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Abstract Models of three-dimensional lattices with

long-range interactions of Grünwald–Letnikov type

for fractional gradient elasticity of non-local con-

tinuum are suggested. The lattice long-range interac-

tions are described by fractional-order difference

operators. Continuous limit of suggested three-dimen-

sional lattice equations gives continuum differential

equations with the Grünwald–Letnikov derivatives of

non-integer orders. The proposed lattice models give a

new microstructural basis for elasticity of materials

with power-law type of non-locality. Moreover these

lattice models allow us to have a unified microscopic

description for fractional and usual (non-fractional)

gradient elasticity continuum.

Keywords Gradient elasticity � Nonlocal

continuum � Fractional derivatives � Lattice model �
Long-range interactions � Fractional-order difference

1 Introduction

Elastic deformations in materials are described by a

microscopic approach based on the lattice mechanics

[1–4], and a macroscopic approach based on the

continuum mechanics [5–7]. Continuum mechanics

can be considered as a continuous limit of lattice

dynamics, where the length-scales of an continuum

element are much larger than the distances between

the lattice particles. Continuum models for elasticity

of materials with microstructure have been suggested

by Mindlin [8]. In these models, two types of physical

quantities are used to characterize properties of

materials at the microscale and macroscale. The

kinetic energy and the deformation energy densities

for microstructured materials are considered for both

scales. The continuum models of these materials

differ by the relations between the microscopic and

macroscopic quantities. The most popular continuum

models of gradient elasticity suggested by Mind-

lin [8–10] are the first- and the second-gradient

models. In the first model, the microscopic deforma-

tion gradient is assumed to be the first gradient of the

macroscopic strain. In the second model, the micro-

scopic deformation gradient is defined as the second

gradient of the macroscopic displacement. Despite

these differences between these gradient models, the

equations for displacements are identical [8]. For

simplification of gradient elasticity models, the length

scales of the Mindlin models can be taken equal to

each other [11–13].

In general, the models of gradient elasticity cannot

be considered as a real nonlocal models since the

equations of these models include a finite number of

integer-order derivatives with respect to coordinates.

An application of general infinite series with integer-
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order derivatives to describe a weak nonlocality is a

difficult problem, This problem can be solved for

power-law type of weak nonlocality by using frac-

tional-order derivatives. It is important to note that the

use of the derivatives of non-integer orders is actually

equivalent to using an infinite number of derivatives of

integer orders, which can be arbitrarily large values

(for example, see Lemma 15.3 in [14, 15]).

The theory of derivatives and integrals of non-integer

orders [14–19] has a wide application in different areas

of mechanics and physics (for example see [20–28]).

The fractional-order derivatives allow us to formulate

fractional generalizations of elasticity models of con-

tinuum with weak nonlocality of power-law type. First

time the fractional derivatives with respect to space

coordinates have been applied in the elasticity theory of

nonlocal continuum by Gubenko [29, 30] in 1957.

Recently, the fractional-order derivatives is used to

describe continuum with power-law type of non-locality

(for example, see [26, 31–43]). Fractional models of

integral non-local elasticity are considered in papers

[44–50], where the microscopic models of fractional

integral elasticity are also described. The fractional-

order integration is used to describe continua with strong

nonlocality. In this paper, we will consider lattice

models of continua with weak nonlocality only.

Fractional calculus is a powerful tool to describe

processes in continuously distributed media with

nonlocal properties of power-law type. As it was

shown in [26, 51, 52], the continuum equations with

fractional derivatives are directly connected to lattice

models with long-range interactions. As it was shown

in [51, 52] the differential equations with fractional

derivatives of non-integer orders can be derived from

equation for lattice particles with long-range interac-

tions in the continuous limit, where the distance

between the lattice particles tends to zero. A direct

connection between the lattice with long-range inter-

action and nonlocal continuum has been proved by

using the special transform operation [51, 52] (see also

[53–56]). The one-dimensional lattice models for

fractional gradient elasticity and the correspondent

continuum equations have been suggested in [40–43,

57, 58]. All proposed lattice models of fractional

gradient elasticity describe one-dimensional lattices

only. In this paper, we suggest three-dimensional

models of lattices with long-range interactions and

continua with power-law nonlocality.

Fractional-order differences and the correspondent

derivatives have been first proposed by Grünwald [59]

and by Letnikov [60]. At the present time these

generalized differences and derivatives are called the

Grünwald–Letnikov fractional differences and deriva-

tives [14–16]. One-dimensional lattice models with

long-range interactions of the Grünwald–Letnikov type

and the correspondent fractional differential and inte-

gral continuum equations have been suggested in [42].

The suggested form of long-range interaction is based

on the form of the left-sided and right-sided Grünwald–

Letnikov fractional differences. In this paper, we

generalize this approach for three-dimensional case.

We suggest three-dimensional lattice models for frac-

tional gradient elasticity of the Grünwald–Letnikov

type and correspondent model of fractional nonlocal

continuum. To give this three-dimensional generaliza-

tions, we use a lattice fractional vectors calculus based

on the fractional-order differences of Grünwald–Let-

nikov type that has been suggested in Section 5.2 of

[55]. In this paper, we apply this new mathematical tool

to describe physical lattices with long-range interac-

tions and correspondent fractional elasticity equations

for nonlocal continuum with power-law nonlocality. A

general form of lattice model with long-range interac-

tion that gives a continuum equation with fractional-

order derivatives in continuum limit is proposed. We

consider a lattice model with long-range interactions for

the Mindlin continuum model of first gradient elasticity

for isotropic materials and its generalizations for

fractional order nonlocalities.

