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Abstract
We consider the fractional generalization of nonholonomic constraints defined
by equations with fractional derivatives and provide some examples. The
corresponding equations of motion are derived using variational principle.
We prove that fractional constraints can be used to describe the evolution of
dynamical systems in which some coordinates and velocities are related to
velocities through a power-law memory function.
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1. Introduction

The theory of derivatives of non-integer order goes back to Leibniz, Liouville, Riemann,
Grunwald and Letnikov [1–3]. Fractional analysis proved to be useful in mechanics and
physics. In a fairly short time the list of such applications continuously has grown. The
applications include chaotic dynamics [4, 5], material sciences [6–9], mechanics of fractal
and complex media [10–12], quantum mechanics [13, 14], physical kinetics [4, 15–17],
plasma physics [18, 19], electromagnetic theory [19–21], long-range dissipation [22–24],
non-Hamiltonian mechanics [25, 26], long-range interaction [27–29], anomalous diffusion
and transport theory [4, 30–32].

Equations with fractional derivatives usually appear from some phenomenological models.
In this paper, fractional equations are used to describe a motion that is restricted by constraints
with power-law memory. The evolution of dynamical system in which some coordinates and
velocities are related to other coordinates or velocities through a memory function can be
considered. To describe constraints with power-like memory function, we use the fractional
calculus. It allows us to take into account the memory effects and derive fractional equations
of motions. We consider the fractional generalization of nonholonomic constraints such that
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the constraint equations consist of fractional derivatives, called fractional constraints. The
corresponding equations of motion will be derived by the d’Alembert–Lagrange principle and
some simple examples are considered.

It has been known for a long time that some objects related to chemistry or to the soft
condensed matter cannot be characterized by an integer dimension. The most typical of
them are colloidal aggregates [33] and so-called chemical surfaces [34]. It became more
clear later that a useful tool describes the fractal features of the media and its dynamics by
rewriting the corresponding equations using fractional derivatives. Particularly, the appearance
of fractional derivative with respect to the coordinate follows immediately from a dispersion
law ω = ω(k) if it consists of fractional powers of |k| (see for example applications to
the modified Ginzburg–Landau equation [12, 35]). The appearance of fractional derivatives
changes formally and physically different properties of the dynamics, kinetics, equilibrium
states and others. Particularly with respect to the material of our paper, it will be shown in
section 3.2 that fractional derivatives in the constraints are due to a distributed memory what
is typical for the media or a set of particles (spins) with long-range interaction. A number
of appearances of fractional derivatives in the reaction–diffusion-type systems can be found
in [36].

In section 2, we provide a brief review of nonholonomic systems, fix notations and
convenient references. In section 3, we consider fractional generalizations of nonholonomic
constraints. In subsection 3.2, we prove that the fractional constraints can be used to describe
the evolution of a dynamical system in which some coordinates and velocities are related to
other coordinates or velocities through a power-law memory function. Some examples are
considered. In section 4, we discuss the applicability of the stationary action principle for
fractional constraints. In section 5, geometric methods for fractional nonholonomic mechanics
are suggested. Finally, a short conclusion is given in section 6.

2. Nonholonomic constraints with integer derivatives

In this section, a brief review of nonholonomic systems is considered to fix notations and
provide convenient references [39].

2.1. Lagrange equations for nonholonomic system

It is known that the d’Alembert–Lagrange principle allows us to derive equations of motion
with holonomic and nonholonomic constraints. For N-particle system it has the form of the
variation equation(

d(mvi )

dt
− Fi

)
δri = 0, (1)

where ri (i = 1, . . . , N) is the radius vector of the ith particle, vi = ṙi is the velocity and
Fi is the force that acts on the ith particle, and the sum over repeated index i is from 1 to N.
To exclude holonomic constraints, the general coordinates qk (k = 1, . . . , n) are used. Here,
n = 3N − m is the number of degrees of freedom, where m is the number of holonomic
constraints. Then ri is the function of generalized coordinates and time: ri = ri (q, t). Using
δri = (∂ri/∂qk)δqk , equation (1) gives(

d(mvi )

dt

∂ri

∂qk
− Fi

∂ri

∂qk

)
δqk = 0, (2)
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and the sum over repeated index k is from 1 to n. Then, we define [37] the generalized forces:

Qk = Fi

∂ri

∂qk
k = 1, . . . , n.

By usual transformations [37]

d(mvi )

dt

∂ri

∂qk
= d

dt

(
mvi

∂ri

∂qk

)
− (mvi )

d

dt

∂ri

∂qk

= d

dt

(
mvi

∂vi

∂q̇k

)
− mvi

∂vi

∂qk

= d

dt

∂

∂q̇k

(m

2
vivi

)
− ∂

∂qk

(m

2
vivi

)
= d

dt

∂T

∂q̇k
− ∂T

∂qk
,

we transform equation (2) into(
d

dt

∂T

∂q̇k
− ∂T

∂qk
− Qk

)
δqk = 0, (3)

where T = mv2/2 is the kinetic energy. Using

vi = dri (q, t)

dt
= ∂ri

∂qk

dqk

dt
+

∂ri

∂t
, (4)

we get

T = m

2
(gkl(q, t)q̇kq̇l + 2gk(q, t)q̇k + g(q, t)),

where

gkl(q, t) = ∂ri

∂qk

∂ri

∂ql
, gk(q, t) = ∂ri

∂qk

∂ri

∂t
, g(q, t) = ∂ri

∂t

∂ri

∂t
. (5)

For the nonholonomic constraint,

Rkδq
k = 0, (6)

where Rk is the reaction force of the constraint

f (q, q̇) = 0, (7)

and the variations δqk are defined [38, 39] by

∂f

∂q̇k
δqk = 0. (8)

Equation (8) is called Chetaev’s condition [39]. Comparing equations (6) and (8), we obtain

Rk = λ
∂f

∂q̇k
, (9)

where λ is the Lagrange multiplier. Chetaev’s definition of variations states that the actual
constrained motion should occur along a trajectory obtained by the normal projection of a
force onto a constraint hypersurface. The constraint force Rk is minimum when Rk is chosen
perpendicular to the constraint surface or parallel to the gradient ∂f/∂q̇k .

In general, the nonholonomic system is subjected to action of the generalized force Qk

and the constraint force Rk . Then the variational equation is(
d

dt

∂T

∂q̇k
− ∂T

∂qk
− Qk − Rk

)
δqk = 0. (10)
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From (9), we obtain(
d

dt

∂T

∂q̇k
− ∂T

∂qk
− Qk − λ

∂f

∂q̇k

)
δqk = 0. (11)

In equation (8), we can consider δq̇s, s = 1, 2, . . . , n − 1, as independent variations. Then
δq̇n is not independent, and equation (8) gives

δqn = −
(

∂f

∂q̇n

)−1 n−1∑
s=1

∂f

∂q̇s
δqs.

