, (1 < α < 2). (37)

Following a standard procedure [41], we substitute

Z(x) = 1

(x − x0)α/2

∞∑
k=0

ekφ
k(x − x0), (38)

where

e0 = f =
√

− g	(1 − α/2)

b	(1 − 3α/2)
, (39)

into the fractional Ginzburg–Landau equation (20). Note that the coefficient e0 is a real number
for two cases: (1) g/b � 0 and 1 < α < 4/3; (2) g/b � 0 and 4/3 < α < 2.

For the rational order α = m/n, we suggest to use the φ-function in the form

φ(x − x0) = (x − x0)
1/2n. (40)

Then

Z(x) = 1

(x − x0)α/2

∞∑
k=0

ek(x − x0)
βk =

∞∑
k=0

ek(x − x0)
βk−α/2, (41)

where

βk = k

2n
. (42)

In this case, the action of the fractional derivative of order α = m/n can be represented as the
change of the number of term ek → ek−2m:

Dα
x (x − x0)

βk = 	(βk + 1)

	(βk−2m + 1)
(x − x0)

βk−2m. (43)

It allows us to derive the generalized psi-series solutions of the fractional Ginzburg–Landau
equation.

Substitution of the series

Z(x) =
∞∑

k=0

ek(x − x0)
βk−α/2 =

∞∑
k=0

ek(x − x0)
k−m

2n (44)

into equation (20) gives

g

∞∑
k=0

ek

	
(

k−m+2n
2n

)
	

(
k−3m+2n

2n

) (x − x0)
k−3m

2n + c

∞∑
k=0

ek

k − m

2n
(x − x0)

k−m−2n
2n

+ a

∞∑
k=0

ek(x − x0)
k−m

2n + b

∞∑
k1=0

∞∑
k2=0

∞∑
k3=0

ek1ek2ek3(x − x0)
k1+k2+k3−3m

2n = 0. (45)

Let us compute ek (k = 1, 2, . . .) through the equation of coefficients of like power of (x −x0)

to zero in (45):

g

∞∑
k=0

ek

	
(

k−m+2n
2n

)
	

(
k−3m+2n

2n

) (x − x0)
k−3m

2n + c

∞∑
k=2m−2n

ek−2m+2n

k − 3m + 2n

2n
(x − x0)

k−3m
2n

+ a

∞∑
k=2m

ek−2m(x − x0)
k−3m

2n + 3be2
0

∞∑
k=0

ek(x − x0)
k−3m

2n

+ b

∞∑
k=0

k−1∑
i=1

i∑
j=1

ek−i−j eiej (x − x0)
k−3m

2n = 0. (46)
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Using e2
0 = f 2, we get

gek

	
(

k−m+2n
2n

)
	

(
k−3m+2n

2n

) + cek−2m+2n

k − 3m + 2n

2n
+ aek−2m + 3bf 2ek + b

k−1∑
i=1

i∑
j=1

ek−i−j eiej = 0.

(47)

Here k = 0, 1, 2, . . . , and ek = 0 for k < 0. We can rewrite the recurrence relation (47) as

ek

(
g

	
(

k−m+2n
2n

)
	

(
k−3m+2n

2n

) + 3bf 2

)
= −cek−2m+2n

k − 3m + 2n

2n
− aek−2m − b

k−1∑
i=1

i∑
j=1

ek−i−j eiej ,

(48)

where

f 2 = − g	(1 − α/2)

b	(1 − 3α/2)
= − g	

(
2n−m

2n

)
b	

(
2n−3m

2n

) . (49)

Substitution of equation (49) into equation (48) gives

ekg

(
	

(
k−m+2n

2n

)
	

(
k−3m+2n

2n

) − 3	
(

2n−m
2n

)
	

(
2n−3m

2n

)
)

= −cek−2m+2n

k − 3m + 2n

2n
− aek−2m

− b

k−1∑
i=1

i∑
j=1

ek−i−j eiej . (50)

Note that we get resonances for the k that satisfies the condition

	
(

k−m+2n
2n

)
	

(
k−3m+2n

2n

) − 3	
(

2n−m
2n

)
	

(
2n−3m

2n

) = 0. (51)

In this case, the coefficient ek can be arbitrary.
As a result, we obtain the nonresonance terms

ek = −A(k,m, n)


cek−2m+2n

k − 3m + 2n

2n
+ aek−2m + b

k−1∑
i=1

i∑
j=1

ek−i−j eiej


 , (52)

where

A(k,m, n) = − 	
(

k−3m+2n
2n

)
	

(
2n−3m

2n

)
g
[
	

(
k−m+2n

2n

)
	

(
2n−3m

2n

) − 3	
(

k−3m+2n
2n

)
	

(
2n−m

2n

)] . (53)