2 Long-range interactions of lattice particles

Let us consider a three-dimensional unbounded and

bounded lattices. Physical lattices are characterized by

space periodicity. For unbounded lattices we can use

three non-coplanar vectors a1, a2, a2, that are the

shortest vectors by which a lattice can be displaced and

be brought back into itself. Sites of this lattice can be

characterized by the number vector n ¼ ðn1; n2; n3Þ,
where ni (j ¼ 1; 2; 3) are integer. For simplification,

we consider a lattice with mutually perpendicular

primitive lattice vectors aj (j ¼ 1; 2; 3). This means

that we use a primitive orthorhombic Bravais lattice.

We choose directions of the axes of the Cartesian

coordinate system coincide with the vector aj. In this
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case aj ¼ aj ej, where ai ¼ jajj[ 0 and ej are the basis

vectors of the Cartesian coordinate system. Then the

vectorn can be represented as n ¼ n1e1 þ n2e2 þ n3e3.

Choosing a coordinate origin at one of the lattice

sites, then the positions of all other site with n ¼
ðn1; n2; n3Þ is described by the vector

rðnÞ ¼ n1a1 þ n2a2 þ n3a3. The lattice sites are num-

bered by n, so that the vector n can be considered as a

number vector of the corresponding particle. We

assume that the equilibrium positions of particles

coincide with the lattice sites rðnÞ. Coordinates rðnÞ of

lattice sites differs from the coordinates of the

corresponding particles, when particles are displaced

relative to their equilibrium positions. To define the

coordinates of a particle, we define displacement of a

n-particle with from its equilibrium position by the

vector field uðn; tÞ ¼
P3

i¼1 uiðn; tÞ ei; where ei is the

basis of the Cartesian coordinate system, and

uiðn; tÞ ¼ uiðn1; n2; n3; tÞ are components of the dis-

placement vector for lattice particle that is defined by

the vector n ¼ ðn1; n2; n3Þ.
In this paper, a new class of possible lattice models

for nonlocal theory of elasticity is suggested. This

class of lattice models can serve as a basis to describe

elastic materials with power-law nonlocality. We

consider a possibility of new type of materials with

spatial dispersion by taking into account non-Debye

screening of electromagnetic inter-atomic interactions

that have long-range power-law type [61].

To simplify our consideration of these models, we

use the some following assumptions for microscopic

(lattice) structure. It is obvious that to describe an

actual behavior of real materials we need to take into

account that actual behavior depends on a real

microscopic (lattice) structure of material.

In the paper, we consider primitive orthorhombic

Bravais lattice for simplification. The suggested

models can be generalized such that to consider other

types of Bravais lattice. In this case, the primitive

lattice vectors aj (j ¼ 1; 2; 3) are not mutually perpen-

dicular in general.

In the suggested lattice model, we consider pair-

forces between lattice particles. We assume that lattice

n-particle interacts by pair manner with all lattice m-

particles that reflects the long-range nature of the

interaction in the suggested non-local model of

material. In the three-dimensional lattice models,

these interactions can be described by using the a

lattice fractional vectors calculus based that has been

suggested in [55].

In the paper, we consider long-range interactions

that have the same order for all space directions. This

means that we use the difference operators which are

suggested in the paper [55], with orders aj ¼ a for all

j ¼ 1; 2; 3 for simplification. In general, it is possible

to consider generalized model, where the long-range

interactions are characterized by different orders aj in

different directions ej ¼ aj=jajj. In these models we

should use the difference operators of orders aj, where

a1 6¼ a2, a1 6¼ a3; a2 6¼ a3:

In the suggested lattice model, we consider pair-

forces between lattice particles. We assume that lattice

n-particle interacts by pair manner with all lattice

m-particles that reflects the long-range nature of the

interaction in the suggested non-local model of

material.

2.1 Long-range interaction of power-law type

Let us give a definition of the Long-range interaction

of power-law type (for details see [51, 52] and Section

8 of [26]). An interaction of lattice particles is

called the interaction of power-law type if the kernels

Kðn� mÞ of this interaction satisfy the conditions

lim
k!0

K̂aðkÞ � K̂að0Þ
jkja ¼ Aa; a[ 0; 0\jAaj\1;

ð1Þ

where

K̂aðkDxÞ ¼
Xþ1

n¼�1
e�iknDxKðnÞ ¼ 2

X1

n¼1

KðnÞcosðknDxÞ:

ð2Þ

As a simple example of the power-law type of

particle interaction, we can consider

Kðn� mÞ ¼ 1

jn� mja : ð3Þ

The other examples of power-law type interaction are

considered in [26, 43, 51, 52, 55].

The power-law type of interactions is suggested

in the papers [51, 52] (see also Section 8 of [26]).

This type of interactions is characterized by the

power-law asymptotic behavior of spatial disper-

sions in lattice.
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The power-law type interaction can appear in

crystal lattices and polymer materials. We assume

that the power-law spatial dispersion in the lattice can

be caused by non-Debye screening of electromagnetic

inter-atomic interactions. Some aspects of the theory

of this screening are described in the paper [61], where

fractional-order power-law spatial dispersion in elec-

trodynamics of continuum is discussed. Some elas-

ticity models of materials with power-law spatial

dispersion are discussed in [40, 41].

2.2 Long-range interaction of Grünwald–

Letnikov type

The long-range interaction of Grünwald–Letnikov

type is a special form of power-law type of interac-

tions. The interaction of Grünwald–Letnikov type is a

long-range interaction that can be represented as a

finite or infinite countable sum of the fractional-order

differences. The difference of a fractional order a[ 0

is defined by the infinite series (see Section 20 in [14,

15])

ra
hf ðxÞ ¼

X1

k¼0

ð�1Þk Cðaþ 1Þ
Cðk þ 1ÞCða� k þ 1Þ f ðx� khÞ:

ð4Þ

The space dispersion law of the suggested lattice

model (lattice with Grünwald–Letnikov interactions)

is defined by the following Fourier transform of the

fractional difference that is given by

F ra
hf ðxÞ

� �
ðkÞ ¼ 1 � expfikhgð ÞaFff ðxÞgðkÞ

for any function f ðxÞ 2 L1ðRÞ (see Property in [16, p.