Suppose that λ satisfies the equation

d

dt

∂T

∂q̇n
− ∂T

∂qn
− Qn − λ

∂f

∂q̇n
= 0. (12)

Then the term with k = n in (11) is equal to zero, and equation (11) has n − 1 terms with
k = 1, . . . , n − 1. In equation (11), the variations with k = 1, 2, . . . , n − 1 are independent,
and the sum is separated on n − 1 equations. As a result, equation (11) is equivalent to

d

dt

∂T

∂q̇k
− ∂T

∂qk
= Qk + λ

∂f

∂q̇k
, (k = 1, . . . , n). (13)

Equations (7) and (13) form a system of n + 1 equations with n + 1 unknowns λ and qk , where
k = 1, . . . , n. Solutions of these equations describe particles motion as a motion of the system
with the nonlinear nonholonomic constraint (7).

2.2. Nonholonomic system as a holonomic one

In this section, we present the equations of motion with nonholonomic constraint as equations
for a holonomic system.

The canonical momenta pk are defined by

pk = ∂T

∂q̇k
= mgkl(q, t)q̇l + mgk(q, t), (k = 1, . . . , n). (14)

Using (14), we can define

f̃ (p, q, t) = f (q̇(q, p, t), q, t). (15)

Suppose that the constraint is the integral of motion. Then the total time derivative of (15)
gives

df̃

dt
= 0,

∂f̃

∂pk

ṗk +
∂f̃

∂qk
q̇k +

∂f̃

∂t
= 0. (16)

Substitution of (13) into (16) gives

∂f̃

∂pk

(
∂T

∂qk
+ Qk + λ

∂f̃

∂q̇k

)
+

∂f̃

∂qk
q̇k +

∂f̃

∂t
= 0. (17)

From equation (17), we obtain

λ = −
(

∂f̃

∂pm

∂f̃

∂q̇m

)−1 (
∂f̃

∂p�

(
∂T

∂q�
+ Q�

)
+

∂f̃

∂q�
q̇� +

∂f̃

∂t

)
. (18)

Then the Lagrange equations (13) have the form

d

dt

∂T

∂q̇k
− ∂T

∂qk
= Qk − ∂f̃

∂q̇k

(
∂f̃

∂pm

∂f̃

∂q̇m

)−1 (
∂f̃

∂p�

(
∂T

∂q�
+ Q�

)
+

∂f̃

∂q�
q̇� +

∂f̃

∂t

)
. (19)
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Equations (19) describe the motion of a holonomic system with n degrees of freedom. For
any trajectory of the system in the phase space, we have f̃ = 0. If the initial values qk(0) and
q̇k(0) satisfy the constraint condition f (q(0), q̇(0), t0) = 0, then the solution of equation (19)
is the motion of the nonholonomic system.

Let us define a generalized force �k = Qk + Rk , which depends on generalized velocities
q̇k , generalized coordinates qk and time t. If

∂�k

∂q̇m
+

∂�m

∂q̇k
= 0,

∂�k

∂qm
+

∂�m

∂qk
= 1

2

d

dt

(
∂�k

∂q̇m
− ∂�m

∂q̇k

)
,

known as the Helmholtz conditions, are satisfied, then a generalized potential U = U(q̇, q, t)

exists and

d

dt

∂U

∂q̇k
− ∂U

∂qk
= �k.

In this case, the Hamilton variational principle has the form of the stationary action principle.
To use this principle for a nonholonomic system, we should consider such trajectories that
their initial conditions satisfy the constraint equation (7).

Note that the nonholonomic constraint (7) and the non-potential generalized force Qk can
be compensated such that the resulting generalized force �k is a generalized potential force,
and the system is a Lagrangian and non-dissipative system with holonomic constraints.

3. Constraints with fractional derivatives

3.1. Fractional derivatives

The fractional derivative has different definitions [1, 2], and exploiting any of them depends on
the kind of problems, initial (boundary) conditions and the specifics of the considered physical
processes. The classical definition is the so-called Riemann–Liouville derivative [1, 2]

aDα
t f (x) = 1

�(m − α)

∂m

∂xm

∫ x

a

f (z) dz

(x − z)α−m+1
,

tDα
b f (x) = (−1)m

�(m − α)

∂m

∂xm

∫ b

x

f (z) dz

(z − x)α−m+1
,

(20)

where m − 1 < α < m. Due to some reasons, concerning the initial conditions, it is more
convenient to use the Caputo fractional derivatives [7, 42, 43]. Its main advantage is that the
initial conditions take the same form as for integer-order differential equations.

Definition. The Caputo fractional derivatives are defined by the equations

aD
α
t f (t) = 1

�(m − α)

∫ t

a

f (m)(τ )

(t − τ)α+1−m
dτ, (21)

tD
α
b f (t) = 1

�(m − α)

∫ b

t

f (m)(τ )

(t − τ)α+1−m
dτ, (22)

where m − 1 < α < m, and f (m)(τ ) = dmf (τ)/dτm.
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Proposition 1. The total time derivative of the Caputo fractional derivative of order α can be
presented as a fractional derivative of order α + 1 by

d

dt
aD

α
t f (t) = aD

α+1
t f (t) +

tm−α−1

�(m − α)
f (m)(a), (23)

where m = [α] + 1, and [· · ·] means floor function.

Proof. Definition (21) can be presented in the form

aD
α
t f = aJ

m−α
t Dm

t f, (24)

where aJ
m−α
t is the fractional integral

aJ
ε
t f (t) = 1

�(ε)

∫ t

a

f (τ )

(t − τ)1−ε
dτ. (25)

The operations D1
t and J ε

t do not commute:

D1
t aJ

ε
t f (t) = aJ

ε
t D1

t f (t) +
t ε−1

�(ε)
f (a). (26)

From (24), we have

d

dt
aD

α
t f (t) = D1

t aJ
ε
t Dm

t f (t) = D1
t aJ

ε
t f (m)(t), (27)

where aJ
ε
t is the fractional integration of order ε = m − α. Using (26) and (27), we get

D1
t J

ε
t Dm

t f (t) = aJ
ε
t D1

t f
(m)(t) +

t ε−1

�(ε)
f (m)(a)

= aJ
ε
t f (m+1)(t) +

t ε−1

�(ε)
f (m)(a) = aD

α+1
t f (t) +

t ε−1

�(ε)
f (m)(a). (28)

Substitution of (28) into (27) proves (23). �

3.2. Fractional constraints and its interpretation

To understand the physical interpretation of nonholonomic constraints with fractional
derivatives, we discuss the memory effects and limiting cases widely used in physics: (1)
the absence of the memory; (2) the complete memory; (3) the power-like memory.

We consider the evolution of a dynamical system in which some quantity G(t) is related
to another quantity g(t) through a memory function M(t):

G(t) =
∫ t

0
M(t − τ)g(τ ) dτ. (29)

In mathematics, equation (29) means that the value G(t) is related to g(t) by the convolution
operation

G(t) = M(t) ∗ g(t).

Equation (29) is the typical non-Markovian equation obtained by studying the systems coupled
to an environment, with environmental degrees of freedom being averaged. Let us consider
special cases of equation (29).

(1) For a system without memory, we have the ideal Markov system, and the time dependence
of the memory function is

M(t − τ) = δ(t − τ), (30)
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where δ(t − τ) is the Dirac delta-function. The absence of the memory means that the
function G(t) is defined by g(t) at the only instant t. For this limiting case, the system
loses all its states except for the one with infinitely high density. Using (29) and (30), we
have

G(t) =
∫ t

0
δ(t − τ)g(τ ) dτ = g(t). (31)

Expression (31) corresponds to the well-known Markov process with complete absence
of memory. This process relates all subsequent states to the previous states through the
single current state at each time t.

