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Abstract

Starting from kicked equations of motion with derivatives of non-integer orders,
we obtain ‘fractional’ discrete maps. These maps are generalizations of well-
known universal, standard, dissipative, kicked damped rotator maps. The main
property of the suggested fractional maps is a long-term memory. The memory
effects in the fractional discrete maps mean that their present state evolution
depends on all past states with special forms of weights. These forms are
represented by combinations of power-law functions.

PACS number: 45.10.Hj

1. Introduction

There are a number of distinct areas of physics where the basic problems can be reduced to
the study of simple discrete maps. Discrete maps have been used for the study of evolution
problems, possibly as a substitute of differential equations [1–4]. They lead to a much simpler
formalism, which is particularly useful in simulations. The standard map is one of the most
widely studied maps. In this paper, we consider fractional generalizations of discrete maps
that can be used to study the evolution described by fractional differential equations [5–7].

The treatment of nonlinear dynamics in terms of discrete maps is a very important step
in understanding the qualitative behavior of continuous systems described by differential
equations. Note that the continuous limit of discrete systems with long-range interactions
gives differential equations with derivatives of non-integer orders (see for example, [8–10]).
The derivatives of non-integer orders are a natural generalization of the ordinary differentiation
of integer order. Fractional differentiation with respect to time is characterized by long-term
memory effects that correspond to intrinsic dissipative processes in the physical systems. The
application of memory effects to discrete maps means that their present state evolution depends
on all past states [11–16].
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The mapping xn+1 = f (xn) does not have any memory, as the value xn+1 only depends
on xn. The introduction of memory means that the discrete value xn+1 is connected with the
previous values xn, xn−1, . . . , x1. Particularly, any system, which is described by a discrete
map, will have a full memory [16], if each state of the system is a simple sum of all previous
states:

xn+1 =
n∑

k=1

f (xk), (1)

where f (x) is a function that defines the discrete map. In general, the expression of
equation (1) can tend to infinity. Note that the full memory exists for functions that give
a finite sum in equation (1). The full memory is ideal because it has the same action upon the
next states as all the others in memory. The map with a long-term memory can be expressed
as

xn+1 =
n∑

k=1

Vα(n, k)f (xk), (2)

where the weights Vα(n, k), and the parameter α characterize the non-ideal memory effects.
The forms of the functions f (x) and Va(n, k) in equation (2) are obtained by the differential
equation. Therefore the conditions on f (x) are not discussed. Note that linear differential
(kicked) equations give the linear function f (x) = x. The discrete maps with memory are
considered, for example, in the papers [11–16]. The important question is a connection of
fractional equation of motion and the discrete maps with memory. It is important to derive
discrete maps with memory from equation of motion with fractional derivatives.

Here, we point out the well-known notions such as the full memory and the long-term
memory (LTM). For the one-dimensional case, the full memory is defined by equation (1),
and the LTM is defined by equation (2). In general, the expression of equation (1) can tend to
infinity. Note that the full memory exists for functions that give a finite sum. This is a basic
condition on f(x) in equation (1). In this paper, we consider the LTM for fractional equations.
For the one-dimensional case, the LTM is defined by equation (2). The one-dimensional case
is considered for simplification. In this paper, we consider a two-dimensional case of variables
(xn, pn). Note that the conditions on the function f (x) of the LTM are not defined a priori.
This function is obtained from an equation of motion. Therefore the conditions on f (x)

are not discussed. The properties of the function f (x) are defined by the kicked differential
equation. For example, the functions f (x), which are derived from linear differential (kicked)
equations, are linear (f (x) = x).

It was shown [17] that perturbed by a periodic force, the nonlinear system with a fractional
derivative exhibits a new type of chaotic motion called the fractional chaotic attractor. The
fractional discrete maps allow us to study new types of attractors that are called pseudochaotic
[17].

In section 2, a brief review of discrete maps is considered to fix notation and provide
convenient references. In section 3, a fractional generalization of the universal map is obtained
from kicked fractional equations of motion with order 1 < α � 2. We prove that the usual
universal map is a special case of the fractional universal map. Some examples of the fractional
universal map are suggested. In section 4, a fractional universal map for the case of α > 2
is obtained. In section 5, a fractional kicked damped rotator map is derived. Finally, a short
conclusion is given in section 6.
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2. Universal and standard map

In this section, a brief review of well-known discrete maps is considered to fix notation and
provide convenient references. For details, see [1–4].

