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Abstract. An equation of long-range particle drift and diffusion on a 3D physical
lattice is suggested. This equation can be considered as a lattice analog of the
space-fractional Fokker–Planck equation for continuum. The lattice approach
gives a possible microstructural basis for anomalous diffusion in media that
are characterized by the non-locality of power law type. In continuum limit
the suggested 3D lattice Fokker–Planck equations give fractional Fokker–Planck
equations for continuous media with power law non-locality that is described
by derivatives of non-integer orders. The consistent derivation of the fractional
Fokker–Planck equation is proposed as a new basis to describe space-fractional
diffusion processes.
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1. Introduction

Fokker–Planck equations are usually used to describe the Brownian motion of particles [1].
These equations describe the change of probability of a random function in space and time
in diffusion processes. The Fokker–Planck equation is usually the second-order partial
differential equation of parabolic type. In many studies of diffusion processes in complex
media, the usual second-order Fokker–Planck equation may not be adequate. In particular,
the probability density may have a thicker tail than the Gaussian probability density and
correspondent correlation functions may decay to zero much slower than the functions for
usual diffusion processes resulting in long-range dependence. This phenomenon is known
as anomalous diffusion [2–4]. Anomalous diffusion processes can be characterized by a
power law mean squared displacement of the form [2–4]

〈x2(t)〉 =
2 K(α)tα

Γ(α + 1)
, (1)

where Γ(z) is the gamma function, α is the anomalous diffusion exponent and K(α)
is the anomalous diffusion constant. In equation (1), we use the second moment that
is defined in terms of the ensemble average. Depending on the value of α, we usually
distinguish sub-diffusion for 0 < α < 1 or super-diffusion for α > 1. There are two limit
cases such as the normal diffusion (α = 1) and the ballistic motion (α = 2). One possible
approach to describe the anomalous diffusion is based on the continuous time random walk
models [5] in which the particles are considered as random walkers with step lengths r and
waiting times t. An important role is played by the anomalous diffusion processes with the
Poissonian waiting time and the Lévy distribution for the jump length. The Lévy flights [2]
are random walks in which the step lengths (long jumps) have a probability distribution
that is heavy-tailed. The Lévy motion can be described by a generalized diffusion equation
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with space derivatives of non-integer orders μ, [4]. The fractional moment of order δ for
Lévy flights has the form 〈|x(t)|δ〉 ∼ tδ/μ, where 0 < δ < μ � 2.

Derivatives of non-integer orders [6–13] play an important role in describing particle
transport in anomalous diffusion [4, 14–19] and have a wide application in various areas
of physics (see, for example, [20–28]). Various approaches lead to different types of space–
time fractional Fokker–Planck equations. Usually the space-fractional Fokker–Planck
equations are obtained from the second-order differential equations by replacing the first-
order and second-order space derivatives by fractional-order derivatives [7]. Fractional
Fokker–Planck equations with coordinate derivatives of non-integer order have been
suggested in [29]. The solutions and properties of these equations are described in [15,30].
The Fokker–Planck equation with fractional coordinate derivatives was also considered in
[14, 31–35]. It should be noted that the fractional Fokker–Planck equations can be derived
from the probabilistic continuous time random walk [36–38]. In this paper we propose a
consistent derivation of the space-fractional Fokker–Planck equation based on a lattice
model with long-range drift and diffusion that is considered as a microstructural basis to
describe fractional diffusion processes in continua.

A discrete lattice version of the Fokker–Planck equation in analogy with the lattice
Boltzmann models has been suggested in [40–42]. These models are used to solve the
equations of hydrodynamics and cavity flow simulations [43]. The lattice Fokker–Planck
equation is applied to the study of electro-rheological transport of 1D charged fluid [44] and
it is used in phase-space descriptions of inertial polymer dynamics [45]. All these lattice
Fokker–Planck equations are based on the lattice Boltzmann discretization approach.

In this paper, we propose a lattice equation for probability density of particle
in unbounded homogeneous 3D lattice with long-range drift and diffusion to n-site
from all other m-sites (m �= n). We prove that continuous limit for the suggested
lattice Fokker–Planck equation gives the space-fractional Fokker–Planck equation for non-
local continuum. The fractional differential equation for continuum contains generalized
conjugate Riesz derivatives of non-integer orders.

Continuum mechanics [46] can be considered as a continuous limit of lattice dynamics
[47–50], where the length-scales of a continuum element are much larger than the distances
between the lattice particles. The first self-consistent derivation of the Fokker–Planck
equation based on the microscopic dynamics for classical and quantum systems was
obtained by Bogolyubov and Krylov [51, 52]. Long-range interactions are important for
different problems in statistical mechanics [53–55], kinetic theory and nonequilibrium
statistical mechanics [56,57], theory of non-equilibrium phase transitions [58,59]. As it was
shown in [60, 61] (see also [62–64] and [65–70]), the continuum equations with fractional
derivatives can be directly connected to lattice models with long-range properties. A
connection between the dynamics of a lattice system of particles with long-range properties
and the fractional continuum equations are proved by using the transform operation
[60, 61]. The papers [60, 61] deal with the 1D lattice models and the correspondent 1D
continuum equations. In this paper, we suggest 3D lattice models for space-fractional
diffusion processes. We propose a general form of 3D lattice Fokker–Planck equation,
which leads to a continuum fractional Fokker–Planck equation with space derivatives
of non-integer orders by continuous limit. The suggested approach to derive the space
fractional Fokker–Planck equations can serve as a microstructural basis to describe the
spatial-fractional diffusion processes.
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2. Lattice with long-range drift and diffusion