(2) If memory effects are introduced into the system the delta-function turns into some
function, with the time interval during which g(t) has an effect on the function G(t). Let
M(t) be the step function

M(t − τ) =
{

1/t, 0 < τ < t;
0, τ > t.

(32)

The factor 1/t is chosen to achieve normalization of the memory function to unity:∫ t

0
M(τ) dτ = 1.

Then in the evolution process the system passes through all states continuously without
any loss. In this case,

G(t) = 1

t

∫ t

0
g(τ) dτ,

and this corresponds to complete memory.
(3) The power-like memory function

M(t − τ) = M0(t − τ)ε−1 (33)

indicates the presence of the fractional derivative or integral. Substitution of (33) into
(29) gives the temporal fractional integral of order ε:

G(t) = λ

�(ε)

∫ t

0
(t − τ)ε−1g(τ) dτ, 0 < ε < 1, (34)

where �(ε) is the Gamma function, and λ = �(ε)M0. The parameter λ can be regarded
as the strength of the perturbation induced by the environment of the system. If g(t) is
a derivative q(m)(t) of integer order m, then equation (34) defines the fractional Caputo
derivative of q(t) with respect to time

0D
α
t q(t) = 1

�(m − α)

∫ t

0

1

(t − τ)α+1−m
q(m)(τ ) dτ, (35)

where α = m−ε. The physical interpretation of the fractional derivative is an existence of
a memory effect with power-like memory function. The memory determines an interval
t during which the derivative q(m)(τ ) has an effect on the function G(t).

Equation (29) is a special case of constraint for G(t) and g(t), where G is directly proportional
to M ∗ g. In the general case, the values G(t) and g(t) can be related by the equation

f (G,M ∗ g) = 0, (36)

where f is the smooth function. Relation (36) defines a constraint for dynamical system.
This constraint gives the memory effect. If G is a coordinate q(t) or velocity q̇(t), and g is a
derivative q(m)(t), then equation (36) gives the nonholonomic constraint with memory. For a
power-like memory function M(t), we present (36) as a constraint with fractional derivatives:
f

(
q, q̇, aD

α
t q

) = 0 As the result, we can use the fractional calculus [1] to describe the motion
of systems with the constraints (36).
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3.3. Fractional equations of motion

Assume that the constraint equation has fractional derivatives:

f
(
q, q̇, aD

α
t q, tD

α
b q

) = 0, (37)

i.e., it is a fractional differential equation [3]. Such a constraint can be called a fractional
nonholonomic constraint. Since equation (37) has also derivatives of integer order, we can
use the Chetaev definition of variation (8) and the Lagrange equations (13). For generalized
potential forces

Qk = d

dt

∂U

∂q̇k

− ∂U

∂qk

, (k = 1, . . . , n),

and we can rewrite equation (13) as

d

dt

∂L

∂q̇k

− ∂L

∂qk

= λ
∂f

∂q̇k

, (k = 1, . . . , n), (38)

where L = T (q, q̇) − U(q, q̇) is the Lagrangian. To simplify our calculations, we consider

L = L(q, q̇) = 1

2

n∑
k=1

(q̇k)
2 − u(q), (39)

where u(q) is the potential energy of the system. Then, equation (38) becomes

q̈k = − ∂u

∂qk

+ λ
∂f

∂q̇k

, (k = 1, . . . , n). (40)

Suppose that the constraint is an integral of motion, i.e., df /dt = 0. Then

∂f

∂q̇k

dq̇k

dt
+

∂f

∂
(
aD

α
t qk

) d
(
aD

α
t qk

)
dt

+
∂f

∂
(
tD

α
b qk

) d
(
tD

α
b qk

)
dt

+
∂f

∂qk

dqk

dt
= 0. (41)

Equation (41) can be presented as

∂f

∂q̇k

q̈k +
∂f

∂
(
aD

α
t qk

)D1
t aD

α
t qk +

∂f

∂
(
tD

α
b qk

)D1
t tD

α
b qk +

∂f

∂qk

q̇k = 0. (42)

Substitution of (40) into (42) gives

∂f

∂q̇k

(
− ∂u

∂qk

+ λ
∂f

∂q̇k

)
+

∂f

∂
(
aD

α
t qk

)D1
t aD

α
t qk +

∂f

∂
(
tD

α
b qk

)D1
t tD

α
b qk +

∂f

∂qk

q̇k = 0. (43)

From this equation, one can obtain the Lagrange multiplier λ:

λ =
(

∂f

∂q̇m

∂f

∂q̇m

)−1
(

∂f

∂q̇l

∂u

∂ql

− ∂f

∂
(
aD

α
t ql

)D1
t aD

α
t ql − ∂f

∂
(
tD

α
b ql

)D1
t tD

α
b ql − ∂f

∂ql

q̇l

)
. (44)

Insertion of equation (44) into equation (40) yields

q̈k = − ∂u

∂qk

+
∂f

∂q̇k

(
∂f

∂q̇m

∂f

∂q̇m

)−1

×
(

∂f

∂q̇l

∂u

∂ql

− ∂f

∂
(
aD

α
t ql

)D1
t aD

α
t ql − ∂f

∂
(
tD

α
b ql

)D1
t tD

α
b ql − ∂f

∂ql

q̇l

)
. (45)

These equations describe the holonomic system that is equivalent to the nonholonomic one
with fractional constraint. For any motion of the system, we have f = 0. If the initial values
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satisfy the constraint condition f
(
q(0), q̇(0), aD

α
t q(0), tD

α
b q(0)

) = 0, then the solution of
equation (45) describes a motion of the system (39) with the fractional constraint (37).

3.4. Linear fractional constraint

Suppose that the constraint (37) is linear with respect to integer derivatives q̇k , i.e.,

f = akq̇k + β
(
aD

α
t q, tD

α
b q, q

)
. (46)

In this case, Rk = ak , and equations (45) can be presented as

q̈k = −
n∑

l=1

(
δkl − akal

a2

) ∂u

∂ql

− ak

a2

n∑
l=1

(
∂f

∂
(
aD

α
t ql

)D1
t aD

α
t ql +

∂f

∂
(
tD

α
b ql

)D1
t tD

α
b ql +

∂β

∂ql

q̇l

)
,

(47)

where a2 = ∑n
k=1 akak . If

β
(
aD

α
t q, tD

α
b q, q

) = bkaD
α
t qk, (48)

then

f = akq̇k + bkaD
α
t qk. (49)

This constraint is linear with respect to the integer derivative q̇k and fractional derivatives
aD

α
t qk . Then the equations of motion are

q̈k = −
n∑

l=1

(
δkl − akal

a2

) ∂u

∂ql

−
n∑

l=1

akbl

a2
D1

t aD
α
t ql. (50)

Using proposition 1, we obtain

q̈k = −
n∑

l=1

(
δkl − akal

a2

) ∂u

∂ql

−
n∑

l=1

akbl

a2

(
aD

α+1
t ql +

tm−α−1

�(m − α)
q

(m)
l (a)

)
, (51)

where q(m)(a) = (
Dm

t q(t)
)
t=a

. As the result, we get the fractional equations of motion with
Caputo derivative of order α+1. The nonholonomic systems (50) with integer α are considered
in [63, 64].