Let us consider the equations of motion

ẍ + KG(x)

∞∑
n=0

δ

(
t

T
− n

)
= 0 (3)

in which perturbation is a periodic sequence of delta-function-type pulses (kicks) following
with period T = 2π/ν,K is an amplitude of the pulses, and G(x) is some function. This
equation can be presented in the Hamiltonian form

ẋ = p, ṗ + KG(x)

∞∑
n=0

δ

(
t

T
− n

)
= 0. (4)

It is well known that these equations can be represented in the form of discrete map (see,
for example, [4]). Between any two kicks there is a free motion

p = const, x = pt + const. (5)

The solution of the left side of the nth kick

xn = x(tn − 0) = lim
ε→0+

x(nT − ε), pn = p(tn − 0) = lim
ε→0+

p(nT − ε), tn = nT

(6)

is connected with the solution on the right-hand side of the kick x(tn + 0), p(tn + 0) by
equation (4), and the condition of continuity x(tn + 0) = x(tn − 0). The integration of (4) over
the interval (tn − ε, tn + ε) gives

p(tn + 0) = p(tn − 0) − KT G(xn).

Using notation (6), and the solution (5), we can derive the iteration equations

xn+1 = xn + pn+1T , pn+1 = pn − KT G(xn). (7)

Equations (7) are called the universal map.
If G(x) = −x, then equations (7) give the Anosov-type system

xn+1 = xn + pn+1T , pn+1 = KT xn + pn. (8)

For G(x) = sin(x), equations (7) are

xn+1 = xn + pn+1T , pn+1 = pn − KT sin(xn). (9)

This map is known as the standard or Chirikov–Taylor map [1].

3. Fractional generalization of the universal map for 1 < α � 2

In this section, a fractional generalization of the differential equation (3) is suggested. The
discrete map that corresponds to the fractional equation of order 1 < α � 2 is derived. This
map can be considered as a generalization of the universal map for the case 1 < α � 2.

Let us consider a fractional generalization of (3) in the form

0D
α
t x + KG(x)

∞∑
n=0

δ

(
t

T
− n

)
= 0 (1 < α � 2), (10)
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where 0D
α
t is the Riemann–Liouville fractional derivative [5–7], which is defined by

0D
α
t x = D2

t0I
2−α
t x = 1

�(2 − α)

d2

dt2

∫ t

0

x(τ) dτ

(t − τ)α−1
(1 < α � 2). (11)

Here we use the notation D2
t = d2/dt2, and 0I

α
t is a fractional integration [5–7].

Proposition 1. The fractional differential equation of the kicked system (10) is equivalent to
the discrete map

pn+1 = pn − KT G(xn), (12)

xn+1 = T α−1

�(α)

n∑
k=0

pk+1Vα(n − k), (1 < α � 2), (13)

where the function Vα(z) is defined by

Vα(z) = zα−1 − (z − 1)α−1. (14)

Proof. Let us define the variable ξ(t) such that
C
0 D2−α

t ξ = x(t), (15)

where C
0 D2−α

t is the Caputo fractional derivative

C
0 D2−α

t ξ = 0I
α−1
t D1

t ξ = 1

�(α − 1)

∫ t

0

dτ

(t − τ)2−α

dξ(τ )

dτ
(0 � 2 − α < 1). (16)

Using Lemma 2.22 of [7], we get

0I
2−α
t

C
0 D2−α

t ξ = ξ(t) − ξ(0). (17)

Then

0D
α
t x = D2

t 0I
2−α
t x = D2

t 0I
2−α
t

C
0 D2−α

t ξ = D2
t (ξ(t) − ξ(0)) = D2

t ξ. (18)

Substitution of (18) and (15) into equation (10) gives

D2
t ξ + KG

(
C
0 D2−α

t ξ
) ∞∑

n=0

δ

(
t

T
− n

)
= 0, (1 < α � 2). (19)

This fractional equation can be presented in the Hamiltonian form

ξ̇ = η,

η̇ + KG
(
C
0 D2−α

t ξ
) ∞∑

n=0

δ

(
t

T
− n

)
= 0.