The lattice is characterized by space periodicity. In an unbounded lattice we can define
three non-coplanar vectors a1, a2, a3, that are the shortest vectors by which a lattice can
be displaced and be brought back into itself. All space lattice sites can be defined by the
vector n = (n1, n2, n3), where ni are integer. For simplification, we consider a lattice with
mutually perpendicular primitive lattice vectors a1, a2, a3. We choose directions of the
axes of the Cartesian coordinate system to coincide with the vector ai. Then ai = ai ei,
where ai = |ai| and ei are the basis vectors of the Cartesian coordinate system. This
simplification means that the lattice is a primitive orthorhombic Bravais lattice with
long-range drift and diffusion of particles.

If we choose the coordinate origin at one of the sites, then the position vector of an
arbitrary lattice site with n = (n1, n2, n3) is written r(n) = n1a1 + n2a2 + n3a3. The
lattice sites are numbered by n, so that the vector n can be considered as a number
vector of the corresponding particle. We assume that the positions of particles coincide
with the lattice sites r(n). The probability density for the lattice site will be denoted
by f(n, t) = f(n1, n2, n3, t), where the site is defined by the vector n = (n1, n2, n3). The
function f(n, t) satisfies the conditions

+∞∑
n1=−∞

+∞∑
n2=−∞

+∞∑
n3=−∞

f(n1, n2, n3, t) = 1, f(n1, n2, n3, t) � 0 (2)

for all t ∈ R.
The equation for probability density of particle in unbounded homogeneous lattice is

∂f(n, t)
∂t

= −
3∑

i=1

∑
mi �=ni

giK
i
αi

(n − m)f(m, t) +
3∑

i,j=1

∑
mi �=ni

∑
mj �=nj

gijK
ij
αi,βj

(n − m)f(m, t), (3)

where f(n, t) is the probability density function to find the test particle at site n at time
t. The italics i, j ∈ {1; 2; 3} are the coordinate indices, gi and gij are lattice coupling
constants. The coefficients Ki

αi
(n − m) and Kij

αi,βj
(n − m) describe the particle drift and

diffusion on the lattice and it can be called the drift and diffusion kernels for lattice step
length n − m. These kernels describe the long-range drift and diffusion to n-site from all
other m-sites. The parameters αi and βj in the kernels are positive real numbers that
characterize how quickly the intensity of the drift and diffusion processes in the lattice
decrease with increasing the value n − m. These parameters also can be considered as
degrees of the power law of lattice spatial dispersion [65, 68] that is described by non-
integer power of the wave vector components.

Equation (3) describes fractional diffusion processes on the physical lattices, where
long-range jumps can be realized. The Lévy motion (flights) for these lattices can be
described by the lattice Fokker–Planck equation (3), which is considered as a lattice
analog of the fractional diffusion processes with the Poissonian waiting time and the Lévy
distribution for the jump length [4].

For simplification, we consider the kernels in the form

Ki
αi

(n − m) = Kαi
(ni − mi), Kij

αi,βj
(n − m) = Kαi

(ni − mi) Kβj
(nj − mj), (4)
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where i, j = 1, 2, 3. The kernels Kαi
(ni −mi), where i = 1, 2, 3, describe long-range jumps

in the direction ai with lattice step length ni −mi in the lattice. The correspondent terms
with kernels Kαi

(ni − mi) can be considered as lattice analogs of fractional derivatives of
order αi with respect to coordinate xi = (r, ai). We will consider even and odd types of
the kernels Kαi

(ni−mi), i = 1, 2, 3, that will be denoted by K+
αi

(ni−mi) and K−
αi

(ni−mi)
respectively.

We assume that the kernels K±
α (n) satisfy the following conditions:

(a) The kernels K±
α (n) are real-valued functions of integer variable n ∈ Z. The kernels

K+
α (n) and K−

α (n) are even and odd functions such that

K+
α (−n) = +K+

α (n), K−
α (−n) = −K−

α (n) (5)

hold for all n ∈ Z.

(b) The kernels K±
α (n) belong to the Hilbert space of square-summable sequences,

∞∑
n=1

|K±
α (n)|2 < ∞. (6)

(c) The Fourier series transforms K̂±
α (k) of the kernels K±

α (n) in the form

K̂+
α (k) =

+∞∑
n=−∞
n�=0

e−iknK+
α (n) = 2

∞∑
n=1

K+
α (n) cos(kn), (7)

K̂−
α (k) =

+∞∑
n=−∞

e−iknK−
α (n) = −2 i

∞∑
n=1

K−
α (n) sin(kn) (8)

satisfying the conditions

K̂+
α (k) = |k|α + o(|k|α), (k → 0), (9)

and

K̂−
α (k) = i sgn(k) |k|α + o(|k|α), (k → 0) (10)

respectively. Here the little-o notation o(|k|α) means the terms that include higher
powers of |k| than |k|α. The suggested forms (9) and (10) of the Fourier series
transforms of the kernels K±

α (n) mean that we consider lattices with weak spatial
dispersion [65]. The conditions (9) and (10) allow us to consider a wide class of kernels
to describe the long-range lattice drift and diffusion.