3.5. One-dimensional example

In the one-dimensional case (n = 1), equation (50) with 0D
α
t q has the form

q̈ = −b1

a1
D1

t 0D
α
t q. (52)

Equation (52) can be presented as

D1
t

[
q̇ + (b1/a1)0D

α
t q

] = 0. (53)

Then

q̇ + (b1/a1)0D
α
t q = C0. (54)

Supposing α > 1, and using proposition 1, we get

D1
t

[
q + (b1/a1)0D

α−1
t q

] = b1t
m−α

a1�(m − α + 1)
q(0) + C0. (55)
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As the result, we obtain

0D
α−1
t q + (a1/b1)q = tm−α+1

�(m − α + 2)
q(0) + C1t + C2, (56)

where we use x�(x) = �(x + 1), and C1 = C0a1/b1.
For 2 < α < 3, equation (56) describes the linear fractional oscillator

0D
α−1
t q(t) + ω2q(t) = Q(t), (57)

where ω2 = (a1/b1) is dimensionless ‘frequency’, and Q(t) is the external force:

Q(t) = tm−α+1

�(m − α + 2)
q(0) + C1t + C2.

The Caputo fractional derivative 0D
α−1
t allows us to use the regular initial conditions [3]

for equation (57). The linear fractional oscillator is an object of numerous investigations
[22–24, 44–50] because of different applications.

The exact solution [22, 44] of equation (57) for 2 < α < 3 is

q(t) = q(0)Eα−1,1(−ω2tα−1) + tq ′(0)Eα−1,2(−ω2tα−1) −
∫ t

0
Q(t − τ)q̇0(τ ) dτ, (58)

where

Eα,β(z) =
∞∑

k=0

zk

�(αk + β)
(59)

is the generalized two-parameter Mittag–Leffler function [51, 52], and

q0(τ ) = Eα−1,1(−ω2τα−1).

The decomposition of (58) is [44]:

q(t) = q(0)[fα,0(t) + gα,0(t)] + t q̇(0)[fα,1(t) + gα,1(t)] −
∫ t

0
Q(t − τ)q̇0(τ ) dτ, (60)

where

fα,k(t) = (−1)k

π

∫ ∞

0
e−rt rα−1−k sin(πα)

r2α + 2rα cos(πα) + 1
dr,

gα,k(t) = 2

α
et cos(π/α) cos[t sin(π/α) − πk/α], (k = 0, 1).

(61)

For the initial conditions q(0) = 1, and q̇(0) = 0:

q(t) = Eα(−tα) = fα,0(t) + gα,0(t) −
∫ t

0
Q(t − τ)[ḟα,0(τ ) + ġα,0(τ )] dτ. (62)

The first term in (62) decays in power law with time while the second term decays exponentially
[22, 24, 44, 45].

3.6. Two-dimensional examples

In the two-dimensional case (n = 2), equation (50) has the form

q̈1 = − a2
2

a2
1 + a2

2

∂u

∂q1
+

a1a2

a2
1 + a2

2

∂u

∂q2
− a1b1

a2
1 + a2

2

D1
t aD

α
t q1 − a1b2

a2
1 + a2

2

D1
t aD

α
t q2, (63)

q̈2 = − a2
1

a2
1 + a2

2

∂u

∂q2
+

a1a2

a2
1 + a2

2

∂u

∂q1
− a2b1

a2
1 + a2

2

D1
t aD

α
t q1 − a2b2

a2
1 + a2

2

D1
t aD

α
t q2. (64)
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Let us consider the special cases of these equations.

(1) Suppose a1 = 0, then

q̈1 = − ∂u

∂q1
; q̈2 = −b1

a2
D1

t aD
α
t q1 − b2

a2
D1

t aD
α
t q2. (65)

If a1 = 0, and b2 = 0, then (65) are

q̈1 = − ∂u

∂q1
, q̈2 = −b1

a2
D1

t aD
α
t q1. (66)

(2) Suppose b1 = 0 and a1 = a2 = c, then we have

q̈1 = −1

2

∂u

∂q1
+

1

2

∂u

∂q2
− b2

2c
D1

t aD
α
t q2, (67)

q̈2 = −1

2

∂u

∂q2
+

1

2

∂u

∂q1
− b2

2c
D1

t aD
α
t q2. (68)

Using

x = q1 + q2

2
, y = q1 − q2

2
, g = b2/c,

we can rewrite equations (67) and (68) in the forms

ẍ = −gD1
t aD

α
t x + gD1

t aD
α
t y, ÿ = −∂U

∂y
, (69)

where U(x, y) = u(q1, q2) = u(x + y, x − y). If U = K(x)y + s(x), then
equation (69) is

ẍ = −gD1
t aD

α
t x + gD1

t aD
α
t y, ÿ = −K(x). (70)

Using Dα
t y = Dα−2

t ÿ, equation (70) gives

ẍ = −gD1
t aD

α
t x − gD1

t aD
α−2
t K(x). (71)

Then

D1
t

[
ẋ + gaD

α
t x + gaD

α−2
t K(x)

] = 0.

For α > 2, we can get

ẋ + gaD
α
t x + gaD

α−2
t K(x) + C = 0, (72)

where C is a constant. Using aD
ε
t aJ

ε
t f (t) = f (t), and aD

ε
t aD

α
t f (t) = Dm

t f (t), where
ε = m − α, equation (72) can be written as

Dεx + gx(m) + gDm−2
t K(x) = 0. (73)

If m = 2 (1 < α < 2), then

g−1ẍ + Dεx + gaK(x) = 0. (74)

This equation can be considered as an equation of nonlinear fractional oscillator [24, 45],
where the fractional derivative describes the power dumping.
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4. Fractional conditional extremum

4.1. Extremum for fractional constraint

Let us consider the stationary value of an action integral

δ

∫ b

a

dtL(q, q̇) = 0,

for the lines that satisfy the constraint equation f (q, q̇) = 0. Using the Lagrange multiplier
µ = µ(t), we get the variational equation

δ

∫ b

a

dt[L(q, q̇) + µf (q, q̇)] = 0.

Then the Euler–Lagrange equations [41] are

d

dt

∂L

∂q̇k

− ∂L

∂qk

= µ

(
∂f

∂qk

− d

dt

∂f

∂q̇k

)
− µ̇

∂f

∂q̇k

, (k = 1, . . . , n). (75)

Note that these equations consist of the derivative of Lagrange multiplier µ̇. The proof of
equation (75) is realized in [41].