121]).

An important property of the Grünwald–Let-

nikov type of the power-law particle interactions is

a the semigroup property that based on the

corresponding property of fractional-order differ-

ences. For the fractional difference, the semigroup

property

ra
hr

b
hf ðxÞ ¼ raþb

h f ðxÞ; ða[ 0; b[ 0Þ ð5Þ

is valid for any bounded function f ðxÞ (see Property

2.29 in [16]). The semigroup property of Grünwald–

Letnikov type of particle interaction allows us to use

the superposition principle for this type of non-local

interactions

GL
K

�
L

aj
j

� �
GL
K

�
L

bj
j

� �

¼ GL
K

�
L

aj þ bj
j

� �

;

ðaj [ 0; bj [ 0Þ:
ð6Þ

It should be noted that the superposition principle

cannot be used for non-local interactions in general.

One-dimensional lattice models with long-range

interactions of the Grünwald–Letnikov type and the

correspondent fractional differential and integral con-

tinuum equations have been suggested in [42]. In this

paper, we generalize this approach for three-dimension-

al case. We suggest three-dimensional lattice models for

fractional gradient elasticity of the Grünwald–Letnikov

type and correspondent model of fractional nonlocal

continuum. To give this three-dimensional generaliza-

tions, we use a lattice fractional vectors calculus based

on the fractional-order differences of Grünwald–Let-

nikov type that has been suggested in Section 5.2 of [55].

In this paper, we apply this new mathematical tool to

describe physical lattices with long-range interactions

and correspondent fractional elasticity equations for

nonlocal continuum with power-law nonlocality.

2.3 Fractional-order difference operators

of the Grünwald–Letnikov type

To describe dynamics in the lattice models with long-

range interactions, we define fractional-order differ-

ence operators of the Grünwald–Letnikov type in the

direction ej ¼ aj=jajj of the lattice. Fractional-order

difference operators of the Grünwald–Letnikov type

for unbounded lattice are the operators GL
K

�
L

aj
j

� �

that

act on the function uiðm; tÞ as

GL
K

�
L

aj
j

� �

uiðm; tÞ ¼
Xþ1

mj¼�1

GLK�
aj ðnj � mjÞuiðm; tÞ

ðaj [ 0; i; j ¼ 1; 2; 3Þ; ð7Þ

where the kernels GLK�
a ðnÞ are defined by the

equations

GLK�
aj ðnÞ¼

ð�1ÞnCð1þajÞ H½n��H½�n�ð Þ
2Cðjnjþ1ÞCð1þaj�jnjÞ ; ðaj[0Þ;

ð8Þ

and CðzÞ is the gamma function, H½n� is the discrete

variable Heaviside step function that is defined as

H½n� ¼ 1 for n�0, and H½n� ¼ 0 for n\0, where n2Z.
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The parameter aj is called the order of the operator. It

should be notes that the definition of H½0� ¼ 1 for

discrete variable Heaviside function is significant for

us, since it allows us to write the kernels GLKþ
a ðnÞ in

the simple form without allocating repeated zero

terms. It is easy to see that the kernels GLKþ
a ðnÞ and

GLK�
a ðnÞ are even and odd functions such that

GLK�
a ð�nÞ¼�GLK�

a ðnÞ: The form of the lattice

operators (7) can be represented in the form

GL
K

�
L

aj
j

� �

f ðm; tÞ ¼
X1

mj¼0

ð�1ÞmjCð1þ ajÞ
2Cðmjþ 1ÞCð1þ aj�mjÞ

� f ðn�mjej; tÞ� f ðnþmjej; tÞ
� �

:

ð9Þ

We should note that in Eq. (9) the summation is

realized over non-negative values mj, in contrast to the

sum over all integer values in Eq. (7).

It should be noted that one-dimensional lattice models

with the long-range interaction of the form GLKþ
a ðnÞ and

correspondent fractional nonlocal continuum models

have been suggested in [42]. The lattice operators (7)

recently have been proposed in [55].

For bounded physical lattice models the fractional-

order difference operators of the Grünwald–Letnikov

type for bounded lattice with m1
j �mj �m2

j are the

operators GL
B K

�
L

aj
j

� �

that act on the function uiðm; tÞ

can be defined in the form

GL
B K

�
L

aj
j

� �

uiðm; tÞ ¼
Xm

2
j

mj¼m1
j

GLK�
aj

nj � mj

� �
uiðm; tÞ

ði; j ¼ 1; 2; 3Þ;
ð10Þ

where the kernels GLK�
aj ðnÞ are defined by Eq. (8). The

suggested forms of fractional difference operators for

bounded physical lattice models are based on the

Grünwald–Letnikov fractional differences on finite

intervals (see Section 20.4 in [14, 15]). For the finite

interval ½x1
j ; x

2
j �, the integer values m1

j , m
2
j and mj are

defined by the equations

m1
j ¼

x1
j

aj

" #

; m2
j ¼

x2
j

aj

" #

; mj ¼
xj

aj

� �

; ð11Þ

where the brackets [ ] mean the floor function that

maps a real number to the largest previous integer

number.

To describe isotropic physical lattices we should

use the difference operators GL
K

�
L

aj
j

� �

and

GL
B K

�
L

aj
j

� �

with orders aj ¼ a for all j ¼ 1; 2; 3.