In general, the type of dependence of the function K̂±
α (k) on the wave vector k is defined

by the type of spatial dispersion in the lattice [65,68]. For a wide class of processes in the
lattice, the wavelength λ holds the relation a0/λ ∼ ka0 	 1, where a0 is the characteristic
size of the lattice distance such that a0 = max{|a1|, |a2|, |a3|}. In the case ka0 	 1, where
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a0, the spatial dispersion of the lattice is weak. To describe lattices with such property
it is enough to know the dependence of the function K̂±

α (k) only for small values k and
we can replace this function by Taylor’s polynomial series. The weak spatial dispersion
of the lattices with a power law type of spatial dispersion cannot be described by the
usual Taylor approximation. In this case, we should use a fractional Taylor series [65,68].
The fractional Taylor series is more adequate for approximation of non-integer power law
functions. For example, the usual Taylor series for the power law function K̂+

α (k) = aα kα

has the infinite by many terms for non-integer α. The fractional Taylor series of order α
has a finite number of terms for this function and the fractional Taylor’s approximation
is exact. We can use the fractional Taylor’s series in the Riemann–Liouville form (see
chapter 1 section 2.6 [6]) that can be represented as

K̂+
α (kj) = bj(α) |kj|α + o(|kj|α), (11)

where

bj(α) =
( RL

0 Dα
kj

K̂+
α )(0)

Γ(α + 1)
, (12)

and C
0 Dα

k is the Riemann–Liouville fractional derivative [7] of order 0 < α < 1 with
respect to k. This derivative is defined by

( RL
0 Dα

k K̂+
α )(k) =

(
d
dk

)n (
0I

n−α
k K̂+

α

)
(k), (13)

where 0I
α
k is the left-sided Riemann–Liouville fractional integral of order α > 0 with

respect to k of the form

( 0I
α
k K̂+

α )(k) =
1

Γ(α)

∫ k

0

K̂+
α (k′) dk′

(k − k′)1−α
, (k > 0). (14)

Using the approximation (11), we neglect a frequency dispersion for simplification, i.e.
the parameters bj(α) do not depend on the frequency ω. In suggested lattice models, we
define the kernels such that the constants gi and gij include the factor bj(α) and as a
result the conditions (9) and (10) hold.

For simplification, we can consider the lattice kernels that are defined by the explicit
expressions in the form

K̂+
α (k) = |k|α, K̂−

α (k) = i sgn(k) |k|α. (15)

In this case, the inverse relations to the definitions of K̂±
α (k) by equations (7) and (8)

have the forms

K+
α (n) =

1
π

∫ π

0
kα cos(n k) dk, K−

α (n) = − 1
π

∫ π

0
kα sin(n k) dk. (16)

For non-integer real values of the parameter α, the expressions for the kernels K±
α (n−m)

are

K+
α (n − m) =

πα

α + 1 1F2

(
α + 1

2
;
1
2
,
α + 3

2
; −π2 (n − m)2

4

)
, α > −1, (17)
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Figure 1. Plot of the function F+(x, y) (19) for the range x ∈ [0, 6] and
y = α ∈ [0, 6].

K−
α (n − m) = −πα+1 (n − m)

α + 2 1F2

(
α + 2

2
;
3
2
,
α + 4

2
; −π2 (n − m)2

4

)
, α > −2, (18)

where 1F2 is the Gauss hypergeometric function (see Chapter 2 in [72]). Note that
expressions can be used not only for α > 0, but also for some negative values of α.

To visualize the properties of the kernels (17) and (18), we give the plots of the
functions

F+(x, y) =
πy

y + 1 1F2

(
y + 1

2
;
1
2
,
y + 3

2
; −π2 x2

4

)
, (19)

F−(x, y) = −πy+1 x

y + 2 1F2

(
y + 2

2
;
3
2
,
y + 4

2
; −π2 x2

4

)
, (20)

where

K±
α (n − m) = F±(n − m, α). (21)

We present the plots of the function (19) in figures 1, 3, 5 and the plots of (20) in figures 2,
4, 6 for the same ranges of x and y > 0.

Let us note some qualitative properties that can be seen from figures 1–6. We should
note that the functions (19) and (20) represent the kernels with (17) and (18) that
describe the long-range drift and diffusion to n-site from all other m-sites, where m ∈ N.
Oscillations tell us that the inflow and outflow of probability periodically change each
other, when the distance x = n − m between sites increases. The negative values of
F±(x, α) can be interpreted as the probability flux from the site and the positive values of
F±(x, α) can be interpreted as the flux to the site. Maximums and minimums of F±(x, α)
characterize an amplitude of oscillation of the probability flux from the site and into the
site. The amplitudes as functions of the parameter α are increasing functions for a fixed
value x = n. Plots of the functions (19) and (20) with α = 1.5 and α = 1 for the range
x ∈ [0, 7] are presented in figures 7 and 8, where the graphics of functions with α = 1.5
have larger amplitudes than the graphics of the functions with α = 1. The amplitudes as
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Figure 2. Plot of the function F−(x, y) (20) for the range x ∈ [0, 6] and
y = α ∈ [0, 6].
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Figure 3. Plot of the function F+(x, y) (19) for the range x ∈ [5, 15] and
y = α ∈ [0, 6].

functions of the values n are decreasing functions for a fixed value α and this decreasing
has a power law form. During the transition from a non-local to local case for the functions
F±(x, α), a sharp jump does not occur. We can only state that the fractional power law
decreasing is transformed into the decreasing of the integer power form.