For the fractional constraint

f
(
q, q̇, aD

α
t q, tD

α
b q

) = 0, (76)

we can define the Lagrangian as

L
(
q, q̇, aD

α
t q, tD

α
b q, λ

) = L(q, q̇) + µ(t)f
(
q, q̇, aD

α
t q, tD

α
b q

)
. (77)

Using the Agrawal variational equation [40], we obtain the Euler–Lagrange equations

∂L
∂qk

− d

dt

∂L
∂q̇k

+ aD
α
t

∂L
∂
(
aD

α
t qk

) + tD
α
b

∂L
∂
(
tD

α
b qk

) = 0, (k = 1, . . . , n). (78)

Substitution of equation (77) into equation (78) gives

∂L

∂qk

− d

dt

∂L

∂q̇k

+ µ
∂f

∂qk

+ aD
α
t

(
µ

∂f

∂
(
aD

α
t qk

)
)

+ tD
α
b

(
µ

∂f

∂
(
tD

α
b qk

)
)

− d

dt

(
µ

∂f

∂q̇k

)
= 0.

(79)

These equations describe the fractional conditional extremum.
Let us consider applicability of the stationary action principle for mechanical systems

with fractional nonholonomic constraints. The equations of motion are derived from the
d’Alembert–Lagrange principle. The fractional conditional extremum can be obtained from
the stationary action principle. In general, these equations are not equivalent [41]. The
condition of this equivalence for fractional constraints is suggested in the proposition.

Proposition 2. Equations (38) and (79) for nonholonomic system with fractional constraint
(76) have the equivalent set of solutions if the conditions[

µ
∂f

∂qk

+ aD
α
t

(
µ

∂f

∂aD
α
t qk

)
+ tD

α
b

(
µ

∂f

∂tD
α
b qk

)
− d

dt

(
µ

∂f

∂q̇k

)]
δqk = 0,

∂f

∂q̇k

δqk = 0

(80)

are satisfied.

Proof. To prove the proposition, we multiply equations (38) and (79) on the variation δqk and
consider a sum with respect to k:
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d

dt

∂L

∂q̇k

− ∂L

∂qk

)
δqk = λ

∂f

∂q̇k

δqk, (81)

(
∂L

∂qk

− d

dt

∂L

∂q̇k

)
δqk +

[
µ

∂f

∂qk

+ aD
α
t

(
µ

∂f

∂
(
aD

α
t qk

)
)

+ tD
α
b

(
µ

∂f

∂
(
tD

α
b qk

)
)

− d

dt

(
µ

∂f

∂q̇k

)]
δqk = 0. (82)

From the definition of variations (8), equation (81) is(
d

dt

∂L

∂q̇k

− ∂L

∂qk

)
δqk = 0. (83)

Substituting equation (83) into equation (82), we obtain (80). �

It is known [41] that the stationary action principle cannot be derived from the d’Alembert–
Lagrange principle for a wide class of nonholonomic and non-Hamiltonian systems. The same
can be applied to the case of nonlinear fractional nonholonomic constraints.

4.2. Hamilton’s approach

Using equation (78), we define the momenta

pk = ∂L
∂q̇k

= ∂L

∂q̇k

+ µ
∂f

∂q̇k

, (84)

and the Hamiltonian

H(q, p) = pkq̇ − L, (85)

where L = L + µf . Equation (78) gives

dpk

dt
= ∂H

∂qk

+ aD
α
t

(
µ

∂f

∂
(
aD

α
t qk

)
)

+ tD
α
b

(
µ

∂f

∂
(
tD

α
b qk

)
)

. (86)

To simplify our calculations, we consider the Lagrangian

L = 1
2 (q̇)2 − u(q),

and the fractional nonholonomic constraint

f = Ak

(
q, aD

α
t q

)
q̇k = 0, (α �= 1). (87)

From equations (84) and (87), we obtain

pk = q̇k + µAk

(
q, aD

α
t q

)
. (88)

Then the Hamilton equations are

q̇k = pk − µAk

(
q, aD

α
t q

)
, (89)

ṗk = −∂u(q)

∂qk

+ µ(t)q̇l

∂Al

∂qk

+ aD
α
t

(
µq̇l

∂Al

(
aD

α
t q

)
∂aD

α
t qk

)
. (90)

To find the Lagrange multiplier µ = µ(t), we multiply equation (88) on the functions ak and
consider the sum with respect to k:

Akpk = Akq̇k + µAkAk = µA2. (91)
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Here, we use constraint (87), and the notation A2 = AkAk , where Ak = Ak

(
q, aD

α
t q

)
. From

(91), we get

µ = Akpk

A2
. (92)

Substitution of (92) into equations (89) and (90) gives

q̇k =
(

δkl − AkAl

A2

)
pl, (93)

ṗk = −∂u(q)

∂qk

+
Ampm

A2

∂Al

∂qk

q̇l + aD
α
t

(
Ampm

A2

∂Al

∂aD
α
t qk

q̇l

)
. (94)

If ak = 0, then we have usual equations of motion for Hamiltonian systems. Note that we
derive Hamiltonian equations from Euler–Lagrange equations without using the Legendre
transformation, which is typically used.

5. Geometric method for fractional nonholonomic systems

In this section, connections with recent works on geometric methods in nonholonomic
mechanics [65–67] are considered.

Suppose L(t, q, v) is a Lagrangian of dynamical system, where qk are coordinates, and
vk are the velocities. We have the additional condition q̇k = vk . In this case, we introduce pk

as independent Lagrange multipliers, and all the variables qk, vk, pk have to be varied. The
corresponding Lagrange equations are

q̇k = vk, ṗk = ∂L

∂qk
, pk = ∂L

∂vk
. (95)

In the space of variables (t, q, p, v), the extended Poincare–Cartan 1-form is

ωh∗ = pkdqk + [L − pkv
k] dt. (96)

For the nonholonomic constraint (37), we define the Chetaev 2-form [67] by

C = −λ
∂f

∂q̇k
dt ∧ dqk, (97)

where λ is a Lagrange multiplier.

Proposition 3. The exterior derivative of the form (96) is defined by the equation

dωh∗ = [Dtpk − DqkL] dt ∧ dqk − [dqk − vk dt] ∧ dpk − [pk − DvkL] dvk ∧ dt. (98)

Proof. The proof of this proposition is realized in [66]. �

Action principle for nonholonomic systems. The trajectory of a dynamical system with
constraint (37) can be derived by finding the path for which the form (96) is equal to the
Chetaev 2-form , i.e.,

dωh∗ = C. (99)

From equations (98), (97) and (99), we get

Dtpk − DqkL = λ
∂f

∂q̇k
, dqk − vk dt = 0, pk − DvkL = 0. (100)
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It is easy to see that equation (100) can be presented as

DqkL −
[

d

dt
DvkL

]
v=q̇

= λ
∂f

∂q̇k
. (101)

As the result, we obtain

∂L

∂qk
− d

dt

(
∂L

∂q̇k

)
= λ

∂f

∂q̇k
, k = 1, . . . , n, (102)

which are the same as the Euler–Lagrange equations (38) for the nonholonomic system.
Fractional exterior derivative and fractional differential forms are considered in

[26, 66, 68]. Let us define

ωh∗α = pk(dqk)α + [L − pk(v
k)β](dt)α, β > 0, (103)

which is a fractional generalization of the extended Poincare–Cartan 1-form (96).