(20)

Between any two kicks there is a free motion

η = const, ξ = ηt + const. (21)

The integration of (20) over (tn + ε, tn+1 − ε) gives

ξ(tn+1 − 0) = ξ(tn + 0) − ηn+1T , η(tn+1 − 0) = η(tn + 0). (22)

The solution of the left side of the nth kick

ξn = ξ(tn − 0) = lim
ε→0

ξ(nT − ε), ηn = η(tn − 0) = lim
ε→0

η(nT − ε), tn = nT

(23)
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is connected with the solution on the right-hand side of the kick ξ(tn + 0), η(tn + 0) by
equation (20), and the continuity condition

ξ(tn + 0) = ξ(tn − 0). (24)

The integration of (20) over the interval (tn − ε, tn + ε) gives

η(tn + 0) = η(tn − 0) − KT G
(
C
0 D2−α

tn
ξ
)
. (25)

Using notation (23), and the solution (21), we get

η(tn + 0) = η(tn+1 − 0) = ηn+1. (26)

Substituting (24) and (25) into (22), we derive the iteration equations

ξn+1 = ξn + ηn+1T , (27)

ηn+1 = ηn − KT G
(
C
0 D2−α

tn
ξ
)
. (28)

To derive a map, we should express the fractional derivative

C
0 D2−α

tn
ξ = 1

�(α − 1)

∫ tn

0

dτ

(tn − τ)2−α

dξ(τ )

dτ
(29)

through the variables (23). Using ξ̇ = η, we have

C
0 D2−α

tn
ξ = 1

�(α − 1)

∫ tn

0

η(τ) dτ

(tn − τ)2−α
. (30)

It can be presented as

C
0 D2−α

tn
ξ = 1

�(α − 1)

n−1∑
k=0

∫ tk+1

tk

η(τ ) dτ

(tn − τ)2−α
, (31)

where tk+1 = tk + T = (k + 1)T , tk = kT and t0 = 0.
For the interval (tk, tk+1), equations (21) and (23) give

η(τ) = η(tk + 0) = η(tk+1 − 0) = ηk+1, τ ∈ (tk, tk+1). (32)

Then∫ tk+1

tk

η(τ ) dτ

(tn − τ)2−α
= ηk+1

∫ tk+1

tk

(tn − τ)α−2 dτ

= ηk+1

∫ tn−tk

tn−tk+1

zα−2dz = ηk+1
zα−1

α − 1

∣∣tn−tk

tn−tk+1

= 1

α − 1
ηk+1[(tn − tk)

α−1 − (tn − tk+1)
α−1]

= ηk+1
T α−1

α − 1
[(n − k)α−1 − (n − k − 1)α−1]. (33)

Using (α − 1)�(α − 1) = �(α) and equation (33), the fractional derivative (31) can be
presented as

C
0 D2−α

tn
ξ = T α−1

�(α)

n−1∑
k=0

ηk+1Vα(n − k), (1 < α � 2), (34)

where

Vα(z) = zα−1 − (z − 1)α−1. (35)
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As a result, equation (28) takes the form

ξn+1 = ξn + ηn+1T , (36)

ηn+1 = ηn − KT G

(
T α−1

�(α)

n−1∑
k=0

ηk+1Vα(n − k)

)
, (1 < α � 2). (37)

These equations define the fractional generalization of the universal map for variables (ξn, ηn).
The fractional equation (10) in the Hamiltonian form can be presented as

ṗ + KG(x)

∞∑
n=0

δ

(
t

T
− n

)
= 0, (38)

0D
α−1
t x = p, (1 < α � 2), (39)

where we use 0D
α
t = D1

t 0D
α−1
t .

Equations (15) and (34) give

xn = C
0 D2−α

tn
ξ = T α−1

�(α)

n−1∑
k=0

ηk+1Vα(n − k). (40)

Using equations (17) and (39), we obtain

p = 0D
α−1
t x = D1

t 0I
2−α
t x = D1

t 0I
2−α
t

C
0 D2−α

t ξ = D1
t (ξ(t) − ξ(0)) = D1

t ξ. (41)

The definition of η in (20) and equation (41) give

p = ξ̇ = η, pn = ηn.