It should be noted that the kernels K+
α (n) give the local operators for continuum limit

for even α only and K−
α (n) give the local operators for odd α only. The kernels K±

α (n) for
integer values of α (see also section 2.5.3.5 in [71]) can be represented by the equations

K+
α (n) =

[(α−1)/2]∑
k=0

(−1)n+k α! πα−2k−2

(α − 2n − 1)!
1

n2k+2 +
(−1)[(α+1)/2] α! (2[(α + 1)/2] − α)

π nα+1 , (22)

and

K−
α (n) = −

[α/2]∑
k=0

(−1)n+k+1 α! πα−2k−1

(α − 2n)!
1

n2k+2 − (−1)[α/2] α! (2[α/2] − α + 1)
π nα+1 , (23)
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Figure 4. Plot of the function F−(x, y) (20) for the range x ∈ [5, 15] and
y = α ∈ [0, 6].
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Figure 5. Plot of the function F+(x, y) (19) for the range x ∈ [1, 5] and
y = α ∈ [1, 4].

where [z] is the integer part of the value z and 2[(α + 1)/2] − α = 1 for odd n, and
2[(α + 1)/2] − α = 0 for even n. We can give examples of kernel with some integer α.
Using equation (22) or direct integration (16) for α ∈ {1; 2; 3}, we give K+

α (n) in the form

K+
1 (n) = −1 − (−1)n

πn2 , K+
2 (n) =

2(−1)n

n2 , K+
3 (n) =

3π(−1)n

n2 +
6(1 − (−1)n)

πn4 , (24)

K−
1 (n) =

(−1)n

n
, K−

2 (n) =
(−1)nπ

n
+

2(1 − (−1)n)
πn3 , K−

3 (n) =
(−1)nπ2

n
− 6(−1)n

n3 , (25)

where (1 − (−1)n) = 2 for odd n and ((−1)n − 1) = 0 for even n.
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Figure 6. Plot of the function F−(x, y) (20) for the range x ∈ [1, 5] and
y = α ∈ [1, 4].
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Figure 7. Plot of the function F+(x) (19) with α = 1.5 and α = 1 for the range
x ∈ [0, 7].

For simplification of the form of lattice equation, we use the lattice operators K
± [α

i

]
such that the action of these operators on the lattice probability density f(m, t) is

K
±
[α

i

]
f(m, t) =

+∞∑
mi=−∞
mi �=ni

K±
α (ni − mi) f(m, t), (i = 1, 2, 3). (26)

The values i = 1, 2, 3 specify one of the three variables n1, n2, n3 of the lattice site that are
similar to xi of the space R

3. If αi = 1, then K
+ is a non-local operator and if αi = 2, then

K
− are non-local operators also. Note that the operators K

+
[

αi

i

]
for odd integer values

of αi and K
− [αi

i

]
for even integer values of αi are non-local. For example, the operators

K
+
[1

i

]
and K

− [2
i

]
cannot be considered as local operators of integer orders.
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Figure 8. Plot of the function F−(x) (20) with α = 1.5 and α = 1 for the range
x ∈ [0, 7].

We also can consider combinations of the lattice operators

K
±,±
[
αi βj

i j

]
= K

±
[αi

i

]
K

±
[
βj

j

]
, (27)

where i, j take values from the set {1; 2; 3}. The action of the operator (27) on the lattice
probability density f(m, t) is

K
±,±
[
αi βj

i j

]
f(m, t) =

+∞∑
mi=−∞
mi �=ni

+∞∑
mj=−∞
mj �=nj

K±
αi

(ni − mi) K±
βj

(nj − mj) f(m, t). (28)

This is the mixed lattice operators.
Using the lattice operators (26) and (28), the equation for probability density (3) takes

the form

∂f(n, t)
∂t

= −
3∑

i=1

gi K
±
[αi

i

]
f(m, t), +

3∑
i,j=1

gij K
±,±
[
αi βj

i j

]
f(m, t). (29)

This is the 3D lattice Fokker–Planck equation in the operator form to describe fractional
diffusion and drift with the lattice jump length (n − m).

To describe the long-range drift and diffusion for the lattice with memory, we can use
the equation

∂f(n, t)
∂t

= −
3∑

i=1

gi K
±
[αi

i

]
f(m, t), +

3∑
i,j=1

gij K
±,±
[
αi βj

i j

]
RL
0 D1−γ

t f(m, t), (30)

where RL
0 D1−γ

t is the Riemann–Liouville fractional derivative of order (1−γ) with respect
to time [7]. Note that the time-fractional derivative RL

0 D1−γ
t is present only in the diffusion

term. This fractional derivative describes the long-term memory of power law type.
Equation (30) describes anomalous diffusion processes with the waiting time t and the
lattice jump length (n − m).
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We can consider the time-fractional derivatives RL
0 D1−γ

t in the first and second terms of
the right side of the lattice Fokker–Planck equation (29). In this case the time-fractional
lattice Fokker–Planck equation has the form

∂f(n, t)
∂t

= RL
0 D1−γ

t Lα,β
LFP f(m, t), (31)

where Lα,β
LFP is the lattice Fokker–Planck operator

Lα,β
LFP = −

3∑
i=1

gi K
±
[αi

i

]
+

3∑
i,j=1

gij K
±,±
[
αi βj

i j

]
. (32)

Equation (31) describes long-range diffusion and drift with power law memory on
orthorhombic Bravais lattices.