Proposition 4. The fractional exterior derivative of the fractional 1-form (103) is defined by

dαωh∗α = [
Dα

t pk − Dα
qkL

]
(dt)α ∧ (dqk)α − (

Dα
pk

pk

)
[(dqk)α − (vk)β(dt)α]

∧ (dpk)
α − [

pkD
α
vk (v

k)β − Dα
vkL

]
(dvk)α ∧ (dt)α. (104)

Proof. This proposition is proved in [66]. �

Fractional generalization of the Chetaev 2-form (97) can be defined by

Cα = −λ
∂f

∂q̇k
(dt)α ∧ (dqk)α. (105)

Fractional action principle for nonholonomic systems. The trajectory of fractional
dynamical systems with constraint (37) can be derived by finding the path for which the
fractional extended Poincare–Cartan 1-form (103) is equal to the fractional Chetaev 2-form
(105), i.e.,

dαωh∗α = Cα. (106)

Using (104), (105) and (106), we have(
Dα

t pk

) − Dα
qkL = λ

∂f

∂q̇k
, (dqk)α − (vk)β(dt)α = 0, pkD

α
vk (v

k)β − Dα
vkL = 0.

(107)

From the relation

Dα
v vβ = �(β + 1)

�(β + 1 − α)
vβ−α, (108)

where β > −1, we get

Dα
t pk = Dα

qkL + λ
∂f

∂q̇k
, (vk)β = (dqk)α

(dt)α
, pk = �(β + 1 − α)

�(β + 1)
(vk)α−βDα

vkL.

(109)

Substitution of the third equation from (109) into the first one gives

Dα
qkL − �(β + 1 − α)

�(β + 1)
Dα

t

[
(vk)α−βDα

vkL
]
(vk)β=(q̇k)α

= λ
∂f

∂q̇k
. (110)
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Equation (110) has the dependence

(vk)β = (q̇k)α. (111)

It is easy to see that equation (110) looks unusually even for β = 1. Therefore we consider
β = α for the form (103). Using β = α in equation (103), we obtain

Dα
qkL − �(2 − α)Dα

t

[
Dα

vkL
]
v=q̇

= λ
∂f

∂q̇k
(112)

that is fractional Euler–Lagrange equations. As the result, the fractional equations of motion
for nonholonomic systems are presented by

Êα
k L(t, q, q̇) = λ

∂f

∂q̇k
, i = 1, . . . , n, (113)

where

Êα
k = Dα

qk − �(2 − α)Dα
t Dα

q̇i . (114)

For α = 1, equations (113) are the Euler–Lagrange equations (102).

6. Conclusion

The classical mechanics of nonholonomic systems has recently been employed to study
a wide variety of problems in the molecular dynamics [53]. In molecular dynamics
calculations, nonholonomic systems can be exploited to generate statistical ensembles as
the canonical, isothermal-isobaric and isokinetic ensembles [54–64]. Using fractional
nonholonomic constraints, we can consider a fractional extension of the statistical mechanics
of conservative Hamiltonian systems to a much broader class of systems. Let us point out
some nonholonomic systems that can be generalized by using the nonholonomic constraint
with fractional derivatives.

(1) In the papers [54–57], the constant temperature systems with minimal Gaussian constraint
are considered. These systems are non-Hamiltonian ones and they are described by the
non-potential forces that are proportional to the velocity, and the Gaussian nonholonomic
constraint. Note that this constraint can be represented as an addition term to the non-
potential force [64].

(2) In the papers [63, 64], the canonical distribution is considered as a stationary solution of the
Liouville equation for a wide class of non-Hamiltonian systems. This class is defined by
a very simple condition: the power of the non-potential forces must be proportional to the
velocity of the Gibbs phase (elementary phase volume) change. This condition defines
the general constant temperature systems. Note that the condition is a nonholonomic
constraint. This constraint leads to the canonical distribution as a stationary solution
of the Liouville equations. For the linear friction, we derived the constant temperature
systems. A general form of the non-potential forces is derived in [64].

Fractional constraints can be used to describe the evolution of dynamical system in which
some coordinates and velocities are related to other coordinates or velocities through power-
law memory function. The constraints with power-like memory function are considered by
using the fractional calculus. It allows us to take into account the memory effects by fractional
equations.



Nonholonomic constraints with fractional derivatives 9813

Acknowledgments

This work was supported by the Office of Naval Research, grant no. N00014-02-1-0056,
the US Department of Energy grant no. DE-FG02-92ER54184 and the NSF grant no. DMS-
0417800. VET thanks the Courant Institute of Mathematical Sciences for support and kind
hospitality.

References

[1] Samko S G, Kilbas A A and Marichev O I 1993 Fractional Integrals and Derivatives Theory and Applications
(New York: Gordon and Breach)

[2] Oldham K B and Spanier J 1974 The Fractional Calculus (New York: Academic)
[3] Podlubny I 1999 Fractional Differential Equations (San Diego, CA: Academic)
[4] Zaslavsky G M 2002 Chaos, fractional kinetics, and anomalous transport Phys. Rep. 371 461–580
[5] Zaslavsky G M 2005 Hamiltonian Chaos and Fractional Dynamics (Oxford: Oxford University Press)
[6] Hilfer R (ed) 2000 Applications of Fractional Calculus in Physics (Singapore: World Scientific)
[7] Caputo M 1969 Elasticita e Dissipazione (Bologna: Zanichelli) (in Italian)
[8] Nigmatullin R R 1986 The realization of the generalized transfer equation in a medium with fractal geometry

Phys. Status Solidi b 133 425–30
Nigmatullin R R 1992 Fractional integral and its physical interpretation Theor. Math. Phys. 90 242–51

[9] Le Mehaute A, Nigmatullin R R and Nivanen L 1998 Fleches du Temps et Geometric Fractale (Paris: Hermes)
chapter 5 (in French)

[10] Carpinteri A and Mainardi F 1997 Fractals and Fractional Calculus in Continuum Mechanics (New York:
Springer)

[11] Tarasov V E 2005 Continuous medium model for fractal media Phys. Lett. A 336 167–74
Tarasov V E 2005 Fractional Fokker–Planck equation for fractal media Chaos 15 023102
Tarasov V E 2005 Possible experimental test of continuous medium model for fractal media Phys. Lett.

A 341 467–72
Tarasov V E 2006 Gravitational field of fractal distribution of particles Celes. Mech. Dyn. Astron. 19 1–15
Tarasov V E 2005 Fractional hydrodynamic equations for fractal media Ann. Phys. 318 286–307

[12] Tarasov V E and Zaslavsky G M 2005 Fractional Ginzburg–Landau equation for fractal media Physica
A 354 249–61

[13] Laskin N 2002 Fractional Schrodinger equation Phys. Rev. E 66 056108
Laskin N 2000 Fractals and quantum mechanics Chaos 10 780–90
Laskin N 2000 Fractional quantum mechanics Phys. Rev. E 62 3135–45
Laskin N 2000 Fractional quantum mechanics and Levy path integrals Phys. Lett. A 268 298–305

[14] Naber M 2004 Time fractional Schrodinger equation J. Math. Phys. 45 3339–52
[15] Zaslavsky G M 1994 Fractional kinetic equation for Hamiltonian chaos Physica D 76 110–22
[16] Saichev A I and Zaslavsky G M 1997 Fractional kinetic equations: solutions and applications Chaos