As a result, equations (37) and (40) give

pn+1 = pn − KT G(xn), (42)

xn+1 = T α−1

�(α)

n∑
k=0

pk+1Vα(n − k), (1 < α � 2), (43)

where Vα(z) is defined in (35).
This ends the proof. �

Equations (42) and (43) define the fractional universal map in the phase space (xn, pn).
These equations are the generalization of the map (7).

Note that the form of equations (43) is defined by both equations (38) and (39).
Equation (43) cannot be considered as an iteration representation of equation (39) only.
If we use the other form of equation (38), then equation (43) is changed.

Let us consider some examples of fractional universal map (36) and (37).

Example 1. Let us prove that the fractional universal map for α = 2 gives the usual universal
map. Substitution of equation (36) in the form

ηk+1 = 1

T
(ξk+1 − ξk) (44)

into the iteration equation (37) gives

ηn+1 = ηn − KT G

(
T α−2

�(α)

n−1∑
k=0

(ξk+1 − ξk)Vα(n − k)

)
. (45)
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Then, the fractional map (36), (37) is defined by

ξn+1 = ξn + ηn+1T ,

ηn+1 = ηn − KT G

(
T α−2

�(α)

n∑
k=1

(ξk − ξk−1)Vα(n − k)

)
, (1 < α � 2).

(46)

For α = 2, we have Vα(z) = 1, and
n−1∑
k=0

(ξk+1 − ξk) = ξn − ξ0. (47)

Then equation (45) gives

ηn+1 = ηn − KT G (ξn − ξ0) . (48)

As a result, equations (46) with α = 2 give the usual universal map (7) for the variables
xn = ξn − ξ0 and pn = ηn.

Example 2. If G(x) = −x, then equations (36) and (37) are

ξn+1 = ξn + ηn+1T ,

ηn+1 = ηn − K
T α

�(α)

n−1∑
k=0

ηk+1Vα(n − k), (1 < α � 2),
(49)

where Vα(z) is defined in (35). For the space (xn, pn), this generalization can be presented as

pn+1 = pn − K
T α

�(α)

n−1∑
k=0

pk+1Vα(n − k), (50)

xn+1 = T α−1

�(α)

n∑
k=0

pk+1Vα(n − k). (51)

Equations (50) and (51) define a fractional generalization of the Anosov-type system.

Example 3. If G(x) = sin(x), equations (36) and (37) give

ξn+1 = ξn + ηn+1T ,

ηn+1 = ηn − KT sin

(
T α−1

�(α)

n−1∑
k=0

ηk+1Vα(n − k)

)
, (1 < α � 2).

(52)

This map can be considered as a fractional generalization of the standard map. The other
possible form of equation (52) is

ξn+1 = ξn + ηn+1,

ηn+1 = ηn − K sin

(
1

�(α)

n∑
k=1

(ξk − ξk−1)
[
(n − k)α−1 − (n − k − 1)α−1]) ,

(53)

where we use equations (44), (35), T = 1, and 1 < α � 2. For (xn, pn), equations (42) and
(43) with G(x) = sin(x) give

pn+1 = pn − KT sin(xn), (54)

xn+1 = T α−1

�(α)

n∑
k=0

pk+1Vα(n − k), (1 < α � 2). (55)
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These equations define a fractional standard map on the phase space, which can be called the
fractional Chirikov–Taylor map.

Example 4. The fractional generalization of the dissipative standard map [18, 19] can be
defined by

ξn+1 = ξn + ηn+1, (56)

ηn+1 = bηn − K sin

(
1

�(α)

n∑
k=1

(ξk − ξk−1)[(n − k)α−1 − (n − k − 1)α−1]

)
. (57)

For b = 1, we get the fractional standard map (53).

4. The fractional universal map for α > 2

In this section, a fractional differential equation (10) is used for α > 2. The discrete maps
that correspond to the fractional equations are derived. These maps can be considered as a
generalization of the universal map for the case α > 2, i.e., the fractional universal map (36),
(37) can be generalized from 1 < α � 2 to α > 2.