3. Continuum limit for lattice equations

3.1. Continuum limit for lattice probability density

In order to transform a lattice probability density f(n, t) into a probability density f(r, t)
of continuum, we use the approach suggested in [60, 61]. We propose to consider f(n, t)
as Fourier series coefficients of some function f̂(k, t) for kj ∈ [−kj0/2, kj0/2], where kj0 =
2π/aj. Then we use the continuous limit k0 → ∞ to obtain f̃(k, t) and finally we apply
the inverse Fourier integral transformation to obtain the probability density f(r, t). For
clarity, we have presented the set of transformations of the probability density in figure 9.

The transformation of a lattice probability density into a continuum probability
density is realized by a sequence of the following three steps:

The first step is the Fourier series transform FΔ : f(n, t) → FΔ{f(n, t)} = f̂(k, t)
that is defined by

f̂(k, t) =
+∞∑

n1,n2,n3=−∞
f(n, t) e−i(k,r(n)) = FΔ{f(n, t)}, (33)

where the inverse transformation is

f(n, t) =

(
3∏

j=1

1
kj0

)∫ +k10/2

−k10/2
dk1 . . .

∫ +k30/2

−k30/2

dk3f̂(k, t) ei(k,r(n)) = F−1
Δ {f̂(k, t)}, (34)

and r(n) =
∑3

j=1 nj aj and kj0 = 2π/aj. We assume that all lattice particles have the
same inter-particle distance aj in the direction aj for simplification.

The second step is the passage to the limit aj → 0 (kj0 → ∞) denoted by
Lim : f̂(k, t) → Lim{f̂(k, t)} = f̃(k, t). The function f̃(k, t) can be derived from f̂(k, t)
in the limit ai → 0. Note that f̃(k, t) is a Fourier integral transform of the probability
density f(r, t) and f̂(k, t) is a Fourier series transform of f(n, t), where we use

f(n, t) =
3∏

j=1

2π
kj0

f(r(n), t)

considering r(n) =
∑3

j=1 njaj = 2π
∑3

j=1 nj/kj0ej → r.
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Figure 9. Transformation of lattice probability density to continuum probability
density.

The third step is the inverse Fourier integral transform F−1 : f̃(k, t) → F−1{f̃(k, t)} =
f(r, t) is defined by

f(r, t) =
1

(2π)3

∫ +∞

−∞
d3k ei

∑3
j=1 kjxj f̃(k, t) = F−1{f̃(k, t)} (35)

that corresponds to the transformation

f̃(k, t) =
∫ +∞

−∞
d3r e−i

∑3
j=1 kjxjf(r, t) = F{f(r, t)}. (36)

Note that the Fourier series transform equations (33) and (34) in the limit aj → 0
(kj0 → ∞) give the Fourier integral transform equations (36) and (35), where the sum is
replaced by the integral.

The lattice probability density f(n, t) is transformed by the combination F−1 ◦ Lim ◦
FΔ into a probability density f(r, t) of continuum,

F−1 ◦ Lim ◦ FΔ

(
f(n, t)

)
= f(r, t). (37)

The combination of the operations F−1, Lim and FΔ allows us to map the lattice
functions and operators into functions and operators for continuum.

3.2. Continuum limit of lattice operators

Let us consider transformations of lattice operators (26) and (27) into continuum
operators. The transformations F−1 ◦ Limit ◦ FΔ map the lattice operators into the
fractional derivatives with respect to coordinates. We represent these transformations in
figure 10.
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Figure 10. Transformation of lattice operators to fractional derivatives.

Using the methods suggested in [60, 61], we can prove the connection between
the lattice operators and fractional derivatives of non-integer orders with respect to
coordinates.

The lattice operators (26), where K±
α (n − m) are defined by (17) and (18), are

transformed by the combination F−1 ◦ Lim ◦ FΔ into the fractional derivatives of order
α with respect to coordinate xi as

F−1 ◦ Lim ◦ FΔ

(
K

±
[α

i

])
= aα

i

∂α,±

∂|xi|α , (38)

where ai = |ai| are the primitive lattice vectors, ∂α,+/∂|xi|α is the Riesz fractional
derivative of order α > 0 with respect to xi and ∂α,−/∂|xi|α is the generalized conjugate
Riesz derivative of order α > 0. The order of the partial derivative ∂α,±/∂|xi|α is defined
by the order of lattice operator K

± [α
i

]
and it can be integer and non-integer.

Using the independence of the site vectors of lattice site n1 = (n1, 0, 0), n2 = (0, n2, 0),
n3 = (0, 0, n3) and the statement (38), we can prove that the continuum limits for the
mixed lattice operators (27) have the form

F−1 ◦ Lim ◦ FΔ

(
K

±,±
[
αi βj

i j

])
= aαi

i a
αj

j

∂αi,±

∂|xi|αi

∂βj ,±

∂|xj|βj
, (39)

As a result, we obtain continuum limits for the lattice fractional derivatives in the form
of the fractional derivatives of the Riesz type with respect to coordinates.