6. Fractional Ginzburg–Landau equation with α = 1.5

Let us consider the FGL equation (20) with derivative of order α = 3/2. In this case,
n = 2,m = 3, and the coefficients ek are defined by

ek = −
(
cek−2

k−5
4 + aek−6 + b

∑k−1
i=1

∑i
j=1 ek−i−j eiej

)
	

(
k−5

4

)
	

(−5
4

)
g
[
	

(
k+1

4

)
	

(−5
4

) − 3	
(

k−5
4

)
	

(
1
4

)] . (54)

For k = 0, we have

e0 = f =
√√√√− g	

(
1
4

)
b	

(−5
4

) , (55)
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where 	
(

1
4

)/
	

(−5
4

)
> 0, and we suppose g/b < 0. For k = 1, equation (54) leads to e1 = 0.

For k = 2,

e2 = 3ce0	
(−3

4

)
	

(−5
4

)
4g

[
	

(
3
4

)
	

(−5
4

) − 3	
(−3

4

)
	

(
1
4

)] . (56)

Using relation (55), we get

e2 = −c
√−5(g/b)π3/223/4	(3/4)

2g[2	4(3/4) + 5π2]
. (57)

For k = 3, e3 = 0. For k = 4,

e4 = −
(
ce2

−1
4 + be0e

2
2

)
	

(−1
4

)
	

(−5
4

)
g
[
	

(
5
4

)
	

(−5
4

) − 3	
(−1

4

)
	

(
1
4

)] . (58)

Substitution of (55), and (57) into (58) gives

e4 =
c2

√
5gπ

√
2/b	7(3/4)

4g2[2	4(3/4) + 5π2]2
. (59)

For k = 5, we have e5 = 0. For k = 6, equation (54) is

e6 = −
(
ce4

1
4 + ae0 + be3

2 + 2be0e2e4
)
	

(
1
4

)
	

(−5
4

)
g
[
	

(
7
4

)
	

(−5
4

) − 3	
(

1
4

)
	

(
1
4

)] . (60)

Substituting e0, e2 and e4 from equations (55), (57) and (59) into (60), we have

e6 = −
√−5g/bπ3/223/4	(3/4)

3g2[2	4(3/4) + 5π2]3[2	4(3/4) − 5π2]
(c3	12(3/4) + 5c3	8(3/4)π2

+ 20c3	4(3/4)π4 + 16ag2	12(3/4) + 120ag2	8(3/4)π2

+ 300ag2	4(3/4)π4 + 250ag2π6). (61)

As a result, we obtain

Z(x) =
∞∑

k=0

ek(x − x0)
k−3

4

= e0(x − x0)
−3/4 + e2(x − x0)

−1/4 + e4(x − x0)
1/4 + e6(x − x0)

3/4 + · · · (62)

This is a power psi-series that presents the solution of the FGL equation of order α = 1.5. The
coefficients in equation (62) are defined by equations (55), (57), (59) and (61). For example,
a = −b = c = g = 1 gives

e0 ≈ 0.961 553 9375, e2 ≈ −0.238 224 6293,

e4 ≈ 0.001 685 563 496, e6 ≈ 0.387 213 4448.

7. Next to singular behaviour

In sections 5 and 6, we consider the rational α. In this section, we suppose that the order α

is an arbitrary (rational or irrational). Instead of imposing a series commencing at the power
indicated by the singularity found by the leading-order analysis, we can determine the next to
singular behaviour by writing

Z(x) = f (x − x0)
p + G(x), (63)
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where

p = −α

2
, f =

√
− g	(1 − α/2)

b	(1 − 3α/2)
. (64)

We can always write Z(x) in the form (63). To make the process useful, we require that the
first term be the leading-order term, i.e.,

(x − x0)
−pG(x) = (x − x0)

α/2G(x) → 0 if (x − x0) → 0. (65)

Substituting (63) into (20), and using (23), we have

gf
	(p + 1)

	(p + 1 − α)
(x − x0)

p−α + cpf (x − x0)
p−1 + af (x − x0)

p + bf 3(x − x0)
3p

+ gDα
x G(x) + cD1

xG(x) + aG(x) + bG3(x)

+ 3bf 2(x − x0)
2pG(x) + 3bf (x − x0)

pG2(x) = 0. (66)

Equations (66) and (64) give

gDα
x G(x) + cD1

xG(x) + aG(x) + bG3(x) + 3bf 2(x − x0)
2pG(x)

+ 3bf (x − x0)
pG2(x)cpf (x − x0)

p−1 + af (x − x0)
p = 0. (67)

Multiplying this equation on (x−x0)
−3p, and using condition (65), we get the equation without

nonlinear terms for (x − x0) → 0.
As a result, we obtain

gDα
x G(x) + cD1

xG(x) + aG(x) + cpf (x − x0)
−α/2−1 + af (x − x0)

−α/2 = 0, (68)

with condition (65) for the solutions. Equation (68) is a linear inhomogeneous fractional
equation. The solution of this equation allows us to find the solution of the one-dimensional
FGL equation.