Using the semigroup property for fractional differ-

ences of non-negative orders (see Property 2.29 in

[16]), it is easy to prove that the semi-group property

holds for the fractional difference operators (7) in the

form

GL
K

�
L

aj
j

� �

;GL K�
L

bj
j

� �

¼ GL
K

�
L

aj þ bj
j

� �

;

ðaj [ 0; bj [ 0Þ: ð12Þ

Using this Eq. (12), it is easily to prove the commu-

tativity and the associativity of the fractional-order

difference operators (7) of the Grünwald–Letnikov

type. The commutativity and associativity of the

fractional operators (7) for different directions are

obvious.

For simplification, we use the combination of the

repeated fractional-order difference operators

GL
K

�;� ai bj
i j

� �

¼ GL
K

� ai
i

� �
GL
K

� bj
j

� �

; ð13Þ

where i, j take values from the set f1; 2; 3g. The action

of the operator (13) on the lattice fields ukðm; tÞ is

GL
K

�;� ai bj
i j

� �

ukðm; tÞ ¼
Xþ1

mi¼�1

Xþ1

mj¼�1
K�
ai

ni � mið ÞK�
bj

nj � mj

� �
ukðm; tÞ

ð14Þ

where i; j; k 2 f1; 2; 3g. Analogously, we can define

the repeated fractional-order difference operators

GL
K

�;�;� ai bj cl
i j l

� �

, GL
K

�;�;	 ai bj cl
i j l

� �

, and

other.
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3 Three-dimensional lattice models for fractional

gradient elasticity

3.1 Three-dimensional lattice models

for fractional generalization of Aifantis

gradient elasticity

A simplest model of gradient elasticity has been

suggested in [9, 62], where all length scales are taken

equal to each other. The gradient terms are used to take

into account so-called weak nonlocality. In order to

describe a weak nonlocality of power-law type, we

should use terms with the fractional gradients and

fractional Laplace operators [55]. The one-dimen-

sional lattice models for fractional elasticity and the

correspondent continuum equations have been sug-

gested in [40–43, 57, 58]. To generalize the one-

dimensional lattice models of fractional elasticity for

three-dimensional lattices we can apply the fractional-

order difference of the Grünwald–Letnikov type. For

simplification we will consider a primitive orthorhom-

bic Bravais lattice with long-range interactions, where

ai ¼ ai ei and ei is the basis of the Cartesian coordinate

system.

For microstructural models of the three-dimension-

al fractional gradient elasticity of anisotropic con-

tinua, we use the lattice equations

M
o2uiðn; tÞ

ot2
¼
X3

j;l¼1

AL
ijkl

GL
K

�;�
L

1 1

j l

� �

ukðm; tÞ

þ
X3

j;m;l¼1

BL
ijkl

GL
K

�;þ;�
L

1 a 1

j m l

� �

ukðm; tÞ þ Fiðn; tÞ;
ð15Þ

where ukðm; tÞ ¼ ukðm1;m2;m3; tÞ is the displacement

for the lattice, and AL
ijkl and BL

ijkl are the lattice coupling

constants. We assume that the fourth-order tensors

AL
ijkl and BL

ijkl have the same type of symmetry as the

fourth-order elastic stiffness tensor Cijkl:

AL
ijkl ¼ AL

jikl ¼ AL
ijlk ¼ AL

klij;

BL
ijkl ¼ BL

jikl ¼ BL
ijlk ¼ BL

klij:
ð16Þ

For primitive orthorhombic Bravais lattice [7], we

have nine coupling constants AL
ijkl and nine gradient

coupling constants BL
ijkl.

For bounded lattice we can use the fractional

difference operators (10), and the equations

M
o2uiðn; tÞ

ot2
¼
X3

j;l¼1

AL
ijkl

GL
B K

�;�
L

1 1

j l

� �

ukðm; tÞ

þ
X3

j;m;l¼1

BL
ijkl

GL
B K

�;þ;�
L

1 a 1

j m l

� �

ukðm; tÞ þ Fiðn; tÞ: ð17Þ

To describe anisotropic long-range interaction in

lattices, we should use the difference operators

GL
D

�
L

aj
j

� �

and GL
B D

�
L

aj
j

� �

with with unequal orders

aj at least for one j ¼ 1; 2; 3.

3.2 Three-dimensional lattice models

for fractional generalization of Mindlin

gradient elasticity

Mindlin [8] has been suggested a theory of elasticity

with microstructure, where two different type of

quantities are used for for the micro and macro scales.

In the Mindlin theory of elasticity [8], the kinetic and

the deformation energy densities are written in terms

of the micro and macro scale quantities. Gradient

elasticity models are special types of the elasticity

theories with microstructure, in which the deformation

energy density is represented in terms of the macro-

scopic displacements only. The Mindlin gradient

elasticity models differ in the assumed relation

between the microscopic deformation and the macro-

scopic displacement. It is important to note that

despite the theoretical differences between these

models, the equations for displacements of these

models are identical [8]. In order to derive a fractional

generalization of the Mindlin gradient models [8–10],

and a correspondent there-dimensional lattice model,

we assume that lattice is characterized by the mutually

perpendicular vectors a1 ¼ a2 ¼ a3 with equal length

a1 ¼ a2 ¼ a3 ¼ a. As lattice equations for the Mindlin

gradient elasticity we consider the equation
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where AL
1ðaÞ, AL

2ðaÞ, AL
3ðaÞ, and BL

1ðaÞ; . . .; BL
6ðaÞ are

corresponding coupling constants of the lattice long-

range interactions.