The Riesz fractional derivative of the order α is defined [6, 7] by the equation

∂α,+f(r)
∂|xi|α =

1
d1(m, α)

∫
R

1
|zi|α+1 (Δm

i f)(zi) dzi, (0 < α < m), (40)

where (Δm
i f)(zi) is a finite difference of order m of a function f(r) with the vector step
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zi = xi ei ∈ R
3 for the point r ∈ R

3. The non-centered difference is

(Δm
i f)(zi) =

m∑
k=0

(−1)k m!
k! (m − k)!

f(r − k zi), (41)

and the centered difference is

(Δm
i f)(zi) =

m∑
k=0

(−1)k m!
k! (m − k)!

f(r − (m/2 − k) zi). (42)

The constant d1(m, α) is defined by

d1(m, α) =
π3/2Am(α)

2αΓ(1 + α/2)Γ((1 + α)/2) sin(πα/2)
,

where

Am(α) = 2
m∑

j=0

(−1)j−1 m!
j!(m − j)!

jα

in the case of the non-centered difference (41) and

Am(α) = 2
[m/2]∑
j=0

(−1)j−1 m!
j!(m − j)!

(m/2 − j)α

in the case of the centered difference (42). The constants d1(m, α) is different from zero
for all α > 0 in the case of an even m and centered difference (Δm

i f) (see Theorem 26.1
in [6]). In the case of a non-centered difference the constant d1(m, α) vanishes if and only
if α = 1, 3, 5, . . . , 2[m/2] − 1. Note that the integral (40) does not depend on the choice
of m > α. The Fourier transform F of the Riesz fractional derivative is given by

F
(

∂α,+f(r)
∂|xi|α

)
(k) = |ki|α(Ff)(k). (43)

Equation (43) can be considered as a definition of the Riesz fractional derivative of order α.
Using (−i)2j = (−1)j, the Riesz derivatives for even α = 2j are

∂2j,+f(r)
∂|xi|2j

= (−1)j ∂2jf(r)
∂x2j

i

. (44)

For α = 2 the Riesz derivative looks like the Laplace operator. The fractional derivatives
∂α,+/∂|xi|α for even orders α are local operators. Note that the Riesz derivative ∂1,+/∂|xi|1
cannot be considered as a derivative of first-order with respect to |xi|. For α = 1 it looks
like ‘the square root of the Laplacian’. The Riesz derivatives for odd orders α = 2j + 1
are non-local operators that cannot be considered as usual derivatives ∂2j+1/∂x2j+1

i .
We also define the new fractional derivatives ∂α,−/∂|xi|α by the equation

∂α,−

∂|xi|α =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂xi

I1−α
i 0 < α < 1,

∂

∂xi

α = 1,

∂

∂xi

∂α−1,+

∂|xi|α−1 α > 1,

(45)
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where ∂/∂xi is the usual derivative of first-order with respect to coordinate xi and I1−α
i

is the Riesz potential of order (1 − α) (see appendix A) with respect to xi,

I1−α
i f(r) =

∫
R1

R1−α(xi − zi) f(r + (zi − xi)ei)dzi, (0 < α < 1), (46)

where ei is the basis of the Cartesian coordinate system. For 0 < α < 1 the operator
∂α,−/∂|xi|α is called the conjugate Riesz derivative [9]. Therefore, the operator ∂α,−/∂|xi|α
for all α > 0 can be called the generalized conjugate Riesz derivative.

The Fourier transform F of the fractional derivative (45) is given by

F
(

∂α,−f(r)
∂|xi|α

)
(k) = i ki |ki|α−1(Ff)(k) = i sgn(ki) |ki|α(Ff)(k). (47)

Using (44) and (45), we get

∂2j+1,−f(r)
∂|xi|2j+1 = (−1)j ∂2j+1f(r)

∂x2j+1
i

. (48)

The fractional derivatives ∂α,−/∂|xi|α for odd orders α are local operators. Note that the
generalized conjugate Riesz derivative ∂2,−/∂|xi|2 cannot be considered as a derivative of
second-order with respect to |xi|. The derivatives ∂α,−/∂|xi|α for even orders α = 2j are
non-local operators that cannot be considered as usual derivatives ∂2j/∂x2j

i . For α = 2
the generalized conjugate Riesz derivative is not the Laplacian.

Equations (44) and (48) allow us to state that the usual local partial derivatives of
integer orders are obtained from the operators ∂α,±/∂|xi|α in the following two cases: (1)
for odd values α = 2j + 1 > 0 by ∂α,−/∂|xi|α only; (2) for even values α = 2j > 0 by
∂α,+/∂|xi|α only. The operators ∂α,+/∂|xi|α with integer odd α = 2j + 1 and ∂α,−/∂|xi|α
with integer even α = 2j, where n ∈ N, are non-local operators. Therefore we consider
the lattice equations with the lattice operators K

− [αi

i

]
and K

−,−
[

αi βj

i j

]
as main lattice

models to have the usual equations with local spatial derivatives in the case αi = βi = 1
for all i = 1, 2, 3.