Let us consider the fractional equation

0D
α
t x + KG(x)

∞∑
n=0

δ

(
t

T
− n

)
= 0, (m − 1 < α � m), (58)

where 0D
α
t is the Riemann–Liouville fractional derivative of order α,m − 1 < α � m, which

is defined [5–7] by

0D
α
t x = Dm

t 0I
m−α
t x = 1

�(m − α)

dm

dtm

∫ t

0

x(τ) dτ

(t − τ)α−1
, (m − 1 < α � m). (59)

Here we use the notation Dm
t = dm/dtm, and 0I

m−α
t is a fractional integration [5–7].

Proposition 2. The fractional differential equation of the kicked system (58) is equivalent to
the discrete map

xn = 1

�(α − m + 1)

n−1∑
k=0

( m−3∑
l=0

T α+l−m+1

l!
ηl+1

n V m,l
α (n − k) +

T α−1

(m − 2)!
ηm−1

n+1 V m,m−2
α (n − k)

)
,

(60)

ps
n+1 = ps

n +
m−s−2∑

l=1

T l

l!
ps+l

n +
T m−s−1

(m − s − 1)!
pm−1

n+1 , (s = 1, . . . , m − 2), (61)

pm−1
n+1 = pm−1

n − KT G(xn), (m − 1 < α � m), (62)

where the functions V m,l
α (z) are defined by

V m,l
α (z) =

∫ z

z−1
(z − y)lyα−m dy =

∫ 1

0
yl(z − y)α−m dy, l = 1, . . . , m − 2, (63)

and 1 � l � m − 1 < α � m, l,m ∈ N.
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Proof. Let us consider equation (10) with m − 1 < α � m. Using ξ = ξ(t), such that
C
0 Dm−α

t ξ = x(t), (m − 1 < α � m), (64)

we obtain

0D
α
t x = 0D

α
t

C
0 Dm−α

t ξ = Dm
t 0I

m−α
t

C
0 Dm−α

t ξ = Dm
t ξ, (0 < m − α < 1).

Equation (10) can be presented as

Dm
t ξ + KG

(
C
0 Dm−α

t ξ
) ∞∑

n=0

δ

(
t

T
− n

)
= 0, (m − 1 < α < m). (65)

Let us define

ηs(t) = Ds
t ξ(t), (s = 0, . . . , m − 1). (66)

Then the Hamiltonian form of equation (65) is

η̇s = ηs+1, (s = 0, . . . , m − 2),

η̇m−1 + KT G
(
C
0 Dm−α

t η0) ∞∑
n=0

δ

(
t

T
− n

)
= 0.

(67)

For t ∈ (tn + 0, tn+1 − 0), equation (65) is

Dm
t ξ = 0,

and the solution can be presented as

ξ(t) =
m−1∑
l=0

Cl(t − tn)
l, (m � 3). (68)

Substitution of (68) into (66) gives

ηs(t) =
m−1∑
l=s

Cll(l − 1) · · · (l − s + 1)(t − tn)
l−s . (69)

For t = tn, we have

ηs(tn + 0) = Css!.

Then

Cl = 1

l!
ηs(tn + 0). (70)

Using equation (70), the relations

ηs(tn + 0) = ηs(tn − 0) = ηs
n, (s = 0, . . . , m − 2),

and

ηm−1(tn + 0) = ηm−1(tn+1 − 0) = ηm−1
n+1 ,

we present equation (69) in the form

ηs(t) =
m−2∑
l=s

1

(l − s)!
ηl

n(t − tn)
l−s +

1

(m − s − 1)!
ηm−1

n+1 (t − tn)
m−s−1,

(s = 0, . . . , m − 2). (71)

Here, we use
l(l − 1) · · · (l − s + 1)

l!
= 1

(l − s)!
. (72)

9
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Equation (71) can be rewritten as

ηs(t) =
m−s−2∑

l=0

1

l!
ηs+l

n (t − tn)
l +

1

(m − s − 1)!
ηm−1

n+1 (t − tn)
m−s−1, (s = 0, . . . , m − 2).