In the lattice model (18) all difference operators

have fractional orders. For wide class of nonlocal

elastic material the fractional derivatives are important

only if short- and long-range particle interactions are

present at the same time. It means that the lattice

equations should include the difference operators of

integer and non-integer orders. For this class of

materials, we can use the lattice equation in the form

M€uiðn; tÞ ¼ AL
0

X3

j¼1

GL
K

þ
L

2

j

� �

€uiðm; tÞ

þ AL
1

X3

j¼1

GL
K

�;�
L

1 1

j i

� �

ujðm; tÞ

þ AL
2

X3

j¼1

GL
K

þ
L

2

j

� �

uiðm; tÞ

þ BL
1

X3

j;m;i

GL
K

�;þ;�
L

1 a 1

j m i

� �

ujðm; tÞ

þ BL
2

X3

j;m;i

GL
K

�;þ;�
L

1 a 1

j m j

� �

uiðm; tÞ

þ Fiðn; tÞ; ð19Þ

where the displacement for the lattice is uiðm; tÞ ¼
uiðm1;m2;m3; tÞ; and AL

0 ; AL
1 ; AL

2 ; BL
1 ; BL

2 are the

coupling constants of the lattice long-range interac-

tions. This three-dimensional lattice model in the

continuum limit gives a fractional generalization of

the Mindlin model of the first gradient elasticity.

4 Fractional differential equations for nonlocal

continuum

4.1 Fractional-order derivatives of the Grünwald–

Letnikov type

To describe fractional elasticity of the nonlocal

continua, we should use fractional derivatives with

respect to space coordinates instead of the lattice

operators. Continuum analogs of the fractional-

order difference operators of the Grünwald–Let-

nikov type are the fractional derivatives of Grün-

wald–Letnikov type. Fractional-order difference

operators GL
K

�
L

aj
j

� �

defined by (7) are transformed

by the continuous limit into the fractional derivative of

Grünwald–Letnikov type with respect to coordinate xj
in the form

M€uiðn; tÞ ¼ AL
0ðaÞ

X3

j¼1

GL
K

þ
L

2a

j

� �

€uiðm; tÞ � AL
1ðaÞ

X3

j: j6¼i

GL
K

�;�
L

a a

j i

� �

uiðm; tÞ

� AL
2ðaÞ GLKþ

L

2a

i

� �

uiðm; tÞ � AL
3ðaÞ

X3

j 6¼i

GL
K

þ
L

2a

j

� �

uiðm; tÞ

� BL
1ðaÞ

X3

j: j 6¼i

GL
K

�;�
L

3a a

j i

� �

ujðm; tÞ þ GL
K

�;�
L

a 3a

j i

� �� 	

ujðm; tÞ

� BL
2ðaÞ

X3

j: j 6¼i

GL
K

þ;þ
L

2a 2a

j i

� �

uiðm; tÞ � BL
3ðaÞ GLKþ

L

4a

i

� �

uiðm; tÞ

� BL
4ðaÞ

X

k;j

k 6¼j;k 6¼i;j 6¼i

3 GL
K

�;�;þ
L

a a 2a

j i k

� �

ujðm; tÞ

� BL
5ðaÞ

X

k;j

k

6¼ j
3 GL

K
þ;þ
L

2a 2a

j k

� �

uiðm; tÞ � BL
6ðaÞ

X3

j¼1

GL
K

þ
L

4a

j

� �

uiðm; tÞ þ Fiðn; tÞ; ð18Þ
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lim
aj!0þ

1

a
aj
j

GL
K

�
L

aj
j

� �

uiðm; tÞ
� 	

¼GL
D

�
C

aj
j

� �

uiðr; tÞ;

ð20Þ

where GL
D

�
C

aj
j

� �

are the continuum fractional deriva-

tives of the Grünwald–Letnikov type that are defined

by

GL
D

�
C

a

j

� �

¼ 1

2
GLDa

xj;þ � GL Da
xj;�


 �
; ð21Þ

which contain the Grünwald–Letnikov fractional

derivatives GLDa
xj;� with respect to space coordinate

xj that can be written as

GLDa
xj;�uiðr; tÞ ¼ lim

aj!0þ

1

jajja

�
X1

mj¼0

ð�1Þmj Cðaþ 1Þ
Cðmj þ 1ÞCða� mj þ 1Þ uiðr	 mjaj; tÞ; ða[ 0Þ:

ð22Þ

This statement can be proved by analogy with the

proof for lattice model with long-range interaction of

the Grünwals–Letnikov type suggested in [42].

It is important to note that the Grünwald–

Letnikov fractional derivatives coincide with the

Marchaud fractional derivatives (see Section 20.3 in

[14, 15]) for the functions from the space LrðRÞ,
where 1 6 r\1 (see Theorem 20.4 in [14, 15]).

Moreover both the Grünwald–Letnikov and Marchaud

derivatives have the same domain of definition. The

Marchaud fractional derivative is defined by the

equation

MDa;�
xj

uiðr;tÞ¼
1

aða;sÞ

Z 1

0

Ds;�
zj

uiðr;tÞ
zaþ1
j

dzj; ð0\a\sÞ;

ð23Þ

where Ds;�
zj

is the finite difference of integer order s,

Ds;�
zj

uiðr; tÞ ¼
Xs

k¼0

ð�1Þks!
ðs� kÞ!k! uiðr� kzjej; tÞ; ð24Þ

and aða; sÞ is

aða; sÞ ¼ s

a

Z 1

0

ð1 � nÞs�1

ðlnð1=nÞÞa dn:
ð25Þ

We can note that the derivatives (21) for integer

orders a ¼ n 2 N have the forms

GL
D

þ
C

n

j

� �

¼ 1 � ð�1Þn

2

on

oxnj
: ð26Þ

Therefore the continuum fractional derivatives

GL
D

þ
C

n

j

� �

are the usual derivatives of integer order

n for even values a only, and the continuum operators

GL
D

�
C

n

j

� �

are the derivatives of integer order n for

odd values a only.