4. Fractional Fokker–Planck equation for continuum

Using the statements (37), (38) and (39), where K−
α (n−m) are defined by (18), the lattice

Fokker–Planck equation (29) are transformed by the combination F−1 ◦ Lim ◦ FΔ into
the fractional Fokker–Planck equation with derivatives of non-integer orders with respect
to space coordinates. This space-fractional Fokker–Planck equation for the probability
density f(r, t) has the form

∂f(r, t)
∂t

= −
3∑

i=1

Di(α)
∂αi,−

∂|xi|αi
f(r, t) +

1
2

3∑
i=1

3∑
j=1

Dij(α, β)
∂αi,−

∂|xi|αi

∂βj ,−

∂|xj|βj
f(r, t), (49)

where Di(α) is the drift vector and Dij(α, β) is the diffusion tensor for the continuum
that are defined by the lattice coupling constants gi and gij by the relations

Di(α) = aαi
i gi, Dij(α, β) = 2 aαi

i aβj gij. (50)
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Using the definition (45), the fractional Fokker–Planck equation (49) can be
represented as the well-known continuity equation

∂f(r, t)
∂t

= −
3∑

i=1

∂Ji(r, t)
∂xi

, (51)

where Ji is the probability flow

Ji(r, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Di(α) I1−αi
i f(r, t) − 1

2

3∑
j=1

Dij(α, β) I1−αi
i

∂βj ,−

∂|xj|βj
f(r, t) 0 < αi < 1,

Di(α) f(r, t) − 1
2

3∑
j=1

Dij(α, β)
∂βj ,−

∂|xj|βj
f(r, t) αi = 1,

Di(α)
∂αi−1,+f(r, t)

∂|xj|αi−1 − 1
2

3∑
j=1

Dij(α, β)
∂αi−1,+

∂|xj|αi−1

∂βj ,−

∂|xj|βj
f(r, t) αi > 1,

(52)

Note that coincidence of orders of fractional derivatives in the first and second terms
allows us to represent the fractional Fokker–Planck equation (49) in the form of the
space-fractional continuity equation. The fractional Fokker–Planck equation (49) can be
represented as the fractional continuity equation

∂f(r, t)
∂t

= −
3∑

i=1

∂αi,−J
(frac)
i (r, t)

∂|xi|αi
, (53)

where J
(frac)
i is the probability flow

J
(frac)
i (r, t) = Di(α) f(r, t) − 1

2

3∑
j=1

Dij(α, β)
∂βj ,−

∂|xj|βj
f(r, t). (54)

If αi = 1, the continuity equation (53) has the standard form.
For the 1D case with Di(α) = 0 and f(r, t) = f(x, t), equation (49) can be represented

in the form
∂f(x, t)

∂t
= K(μ) ∇μf(x, t), (55)

where K(μ) is the generalized diffusion constant,

K(μ) =
1
2
D11(α, β), (56)

and ∇μ is the fractional derivative of order μ,

∇μ =
∂α1,−

∂|x|α1

∂β1,−

∂|x|β1
, μ = α1 + β1. (57)

Note that for sufficiently good functions, the operator (57) can be represented in the
form ∇μ = ∂μ,+/∂|x|μ, but it cannot be done in the general case. Equation (55)
describes the fractional diffusion processes with the Poissonian waiting time and the Lévy
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distribution for the jump length (see section 3.5 of [4]). In [4] the space-fractional diffusion
equation (55) contains the Weyl fractional derivative ∇μ of order μ, which is equivalent
to the Riesz operator ∂μ,+/∂|x|μ in 1D. The solution of equation (55) can be obtained
analytically by using the Fox function H1,1

2,2 (for details see section 3.5 in [4] and [73]). The
exact calculation of fractional moments [4] gives

〈|x(t)|δ〉 =
2 (K(μ))δ/μ Γ(−δ/μ) Γ(1 + δ)

μ Γ(−δ/2) Γ(1 + δ/2)
tδ/μ, (58)

where 0 < δ < μ � 2.
The time-fractional lattice Fokker–Planck equation (30) are transformed by the

combination F−1 ◦ Lim ◦ FΔ into the space-time fractional Fokker–Planck equation

∂f(r, t)
∂t

= −
3∑

i=1

Di(α)
∂αi,−

∂|xi|αi
f(r, t) +

1
2

3∑
i=1

3∑
j=1

Dij(α, β, γ)
∂αi,−

∂|xi|αi

∂βj ,−

∂|xj|βj

RL
0 D1−γ

t f(r, t),

(59)

where RL
0 D1−γ

t is the Riemann–Liouville fractional derivative with respect to time that
describes the power law memory. For the 1D case with Di(α) = 0 and f(r, t) = f(x, t),
equation (59) can be represented in the form

∂f(x, t)
∂t

= RL
0 D1−γ

t K(μ, γ) ∇μf(x, t), (60)

where

K(μ, γ) =
1
2
D11(α, β, γ), (61)

and the fractional derivative ∇μ is defined by (57). Equation (60) describes a random walk
characterized by waiting time and jump length (see section 3.6 in [4]). The competition
between long rests (waiting events) and long jumps (motion events) in the Lévy walks
processes is given [74] as

〈x2(t)〉 ∼
⎧⎨
⎩

t2+γ−μ 0 < γ < 1,

t3−μ γ > 1,
(62)

where 1 < μ < 2. It should be noted that the continuum form of the Lévy flights is
described by the drift term with the first-order derivative (αi = 1) as proposed in [39] and
derived from the continuous time random walk in [36]. The solutions of Cauchy problems
for the space–time fractional diffusion equation with the Riesz–Feller fractional derivatives
are described in [14].