Let us consider equation (68) with c = 0, and the boundary conditions

(Dα−k
x G(x))x=x0 = Gk, k = 1, 2. (69)

Then the solution is

G(x) =
2∑

k=1

Gk(x − x0)
α−kEα,α+1−k[−a(x − x0)

α]

+ af

∫ x

0
(x − x0 − y)α−1Eα,α[−a(x − x0 − y)α](y − x0)

−α/2 dy. (70)

Here Eα,β [z] is a Mittag–Leffler function that is defined by

Eα,β [z] =
∞∑

k=0

zk

	(αk + β)
. (71)

Let us consider the integral representation for the Mittag–Leffler function

Eα,β [z] = 1

2π i

∫
Ha

ξα−βeξ

ξα − z
dξ, (72)

where Ha denotes the Hankel path, a loop which starts from −∞ along the lower side of the
negative real axis, encircles the circular disc |ξ | � |z|1/α in the positive direction, and ends at
−∞ along the upper side of the negative real axis. By the replacement ξα → ξ equation (72)
transforms into [3, 45]:

Eα,β [z] = 1

2π iα

∫
γ (a,δ)

eξ 1/α

ξ (1−β)/α

ξ − z
dξ, (1 < α < 2), (73)
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where πα/2 < δ < min{π, πα}. The contour γ (a, δ) consists of two rays S−δ = {arg(ξ) =
−δ, |ξ | � a} and S+δ = {arg(ξ) = +δ, |ξ | � a}, and a circular arc Cδ = {|ξ | = 1,−δ �
arc(ξ) � δ}. Let us denote the region on the left from γ (a, δ) as G−(a, δ). Then [45]

Eα,β [z] = −
∞∑

n=1

z−n

	(β − αn)
, z ∈ G−(a, δ), (|z| → ∞), (74)

and δ � |arg(z)| � π . In our case, z = −a(x − x0)
α, arg(z) = π . As a result, we arrive at

the asymptotic of the solution, which exhibits power-like tails for x → ∞. These power-like
tails are the most important effect of the noninteger derivative in the fractional equations.

8. Conclusion

In this paper, we generalize the psi-series approach to the fractional differential equations.
As an example, we consider the fractional Ginzburg–Landau (FGL) equation [28–31]. The
suggested psi-series approach can be used for a wide class of fractional nonlinear equations.
The leading-order behaviours of solutions about an arbitrary singularity, as well as their
resonance structures, can be derived for fractional equations by the suggested generalization
of psi-series.

In the paper, we use the series

Z(x) = 1

(x − x0)m/2n

∞∑
k=0

ek(x − x0)
k/2n (75)

where k,m, n are the integer numbers. For the order α = m/n, the action of the fractional
derivative

Dα
x (x − x0)

k/2n = 	(k/2n + 1)

	((k − 2m)/2n + 1)
(x − x0)

(k−2m)/2n (76)

can be represented as the change of the number of term ek → ek−2m in (75). It allows us to
derive the psi-series for the fractional differential equation of order α = m/n. For the FGL
equation the leading-order singular behaviour is defined by power that is equal to the half of
derivative order.

A remarkable property of the dynamics described by the equation with fractional space
derivatives is that the solutions have power-like tails [25]. In this paper, we prove that
fractional differential equations of order α with a polynomial nonlinear term of order s have
the noninteger power-like behaviour of order α/(1 − s) near the singularity.

It is interesting to find barriers to integrability for fractional differential equations. In
general, the integrability of fractional nonlinear equations is a very interesting object for
future researches. It has many problems that are connected with specific properties of the
fractional calculus. For example, we must derive a generalization of the Lie algebra for the
vector fields that are defined by fractional derivatives. For this generalization, the Jacobi
identity cannot be satisfied, and we have a non-Lie algebra. The definition of such ‘fractional’
Lie algebra is an open question and cannot be realized by a simple way. To formulate the
fractional generalization of a Lie algebra for derivatives of noninteger order, we can use the
representation of fractional derivatives as infinite series of derivatives of integer orders [1].
For example, the Riemann–Liouville fractional derivative can be represented as

Dα
x =

∞∑
n=0

An(x, x0, α)
dn

dxn
, (77)
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where

An(x, a, α) = (−1)n−1α	(n − α)

	(1 − α)	(n + 1)

(x − x0)
n−α

	(n + 1 − α)
. (78)

Then the possible realization of the generalization is connected with the special algebraic
structures for infinite jets [46]. These structures and approaches can help to solve some
problems that are connected with the integrability of fractional nonlinear equations.
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