For bounden lattices, the fractional-order difference

operators GL
B K

�
L

aj
j

� �

defined by (10) are transformed

by the continuous limit

lim
aj!0þ

1

a
aj
j

GL
B D

�
L

aj
j

� �

uiðm; tÞ
� 	

¼GL
B D

�
C

aj
j

� �

uiðr; tÞ;

ð27Þ

into the continuum fractional derivatives of the

Grünwald–Letnikov type with respect to space coor-

dinate xj,

GL
B D

�
C

a

j

� �

¼ 1

2
GL
x1
j
Da

xj;þ � GL
x2
j
Da

xj;�


 �
; ð28Þ

which contain the Grünwald–Letnikov fractional

operators defined on the finite interval ½x1
j ; x

2
j �, where

x1
j ¼ m1

j aj and x1
j ¼ m2

j aj, in the form

GL
B Da

xj;�f ðr; tÞ ¼ lim
aj!0þ

1

jajja

�
XM

�
j

mj¼0

ð�1Þmj Cðaþ 1Þ
Cðmj þ 1ÞCða� mj þ 1Þ f r	 mjaj; t

� �
;

ð29Þ

where

Mþ
j ¼

xj � x1
j

aj

" #

; M�
j ¼

x2
j � xj

aj

" #

: ð30Þ

The suggested forms of continuum fractional deriva-

tives of the Grünwald–Letnikov type allow us to

consider elasticity on bounded areas of nonlocal

continuum.
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4.2 Three-dimensional continuum models

for fractional generalization of Aifantis

gradient elasticity

In the continuum limit (aj ! 0), the lattice equations

(15) give the continuum equations for the fractional

gradient elasticity in the form

q
o2uiðr; tÞ

ot2
¼
X3

j;l¼1

AC
ijkl

GL
D

þ
C

1 1

j l

� �

ukðr; tÞ

þ
X3

j;m;l¼1

BC
ijkl

GL
D

�;þ;�
C

1 a 1

j m l

� �

ukðr; tÞ þ fiðr; tÞ;
ð31Þ

where uiðr; tÞ are the components of the displacement

vector field for continuum, and AC
ijkl and BC

ijkl are the

coupling constants for the non-local continuum. We

note that the continuum operators, which are used in

Eq. (31), can be represented by

GL
D

þ
C

1 1

j l

� �

¼ o2

oxjoxl
; ð32Þ

GL
D

�;þ;�
C

1 a 1

j m l

� �

¼ GL
D

�
C

1

j

� �
GL
D

þ
C

a

m

� �
GL
D

�
C

1

l

� �

¼ o

oxj

GL
D

þ
C

a

m

� �
o

oxl
:

ð33Þ

The coupling constants of continuum are defined by

the lattice coupling constants AL
ijkl and BL

ijkl by the

relations

AC
ijkl ¼

al aj q
M

AL
ijkl; BC

ijkl ¼
al aj

P3
m¼1 a

2a
m


 �
q

M
BL
ijkl:

ð34Þ

In the case a1 ¼ a2 ¼ a3 ¼ a, we get the fourth-

order elastic stiffness tensor Cijkl in the form

Cijkl ¼ AC
ijkl ¼

a2 q
M

AL
ijkl: ð35Þ

If BL
ijkl ¼ gB AL

ijkl, then the scale parameter l2s is

l2s ¼ 3a2agB, and we have BC
ijkl ¼ l2a Cijkl. For isotropic

materials, Cijkl are expressed in terms of the Lame

constants k and l by

Cijkl ¼ kdijdkl þ l dikdjl þ dil djk
� �

: ð36Þ

Note that xk, ak, l
2
a are dimensionless values.

If a ¼ 2, then Eq. (31) gives the well-known

continuum equation of gradient elasticity

q€uiðr; tÞ ¼
X3

j;k;l¼1

Cijkl

o2ukðr; tÞ
oxjoxl

� l2a

�
X3

j;k;l;m¼1

Cijkl

o4ukðr; tÞ
oxjox2

moxl
þ fiðr; tÞ:

ð37Þ

Let us give the stress–strain constitutive relation for

fractional gradient elasticity (31). Equation (31) can

be represented in the form

q€uiðr; tÞ ¼
X3

j¼1

orijðr; tÞ
oxj

þ fiðr; tÞ; ð38Þ

where rijðr; tÞ is the stress tensor that is connected

with the strain tensor

eklðr; tÞ ¼
1

2

oukðr; tÞ
oxl

þ oulðr; tÞ
oxk

� 	

ð39Þ

by the constitutive relation

rijðr; tÞ ¼
X3

k;l¼1

AC
ijkleklðr; tÞ þ

X3

k;l;m¼1

BC
ijkl

GL
D

þ
C

a

m

� �

eklðr; tÞ:

ð40Þ

If we use (35) and assume that

BC
ijkl ¼ �l2aAC

ijkl; ð41Þ

then relation (40) can be rewritten as

rijðr; tÞ ¼
X3

k;l¼1

Cijkl 1 � l2a
GLDa;þ

C

� �
ekl; ð42Þ

where GLDa;þ
C is the fractional Laplacian of the

Grünwald–Letnikov type of the form

GLDa;þ
C ¼

X3

m¼1

GL
D

þ
C

a

m

� �

: ð43Þ

Equation (42) gives the constitutive relation for frac-

tional gradient elasticity. For a ¼ 2, relation (42) has

the form

rijðr; tÞ ¼
X3

k;l¼1

Cijkl 1 	 l22 D
� �

eklðr; tÞ: ð44Þ
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This is the well-known stress–strain constitutive

relation for gradient elasticity [9, 62]. If consider the

case with uxðr; tÞ ¼ uðx; tÞ, fxðr; tÞ ¼ f ðx; tÞ; where the

other components uy; uz; fy; fz are equal to zero, then

we get the one-dimensional fractional elasticity mod-

els suggested in [40, 41, 43]. The lattice models (19)

and (15) are three-dimensional generalizations of the

one-dimensional lattice models proposed in [40, 41,

43]. In addition, the Eq. (15) of lattice with long-range

interactions allows us to derive the stress–strain

constitutive relations for fractional nonlocal elasticity

by using usual law (38).