(73)

For t = tn+1, this equation gives

ηs
n+1 =

m−s−2∑
l=0

1

l!
ηs+l

n T l +
1

(m − s − 1)!
ηm−1

n+1 T m−s−1, (s = 0, . . . , m − 2). (74)

As a result, the iteration equations are

ηs
n+1 =

m−s−2∑
l=0

1

l!
ηs+l

n T l +
1

(m − s − 1)!
ηm−1

n+1 T m−s−1, (s = 0, . . . , m − 2), (75)

ηm−1
n+1 = ηm−1

n − KT G
(
C
0 Dm−α

tn
η0). (76)

The Caputo fractional derivative
C
0 Dm−α

tn
η0 = 0I

α−m+1
tn

D1
t η

0 = 0I
α−m+1
tn

η1

can be presented as

xn = C
0 Dm−α

tn
ξ = 1

�(α − m + 1)

n−1∑
k=0

∫ tk+1

tk

η1(τ ) dτ

(tn − τ)m−α
, (77)

where tk = kT .
For t ∈ (tk, tk+1), equation (73) is

η1(t) =
m−3∑
l=0

1

l!
ηl+1

n (t − tk)
l +

1

(m − 2)!
ηm−1

n+1 (t − tk)
m−2. (78)

Substituting (78) into (77), and using∫ tk+1

tk

(t − tk)
l

(tn − t)m−α
dt = T α−m+l+1

∫ k+1

k

(τ − k)l

(n − τ)m−α
dτ,

we obtain∫ tk+1

tk

η1(t) dt

(tn − t)m−α
=

m−3∑
l=0

T α+l−m+1

l!
ηl+1

n V m,l
α (n − k) +

T α−1

(m − 2)!
ηm−1

n+1 V m,m−2
α (n − k), (79)

where

V m,l
α (n − k) =

∫ (k+1)

k

(z − k)l

(n − z)m−α
dz, l = 1, . . . , m − 2. (80)

These functions can be defined by

V m,l
α (z) =

∫ z

z−1
(z − y)lyα−m dy =

∫ 1

0
yl(z − y)α−m dy, l = 1, . . . , m − 2, (81)

where 1 � l � m − 1 < α � m, l,m ∈ N.
Let us use equation (64) in the form

xn = C
0 Dm−α

tn
ξ, ps

n = ηs
n, (s = 1, . . . , m − 1).

10
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As a result, we obtain

xn = 1

�(α − m + 1)

n−1∑
k=0

(
m−3∑
l=0

T α+l−m+1

l!
ηl+1

n V m,l
α (n − k) +

T α−1

(m − 2)!
ηm−1

n+1 V m,m−2
α (n − k)

)
,

(82)

ps
n+1 = ps

n +
m−s−2∑

l=1

T l

l!
ps+l

n +
T m−s−1

(m − s − 1)!
pm−1

n+1 , (s = 1, . . . , m − 2), (83)

pm−1
n+1 = pm−1

n − KT G(xn), (m − 1 < α � m). (84)

This ends the proof. �

Remark 1. Equations (82)–(84) define a fractional generalization of the universal map for
α > 2. For G(xn) = xn, equations (82)–(84) define the fractional Anosov-type system with
α > 2. For G(xn) = sin xn, we have the fractional standard map for α > 2.

Remark 2. The functions that are defined by integrals (81) can be expressed in elementary
functions. For example, equation (80) with l = 0 gives

V m,0
α (n − k) = 1

α − m + 1
[(n − k)α−m+1 − (n − k − 1)α−m+1]. (85)

This equation for m = 2 can be presented as

V 2,0
α (n − k) = 1

α − 1
Vα(n − k).

For l = 1, equation (80) gives

V m,1
α (n − k) = 1

(α − m + 1)(α − m + 2)

× [(n − k)α−m+2 − (n − k − 1)α−m+1(n − k + α − m + 1)]. (86)

Remark 3. Note that the function (81) can be presented through the hypergeometric function
(section 2.1.3 of [21]) F(a, b, c; z) by the relation

V m,l
α (z) = 1

(l + 1)zm−α
F (m − α, l + 1, l + 2; z−1), (87)

where

F(a, b, c; z) = �(c)

�(b)�(c − b)

∫ 1

0

tb−1(1 − t)c−b−1

(1 − zt)a
dt,

and we use

�(l + 1)

�(l + 2)
= l!

(l + 1)!
= 1

l + 1
.

11
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5. Fractional kicked damped rotator (FKDR) map

In this section, a fractional generalization of the differential equation for a kicked damped
rotator is suggested. The discrete map that corresponds to the fractional differential equation
is derived.