The time-fractional lattice Fokker–Planck equation (31) is transformed by the
combination F−1 ◦ Lim ◦ FΔ into the space–time fractional continuum Fokker–Planck
equation

∂f(r, t)
∂t

= RL
0 D1−γ

t Lα,β
CFP f(r, t), (63)

where

Lα,β
CFP = F−1 ◦ Lim ◦ FΔ

(
Lα,β

LFP

)
(64)

doi:10.1088/1742-5468/2014/09/P09036 18

http://dx.doi.org/10.1088/1742-5468/2014/09/P09036


J. S
tat. M

ech. (2014) P
09036

Large lattice fractional Fokker–Planck equation

is the continuum Fokker–Planck operator of the form

Lα,β
CFP = −

3∑
i=1

Di(α)
∂αi,−

∂|xi|αi
+

1
2

3∑
i=1

3∑
j=1

Dij(α, β, γ)
∂αi,−

∂|xi|αi

∂βj ,−

∂|xj|βj
. (65)

For αi = βi = 1, equation (63) takes the form of the time-fractional Fokker–Planck
equation that is suggested in [36–38].

If αi = βi = γ = 1 for all i = 1, 2, 3, then equations (49), (59) and (63) for the
probability density f(r, t) give the well-known Fokker–Planck equation in the form

∂f(r, t)
∂t

= −
3∑

i=1

Di
∂

∂xi

f(r, t) +
1
2

3∑
i=1

3∑
j=1

Dij
∂2

∂xi ∂xj

f(r, t), (66)

where Di = Di(1) is the usual drift vector and Dij = Dij(1, 1) is the usual diffusion tensor.

5. Conclusion

In this paper 3D lattice models with long-range drift and diffusion of particles are
suggested. These proposed lattice models can be considered as a possible microscopic
basis to describe the anomalous diffusion in continuum. The suggested type of lattice
long-range drift and diffusion can be considered for non-integer (fractional) values of the
parameters αi, βi, γ. This allows us to have lattice equations for the fractional non-local
diffusion and transport processes. The proposed forms of the drift and diffusion of particles
in lattice allow us to obtain the continuum equations with the generalized conjugate Riesz
derivatives of fractional orders by using the approaches and methods proposed in [60,61].
The suggested 3D models with long-range lattice drift and diffusion of the types (17)
and (18) can be considered as lattice analogs of the fractional diffusion and drift in non-
local continuum. Different fractional generalizations of the Fokker–Planck equation for
continuum can be obtained by using the suggested lattice approach. We expect that the
proposed 3D lattice Fokker–Planck equations can play an important role in the description
of non-local processes in microscale and nanoscale because at these scales the interatomic
interactions can be prevalent in determining the properties of media.

Let us note some possible generalizations of the proposed lattice models. We assume
that the suggested lattice Fokker–Planck equations can be generalized in the form of
a lattice Kramers–Moyal equation for the case of the high-order terms by using the
different fractional-order derivatives. The suggested lattice models can be generalized for
the lattices with dislocation and disclinations that are connected with non-commutativity
of the lattice operators (26). In this paper, we consider the primitive orthorhombic Bravais
lattice for simplification. It is interesting to generalize the suggested consideration for
other types of Bravais lattices such as triclinic, monoclinic, rhombohedral and hexagonal.
The suggested models of unbounded lattices can be generalized for the bounded physical
lattices. We also assume that the proposed lattice approach to the fractional diffusion can
be generalized for lattices, which are characterized by fractal spatial dispersion [75–77]
and correspondent models for fractal media [78,79] (see also [80–82]).
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We also can note some remaining challenges and questions in the suggested approach
to fractional diffusion. The function f(n, t) has the meaning of probability density on
the lattice and it should be positively defined. It is known that this condition for the
continuum case leads to restriction for the parameters α, β, γ, μ. For example, we have
the condition 0 < μ � 2 for Lévy processes on continuum. A rigorous consideration of
positiveness of f(n, t) for a set of these parameter does not exist at the present time. Exact
mathematical conditions of existence of solutions for the lattice Fokker–Planck equation
can be important to describe anomalous long-range particle drift and diffusion on 3D
physical lattices.

Appendix A. Riesz fractional integral

The Riesz fractional integration is defined by

Iα
xf(x) = F−1

(
|k|−α(Ff)(k)

)
. (A.1)

The fractional integration (A.1) can be realized in the form of the Riesz potential defined
as the Fourier’s convolution of the form

Iα
xf(x) =

∫
Rn

Rα(x − z)f(z)dz, (α > 0), (A.2)

where the function Rα(x) is the Riesz kernel. If α > 0, the function Rα(x) is defined by

Rα(x) =

⎧⎨
⎩

γ−1
n (α)|x|α−n α �= n + 2k,

−γ−1
n (α)|x|α−n ln |x| α = n + 2k,

(A.3)

where n ∈ N and the constant γn(α) has the form

γn(α) =

⎧⎪⎪⎨
⎪⎪⎩

2απn/2Γ(α/2)/Γ
(

n − α

2

)
α �= n + 2k,

(−1)(n−α)/22α−1πn/2 Γ(α/2) Γ(1 + [α − n]/2) α = n + 2k.

(A.4)

The Fourier transform of the Riesz fractional integration is given by

F
(
Iα
xf(x)

)
= |k|−α(Ff)(k). (A.5)
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