4.3 Three-dimensional continuum models

for fractional generalization of Mindlin

gradient elasticity

The three-dimensional lattice model (18) in the

continuum limit gives the fractional generalization

of Mindlin model of the first gradient elasticity, if the

Lame constants k and l are defined by the lattice

coupling constants

la
q

¼ a2aAL
3ðaÞ

M
;

ka
q

¼ a2a

M
AL

1ðaÞ � AL
3ðaÞ

� �
; ð45Þ

and the three additional parameters l1; l2; l3 of the

Mindlin model are

l21ðaÞ ¼
a2aAL

0ðaÞ
M

; l22ðaÞ ¼
a2aBL

1ðaÞ
AL

1ðaÞ
; l23ðaÞ ¼

BL
5ðaÞ

AL
3ðaÞ

;

ð46Þ

where the coupling constants are not independent

AL
2ðaÞ ¼ AL

1ðaÞ þ AL
3ðaÞ; BL

1ðaÞ ¼ BL
2ðaÞ ¼

BL
3ðaÞ ¼ BL

4ðaÞ;BL
5ðaÞ ¼ BL

6ðaÞ:
ð47Þ

In the continuum limit (a ! 0), we obtain the

equations for fractional non-local continuum model

that is a generalization of the Mindlin first gradient

elasticity. These equations have the form

q€ui ¼ ql21ðaÞ
X3

j¼1

GL
D

þ
C

2a

j

� �

€uiðr; tÞ

þ ðka þ laÞ
X3

j:j6¼i

GL
D

�;�
C

a a

j i

� �

ujðr; tÞ þ GL
D

þ
C

2a

i

� �

uiðr; tÞ
 !

þ la
X3

j¼1

GL
D

þ
C

2a

i

� �

uiðr; tÞ

� ðka þ laÞl22ðaÞ
X3

j:j 6¼i

GL
D

�;�
C

3a a

j i

� �

ujðr; tÞ þ GL
D

�;�
C

a 3a

j i

� �

ujðr; tÞ
� 	

� ka þ lað Þl22ðaÞ
X3

j:j 6¼i

GL
D

þ;þ
C

2a 2a

j i

� �

uiðr; tÞ

� ka þ lað Þl22ðaÞ
X

k;j:

j 6¼i;j6¼k;k 6¼i

3 GL
D

þ;�;�
C

2a a a

k j i

� �

uiðr; tÞ þ GL
D

þ
C

4a

i

� �

uiðr; tÞ

0

B
B
@

1

C
C
A

� la l
2
3ðaÞ

X

k;l

k 6¼l

3 GL
D

þ;þ
C

2a 2a

k j

� �

uiðr; tÞ þ
X3

j¼1

GL
D

þ
C

4a

i

� �

uiðr; tÞ

0

B
B
@

1

C
C
Aþ fiðr; tÞ;

ð48Þ
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where uiðr; tÞ are components of the displacement

field for the continuum, and fiðr; tÞ are the components

of the body force.

For a ¼ 1, Eq. (48) give the differential equations

for gradienl elasticity

q€uiðr; tÞ ¼ q l21
X3

j¼1

o2€uiðr; tÞ
ox2

j

þ ðkþ lÞ
X3

j: j6¼i

o2ujðr; tÞ
oxj oxi

þ o2uiðr; tÞ
ox2

i

 !

þ l
X3

j¼1

o2uiðr; tÞ
ox2

j

� ðkþ lÞ l22
X3

j: j6¼i

o4ujðr; tÞ
oxj ox

3
i

þ o4ujðr; tÞ
ox3

j oxi
þ o4uiðr; tÞ

ox2
j ox2

i

 !

� ðkþ lÞ l22
X

k;j:

j 6¼i;j 6¼k;k 6¼i

3 o4uiðr; tÞ
ox2

k oxj oxi
þ o4uiðr; tÞ

ox4
i

0

B
B
@

1

C
C
A

� ll23
X

k;l

k 6¼l

3 o4uiðr; tÞ
ox2

k ox2
j

þ
X3

j¼1

o4uiðr; tÞ
ox4

j

0

B
B
@

1

C
C
Aþ fiðr; tÞ;

ð49Þ

where k ¼ k1; l ¼ l1; and lj ¼ ljð1Þ; where

j ¼ 1; 2; 3. In Eq. (49) the derivatives of integer orders

with respect to the same spatial coordinates are clearly

marked. Equation (49) can be rewrite as the Mindlin

equations for displacements components in the form

q€uiðr; tÞ � ql21
X3

j¼1

o2€uiðr; tÞ
ox2

j

¼ ðkþ lÞ
X3

j¼1

o2ujðr; tÞ
oxioxj

þ l
X3

j¼1

o2uiðr; tÞ
ox2

j

� ðkþ lÞ l22
X3

k¼1

X3

j¼1

o4ujðr; tÞ
ox2

koxioxj

� l l23
X3

k¼1

X3

j¼1

o4uiðr; tÞ
ox2

k ox
2
j

þ fiðr; tÞ; ð50Þ

where fiðr; tÞ are the components of the body force,

uiðr; tÞ are components of the displacement field for

the continuum, and

l22 ¼ 4k1 þ 4k2 þ 3k3 þ 2k4 þ 3k5

2 ðkþ lÞ ;

l23 ¼ k3 þ 2k4 þ k5

2l
:

ð51Þ

As a result, continuum equations (50) have two Lame

constants and three additional parameters l1, l2, l3.