Let us consider a kicked damped rotator [2]. The equation of motion for this rotator is

ẍ + qẋ = KG(x)

∞∑
n=0

δ (t − nT ) . (88)

It is well known that this equation gives [2] the two-dimensional map

yn+1 = e−qT [yn + KG(xn)], (89)

xn+1 = xn +
1 − e−qT

q
[yn + KG(xn)]. (90)

Let us consider the fractional generalization of equation (88) in the form

0D
α
t x − q0D

β
t x = KG(x)

∞∑
n=0

δ(t − nT ), (91)

where

q ∈ R, 1 < α � 2, β = α − 1,

and 0D
α
t is the Riemann–Liouville fractional derivative [5–7] defined by (11). Note that we

use the minus on the left-hand side of equation (91), where q can have positive and negative
values.

Proposition 3. The fractional differential equation of the kicked system (91) is equivalent to
the discrete map

pn+1 = eqT [pn + KG(xn)] , (92)

xn+1 = T α−1

�(α − 1)

n∑
k=0

pk+1Wα(qT , k − n), (93)

where the functions Wα(a, b) are defined by

Wα(a, b) = a1−α ea(b+1) [�(α − 1, ab) − �(α − 1, a(b + 1))] , (94)

and �(a, b) is the incomplete Gamma function,

�(a, b) =
∫ ∞

b

ya−1 e−y dy. (95)

Proof. Let us define the variable ξ(t) such that
C
0 D2−α

t ξ = x(t), (96)

where C
0 D2−α

t is the Caputo fractional derivative (16). Using

0I
2−α
t

C
0 D2−α

t ξ = ξ(t) − ξ(0), (0 � 2 − α < 1), (97)

we obtain

0D
α
t x = D2

t 0I
2−α
t x = D2

t 0I
2−α
t

C
0 D2−α

t ξ = D2
t (ξ(t) − ξ(0)) = D2

t ξ, (98)

12
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and

0D
β
t x = D1

t 0I
1−β
t x = D1

t 0I
2−α
t x = D1

t 0I
2−α
t

C
0 D2−α

t ξ = D1
t (ξ(t) − ξ(0)) = D1

t ξ. (99)

Substitution of (98), (99) and (96) into equation (91) gives

D2
t ξ − qD1

t ξ = KG
(
C
0 D2−α

t ξ
) ∞∑

n=0

δ(t − nT ), (1 < α � 2). (100)

The fractional equation (100) can be presented in the Hamiltonian form

ξ̇ = η,

η̇ − qη = KG
(C

0 D2−α
t ξ

) ∞∑
n=0

δ(t − nT ), (1 < α < 2, q ∈ R).
(101)

Between any two kicks

η̇ − qη = 0. (102)

For t ∈ (tn + 0, tn+1 − 0), the solution of equation (102) is

η(tn+1 − 0) = η(tn + 0) eqT . (103)

Let us use the notation

ξn = x(tn − 0) = lim
ε→0

ξ(nT − ε), ηn = η(tn − 0) = lim
ε→0

η(nT − ε), tn = nT .

(104)

For t ∈ (tn − ε, tn+1 − ε), the general solution of (101) is

η(t) = ηneq(t−tn) + K

∞∑
m=0

G
(
C
0 D2−α

tm
ξ
) ∫ t

tn−ε

dτ eq(t−τ)δ(τ − mT ). (105)

Then

ηn+1 = eqT
[
ηn + KG

(
C
0 D2−α

tn
ξ
)]

. (106)

Using (106), the integration of the first equation of (101) gives

ξn+1 = ξn − 1 − eqT

q

[
ηn + KG

(
C
0 D2−α

tn
ξ
)]

. (107)

Let us consider the Caputo fractional derivative from equations (106) and (107), which is
defined by

C
0 D2−α

tn
ξ = 0I

α−1
t D1

t ξ = 1

�(α − 1)

∫ tn

0

dτ

(tn − τ)2−α

dξ(τ )

dτ
, (0 � 2 − α < 1). (108)

Using ξ̇ = η, we have

C
0 D2−α

tn
ξ = 0I

α−1
t η

1

�(α − 1)

∫ tn

0

η(τ) dτ

(tn − τ)α−1
. (109)

It can be presented as

C
0 D2−α

tn
ξ = 1

�(α − 1)

n−1∑
k=0

∫ tk+1

tk

η(τ ) dτ

(tn − τ)2−α
, (110)

where tk+1 = tk + T = (k + 1)T , tk = kT and t0 = 0.