7 753–64
[17] Zaslavsky G M and Edelman M A 2004 Fractional kinetics: from pseudochaotic dynamics to Maxwell’s demon

Physica D 193 128–47
[18] Carreras B A, Lynch V E and Zaslavsky G M 2001 Anomalous diffusion and exit time distribution of particle

tracers in plasma turbulence model Phys. Plasmas 8 5096–103
[19] Tarasov V E 2005 Electromagnetic field of fractal distribution of charged particles Phys. Plasmas

12 082106
Tarasov V E 2005 Multipole moments of fractal distribution of charges Mod. Phys. Lett. B 19 1107–18
Tarasov V E 2006 Magnetohydrodynamics of fractal media Phys. Plasmas 13 052107

[20] Lutzen J 1985 Liouville’s differential calculus of arbitrary order and its electrodynamical origin Proc. 19th
Nordic Congress Mathenzaticians (Icelandic Mathematical Society, Reykjavik) pp 149–60

[21] Zelenyi L M and Milovanov A V 2004 Fractal topology and strange kinetics: from percolation theory to
problems in cosmic electrodynamics Phys.—Usp. 47 749–88

[22] Mainardi F and Gorenflo R 2000 On Mittag–Leffler-type functions in fractional evolution processes J. Comput.
Appl. Math. 118 283–99

[23] Mainardi F 1996 Fractional relaxation-oscillation and fractional diffusion-wave phenomena Chaos Solitons
Fractals 7 1461–77

[24] Tarasov V E and Zaslavsky G M 2006 Dynamics with low-level fractionality Physica A 368 399–415

http://dx.doi.org/10.1016/S0370-1573(02)00331-9
http://dx.doi.org/10.1007/BF01036529
http://dx.doi.org/10.1016/j.physleta.2005.01.024
http://dx.doi.org/10.1063/1.1886325
http://dx.doi.org/10.1016/j.physleta.2005.05.022
http://dx.doi.org/10.1007/s10569-005-1152-2
http://dx.doi.org/10.1016/j.aop.2005.01.004
http://dx.doi.org/10.1016/j.physa.2005.02.047
http://dx.doi.org/10.1103/PhysRevE.66.056108
http://dx.doi.org/10.1063/1.1050284
http://dx.doi.org/10.1103/PhysRevE.62.3135
http://dx.doi.org/10.1016/S0375-9601(00)00201-2
http://dx.doi.org/10.1063/1.1769611
http://dx.doi.org/10.1016/0167-2789(94)90254-2
http://dx.doi.org/10.1063/1.166272
http://dx.doi.org/10.1016/j.physd.2004.01.014
http://dx.doi.org/10.1063/1.1416180
http://dx.doi.org/10.1063/1.1994787
http://dx.doi.org/10.1142/S0217984905009122
http://dx.doi.org/10.1063/1.2197801
http://dx.doi.org/10.1070/PU2004v047n08ABEH001705
http://dx.doi.org/10.1016/S0377-0427(00)00294-6
http://dx.doi.org/10.1016/0960-0779(95)00125-5
http://dx.doi.org/10.1016/j.physa.2005.12.015


9814 V E Tarasov and G M Zaslavsky

[25] Tarasov V E 2004 Fractional generalization of Liouville equation Chaos 14 123–7
Tarasov V E 2005 Fractional systems and fractional Bogoliubov hierarchy equations Phys. Rev. E

71 011102
Tarasov V E 2005 Fractional Liouville and BBGKI equations J. Phys. Conf. Ser. 7 17–33

[26] Tarasov V E 2005 Fractional generalization of gradient and Hamiltonian systems J. Phys. A: Math.
Gen. 38 5929–43

Tarasov V E 2005 Fractional generalization of gradient systems Lett. Math. Phys. 73 49–58
[27] Laskin N and Zaslavsky G M 2006 Nonlinear fractional dynamics on a lattice with long-range interactions

Physica A 368 38–54
[28] Tarasov V E and Zaslavsky G M 2006 Fractional dynamics of coupled oscillators with long-range interaction

Chaos 16 023110
Tarasov V E and Zaslavsky G M 2006 Fractional dynamics of systems with long-range interaction Commun.

Nonlin. Sci. Numer. Simul. 11 885–98
[29] Korabel N, Zaslavsky G M and Tarasov V E 2006 Coupled oscillators with power-law interaction and their

fractional dynamics analogues Commun. Nonlin. Sci. Numer. Simul. 11 at press (Preprint math-ph/0603074)
[30] Montroll E W and Shlesinger M F 1984 The wonderful world of random walks Studies in Statistical Mechanics

vol 11, ed J Lebowitz and E Montroll (Amsterdam: North-Holland) pp 1–121
[31] Uchaikin V V 2003 Self-similar anomalous diffusion and Levy-stable laws Phys.—Usp. 46 821–49

Uchaikin V V 2003 Anomalous diffusion and fractional stable distributions J. Exp. Theor. Phys. 97 810–25
[32] Metzler R and Klafter J 2000 The random walk’s guide to anomalous diffusion: a fractional dynamics approach

Phys. Rep. 339 1–77
[33] Schaefer D W and Martin J E 1984 Fractal geometry of colloidal aggregates Phys. Rev. Lett. 52 2371–4
[34] Pfeifer P and Avnir D 1983 Chemistry in noninteger dimensions between two and three: 1. Fractal theory of

heterogeneous surfaces J. Chem. Phys. 79 3558–65
[35] Milovanov A V and Rasmussen J J 2005 Fractional generalization of the Ginzburg–Landau equation: an

unconventional approach to critical phenomena in complex media Phys. Lett. A 337 75–80
[36] Gafiychuk V V and Datsko B Yo 2006 Pattern formation in a fractional reaction-diffusion system Physica

A 365 300–6
[37] Pars L A 1964 A Treatise on Analytical Dynamics (London: Heinemann)
[38] Chetaev N G 1962 Stability of Motion. Works on Analytic Mechanics (Moscow: Acad. Sci. USSR) (in Russian)
[39] Dobronravov V V 1970 Foundations of Mechanics of Nonholonomic Systems (Moscow: Vishaya shkola) (in

Russian)
[40] Agrawal O P 2002 Formulation of Euler–Lagrange equations for fractional variational problems J. Math. Anal.

Appl. 272 368–79
[41] Rumiantsev V V 1978 On Hamilton’s principle for nonholonomic systems J. Appl. Math. Mech. 42 407–19
[42] Caputo M 1967 Linear models of dissipation whose Q is almost frequency independent, part II Geophys. J. R.