Note that Eq. (50) for Mindlin gradient elasticity

model can be obtained [8] by using the expressions of

the kinetic density

T ¼ 1

2
qotuiotui þ

1

2
ql21 _ui;j _ui;j; ð52Þ

the density of the deformation energy in the form

U ¼ 1

2
k eiiejj þ leijeij þ k1 eik;iejj;k þ k2 ekk;iejj;i

þ k3eik;iejk;j þ k4ejk;iejk;i þ k5ejk;ieij;k; ð53Þ

where k and l are the usual Lame constants and the

various ki (i ¼ 1; . . .; 5) are five additional constitutive

coefficients, q is the mass density, uk is the displace-

ment, eij is the strain, and eij ¼ ð1=2Þðui;j þ uj;iÞ.
If the lattice equations (18) would be written only

through even lattice fractional-order differences

GL
K

þ
L

a
j

� �

; then the correspondent continuum equa-

tions contain the continuum fractional derivatives

GL
D

þ
C

a
j

� �

; of orders 1 and 3 that are non-local

operators. In this case, we cannot get the usual Mindlin

model with derivatives of integer orders. Therefore,

we suggest the equations of lattice model that contain

two type of lattice fractional derivatives GL
K

�
L

a
j

� �

; in

the suggested form (18). It is obvious that we would

like to have a fractional generalization of partial

differential equations such that to obtain the original

equations in the limit case, when the orders of

fractional derivatives become equal to initial integer

values. This desirable correspondence and the prop-

erty of the continuum fractional derivatives GL
D

�
C

a
j

� �

to be the local operators of integer orders a only if we

use GL
D

�
C

a
j

� �

for the odd values of a, and if we use

GL
D

þ
C

a
j

� �

for the even values of a; allow us to

consider equations in the form (18) with the fractional-

order differences GL
D

�
L

a
j

� �

as basic equations of

lattices witj lon–range interactions.

The continuum limit for lattice equations (19) gives

the continuum equations of the fractional gradient

elasticity in the form
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q€uiðr; tÞ � AC
0

X3

j¼1

o2€uiðr; tÞ
ox2

j

¼ AC
1

X3

j¼1

o2ujðr; tÞ
oxjoxi

þ AC
2

X3

j¼1

o2uiðr; tÞ
ox2

j

þ BC
1

X3

j;m¼1

o

oxj

GL
D

þ
C

a

m

� �
oujðr; tÞ

oxi

þ BC
2

X3

j;m¼1

o

oxj

GL
D

þ
C

a

m

� �
ouiðr; tÞ

oxj
þ fiðr; tÞ;

ð54Þ

where the constants for continuum are defined by

AC
i ¼ a2q

M
AL
i ði ¼ 0; 1; 2Þ;

BC
j ¼ a2þaq

M
BL
j ðj ¼ 1; 2Þ:

ð55Þ

Note that the definition of the fractional-order differ-

ence GL
K

�
L

a
j

� �

does not include the factor 1=aaj . The

Lame constants k and l are defined by the lattice

coupling constants

l ¼ a2q
M

AL
2 ; k ¼ a2q

M
AL

1 � AL
2

� �
: ð56Þ

The three additional parameters l1; l2ðaÞ; l3ðaÞ of the

Mindlin model are

l21 ¼ AL
0a

2

M
; l22ðaÞ ¼

aajBL
1 j

jAL
1 j

; l23ðaÞ ¼
aajBL

2 j
jAL

2 j
:

ð57Þ

Note that xk, a, l21, l22ðaÞ, l23ðaÞ are dimensionless

values. Equation (54) can be considered as the frac-

tional Mindlin equations.

For a ¼ 2, the suggested three-dimensional lattice

model (19) gives the well-known Mindlin equation

(50) for the displacement field ui ¼ uiðr; tÞ of

the continuum, where we take into account

GL
D

þ
C

2

m

� �

¼ �o2=ox2
m. For a ¼ 1, Eq. (19) give the

differential equations with non-local operator of the

first and third orders since the derivatives GL
D

þ
C

a
m

� �

are non-local operators for odd a:

5 Conclusion

In this paper three-dimensional lattice models with

long-range inter-particle interactions are suggested for

fractional strain-gradient elasticity of weak nonlocal

continuum. The proposed lattice model can be

considered as a new microstructural basis of unified

description of gradient continuum models. The sug-

gested type of long-range interactions can be consid-

ered for integer and non-integer (fractional) values of

the parameter a. This allows us to obtain lattice models

for the local and nonlocal elasticity theories.

The proposed lattice models are used interactions

based on the Grünwald–Letnikov fractional differ-

ences and corresponding fractional derivatives. One

advantage of such models is a possibility to use the

well-known numerical methods developed for this

type of fractional derivatives. However, the computer

simulation represents a separate volume study, which

will be carried out in future, and it will be published in

the next paper.

Let us note some possible extensions of the

suggested lattice approach to formulate fractional

generalizations of nonlocal elasticity theories. We

assume that the proposed lattice approach to the

elasticity of materials can be used to generalize for

different types of Bravais lattices such as monoclinic,

triclinic, hexagonal and rhombohedral. We can as-

sume that fractional generalization of the Mindlin non-

local plate model and correspondent lattice model can

be formulated by suggested method. It can be assumed

that the proposed three-dimensional lattice model can

be modified to describe metamaterials with negative-

stiffness phases at the microstructural level. We can

assume that the suggested lattice models can be

modified to have lattice models for dislocations in the

gradient elasticity continuum and in the fractional

generalization of nonlocal dislocations. The proposed

models of the three-dimensional lattice with long-

range interactions can play an important role in the

description of nonlocal elastic materials at microscale

and nanoscale because at these scales the interatomic

interactions can be prevalent in determining the elastic

properties of these materials. We also assume that the

suggested approach can be generalized for lattice

models with the fractal spatial dispersion, which are

suggested in [55] (see also [56, 57]), and the
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continuum limits of these fractal lattice models can

give continuum models of fractal material.
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