13
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For τ ∈ (tk, tk+1), equations (103) and (104) give

η(τ) = η(tk + 0) eq(τ−tk ) = η(tk+1 − 0) e−qT eq(τ−tk ) = ηk+1 eq(τ−tk−T ) = ηk+1 eq(τ−tk+1).

(111)

Then∫ tk+1

tk

η(τ ) dτ

(tn − τ)α−2
= ηk+1

∫ tk+1

tk

eq(τ−tk+1)(tn − τ)α−2 dτ

= ηk+1

∫ tn−tk

tn−tk+1

eq(tn−tk+1−z)zα−2 dz = ηk+1 eq(tn−tk+1)

∫ tn−tk

tn−tk+1

zα−2 e−qz dz

= ηk+1q
1−α eq(n−k−1)T

∫ q(tn−tk)

q(tn−tk+1)

yα−2 e−y dy. (112)

As a result, equation (112) gives∫ tk+1

tk

η(τ ) dτ

(tn − τ)α−2
= ηk+1q

1−α eq(n−k−1)T [�(α − 1, q(tn − tk+1)) − �(α − 1, q(tn − tk))] .

(113)

Here �(a, b) is the incomplete Gamma function [20]:

�(a, b) =
∫ ∞

b

ya−1 e−y dy, a, b ∈ C, (114)

which can be defined by

�(a, b) = �(a) − ba

a
1F1(1, 1 + a;−b), (115)

where 1F1 is the confluent hypergeometric Kummer function [20],

1F1(a, c; z) =
∞∑

k=0

(a)k

(c)k

zk

k!
. (116)

Here (a)k is the Pochhammer symbol

(a)k = a(a + 1) · · · (a + k − 1), k ∈ N. (117)

Using (110) and (113), we get

C
0 D2−α

tn
ξ = T α−1

�(α − 1)

n−1∑
k=0

ηk+1Wα(qT , k − n), (1 < α � 2), (118)

where

Wα(a, b) = a1−α ea(b+1) [�(α − 1, ab) − �(α − 1, a(b + 1))] . (119)

Substitution of (118) into (106) and (107) gives

ηn+1 = eqT

[
ηn + KG

(
T α−1

�(α − 1)

n−1∑
k=0

ηk+1Wα(qT , k − n)

)]
, (120)

ξn+1 = ξn − 1 − eqT

q

[
ηn + KG

(
T α−1

�(α − 1)

n−1∑
k=0

ηk+1Wα(qT , k − n)

)]
. (121)

14
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Equations (120) and (121) can be rewritten as

ηn+1 = eqT

[
ηn + KG

(
T α−1

�(α − 1)

n−1∑
k=0

ηk+1Wα(qT , k − n)

)]
, (122)

ξn+1 = ξn +
1 − e−qT

q
ηn+1. (123)

These equations can be considered as a fractional generalization of the kicked damped rotator
map for (ξn, ηn).

Equation (91) can be presented in the Hamiltonian form

0D
α−1
t x = p, ṗ − q0D

β
t x = KG(x)

∞∑
n=0

δ(t − nT ). (124)

For (xn, pn), equations (96), (98) and (99) give

pn = ηn, xn = C
0 D2−α

t ξ.

As a result, we have

pn+1 = eqT [pn + KG(xn)] , (125)

xn+1 = T α−1

�(α − 1)

n∑
k=0

pk+1Wα(qT , k − n), (126)

where Wα(a, b) is defined in (119). This ends the proof. �

These iteration equations (125) and (126) define the fractional kicked damped rotator map
(88) in phase space (xn, pn).

6. Conclusion

There are a number of distinct areas of physics where the basic problems can be reduced
to the study of simple symplectic maps. In particular the special case of two-dimensional
symplectic maps has been extensively studied. Under a wide range of circumstances such
maps give rise to chaotic behavior. The suggested fractional maps can be considered as
a fractional generalization of the symplectic map that is derived from kicked fractional
differential equations. We can suppose that fractional discrete maps can be connected with
some generalization of the symplectic structure. Fractional generalization of symplectic
structure [22] can be defined by using fractional differential forms.
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