Astron. Soc. 13 529–39
[43] Caputo M and Mainardi F 1971 Linear models of dissipation in anelastic solids Riv. Nuovo Cimento II 1 161–98
[44] Gorenflo R and Mainardi F 1997 Fractional calculus: integral and differential equations of fractional order

Fractals and Fractional Calculus in Continuum Mechanics ed A Carpinteri and F Mainardi (New York:
Springer) pp 223–76

[45] Zaslavsky G M, Stanislavsky A A and Edelman M 2006 Chaotic and pseudochaotic attractors of perturbed
fractional oscillator Chaos 16 013102

[46] Stanislavsky A A 2004 Fractional oscillator Phys. Rev. E 70 051103
Stanislavsky A A 2005 Twist of fractional oscillations Physica A 354 101–10

[47] Achar B N N, Hanneken J W and Clarke T 2004 Damping characteristics of a fractional oscillator Physica
A 339 311–9

Achar B N N, Hanneken J W and Clarke T 2002 Response characteristics of a fractional oscillator Physica
A 309 275–88

[48] Achar B N N, Hanneken J W, Enck T and Clarke T 2001 Dynamics of the fractional oscillator Physica
A 297 361–7

[49] Tofighi A 2003 The intrinsic damping of the fractional oscillator Physica A 329 29–34
[50] Ryabov Y E and Puzenko A 2002 Damped oscillations in view of the fractional oscillator equation Phys. Rev.

B 66 184201
[51] Dzherbashyan M M 1966 Integral Transform Representations of Functions in the Complex Domain (Moscow:

Nauka)
[52] Erdelyi A, Magnus W, Oberhettinger F and Tricomi F G 1981 Higher Transcendental Functions vol 1 (New

York: Krieger) chapter 18, pp 206–27

http://dx.doi.org/10.1063/1.1633491
http://dx.doi.org/10.1103/PhysRevE.71.011102
http://dx.doi.org/10.1088/1742-6596/7/1/002
http://dx.doi.org/10.1088/0305-4470/38/26/007
http://dx.doi.org/10.1007/s11005-005-8444-z
http://dx.doi.org/10.1016/j.physa.2006.02.027
http://dx.doi.org/10.1063/1.2197167
http://dx.doi.org/10.1016/j.cnsns.2006.03.005
http://www.arxiv.org/abs/math-ph/0603074
http://dx.doi.org/10.1070/PU2003v046n08ABEH001324
http://dx.doi.org/10.1134/1.1625072
http://dx.doi.org/10.1016/S0370-1573(00)00070-3
http://dx.doi.org/10.1103/PhysRevLett.52.2371
http://dx.doi.org/10.1063/1.446210
http://dx.doi.org/10.1016/j.physleta.2005.01.047
http://dx.doi.org/10.1016/j.physa.2005.09.046
http://dx.doi.org/10.1016/S0022-247X(02)00180-4
http://dx.doi.org/10.1016/0021-8928(78)90108-9
http://dx.doi.org/10.1063/1.2126806
http://dx.doi.org/10.1103/PhysRevE.70.051103
http://dx.doi.org/10.1016/j.physa.2005.02.033
http://dx.doi.org/10.1016/j.physa.2004.03.030
http://dx.doi.org/10.1016/S0378-4371(02)00609-X
http://dx.doi.org/10.1016/S0378-4371(01)00200-X
http://dx.doi.org/10.1016/S0378-4371(03)00598-3
http://dx.doi.org/10.1103/PhysRevB.66.184201


Nonholonomic constraints with fractional derivatives 9815

[53] Frenkel D and Smit B 2001 Understanding Molecular Simulation: From Algorithms to Applications 2nd edn
(New York: Academic)

[54] Evans D J, Hoover W G, Failor B H, Moran B and Ladd A J C 1983 Nonequilibrium molecular dynamics via
Gauss’s principle of least constraint Phys. Rev. A 28 1016–21

[55] Haile J M and Gupta S 1983 Extensions of the molecular dynamics simulation method: II. Isothermal systems
J. Chem. Phys. 79 3067–76

[56] Evans D J and Morriss G P 1983 The isothermal/isobaric molecular dynamics ensemble Phys. Lett. A 98 433–6
[57] Nose S 1991 Constant-temperature molecular dynamics Prog. Theor. Phys. Suppl. 103 1–46
[58] Tuckerman M E, Mundy C J and Martyna G J 1999 On the classical statistical mechanics of non-Hamiltonian

systems Europhys. Lett. 45 149–55
[59] Tuckerman M E, Liu Y, Ciccotti G and Martyna G J 2001 Non-Hamiltonian molecular dynamics: generalizing

Hamiltonian phase space principles to non-Hamiltonian systems J. Chem. Phys. 115 1678–702
[60] Minary P, Martyna G J and Tuckerman M E 2003 Algorithms and novel applications based on the isokinetic

ensemble: I. Biophysical and path integral molecular dynamics J. Chem. Phys. 118 2510–26
[61] Galea T M and Attard P 2002 Constraint method for deriving nonequilibrium molecular dynamics equations of

motion Phys. Rev. E 66 041207
[62] Ramshaw J D 2002 Remarks on non-Hamiltonian statistical mechanics Europhys. Lett. 59 319–23

Ramshaw J D 1986 Remarks on entropy and irreversibility in non-Hamiltonian systems Phys. Lett. A 116 110–4
[63] Tarasov V E 2003 Classical canonical distribution for dissipative systems Mod. Phys. Lett. B 17 1219–26

Tarasov V E 2005 Thermodynamics of few-particle systems Int. J. Mod. Phys. B 19 879–97
[64] Tarasov V E 2005 Stationary solution of Liouville equation for non-Hamiltonian systems Ann. Phys.

316 393–413
[65] Bloch A, Crouch P, Baillieul J and Marsden J 2003 Nonholonomic Mechanics and Control (New York: Springer)
[66] Tarasov V E 2006 Fractional variations for dynamical systems: Hamilton and Lagrange approaches J. Phys. A:

Math. Gen. 39 8409–25
[67] Krupkova O 2002 Recent results in the geometry of constrained systems Rep. Math. Phys. 49 269–78
[68] Cottrill-Shepherd K and Naber M 2001 Fractional differential forms J. Math. Phys. 42 2203–12

http://dx.doi.org/10.1103/PhysRevA.28.1016
http://dx.doi.org/10.1063/1.446137
http://dx.doi.org/10.1016/0375-9601(83)90256-6
http://dx.doi.org/10.1209/epl/i1999-00139-0
http://dx.doi.org/10.1063/1.1378321
http://dx.doi.org/10.1063/1.1534582
http://dx.doi.org/10.1103/PhysRevE.66.041207
http://dx.doi.org/10.1209/epl/i2002-00196-9
http://dx.doi.org/10.1016/0375-9601(86)90294-X
http://dx.doi.org/10.1142/S0217984903006268
http://dx.doi.org/10.1142/S0217979205027780
http://dx.doi.org/10.1016/j.aop.2004.11.001
http://dx.doi.org/10.1088/0305-4470/39/26/009
http://dx.doi.org/10.1016/S0034-4877(02)80025-8
http://dx.doi.org/10.1063/1.1364688

	1. Introduction
	2. Nonholonomic constraints with integer derivatives
	2.1. Lagrange equations for nonholonomic system
	2.2. Nonholonomic system as a holonomic one

	3. Constraints with fractional derivatives
	3.1. Fractional derivatives
	3.2. Fractional constraints and its interpretation
	3.3. Fractional equations of motion
	3.4. Linear fractional constraint
	3.5. One-dimensional example
	3.6. Two-dimensional examples

	4. Fractional conditional extremum
	4.1. Extremum for fractional constraint
	4.2. Hamilton's approach

	5. Geometric method for fractional nonholonomic systems
	6. Conclusion
	Acknowledgments
	References

